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Abstract. We calculate the generalized additional boundary con.
ditions (ABC's) for a non-local dielectric film interacting with
8-polarized light. These ABC's correspond to a recently intro-
duced parameter U that describes, macroscopically, the inter-
action between an excitation and the surfaces of the non-local
medium. With group U-VI semiconductors in mind, we also al-
low for exciton-free layers at the two surfa.ces of the thin film.
The reflectivity, transmittivity, and a.bsorptivity for CdS are cal-
culated by means of an approach that utilizes a sequen ce of surface
impedances. These spectra exhibit a series ofresonances which are
consequences of ao interference between four plane waves in the
non-local rnedium. Sorne of the resonances may be interpreted in
terms of Fabry-Perot standing waves. The strongest non-local ef-
fects are obt.uned for U = -1 (the Pekar ABC), and the weakest
for U = 1 (the Fuchs-Kliewer or Ting-Fhnkel-Birman ABC).
We also find that spectra of thin films are strongly affected by
the presence of dead layers. A comparison with an experimental
spectrum by Makarenko, Uraltsev and Kiselev favors the value
U '" -0.5.
Resumen. Calculamos las condiciones a la frontera generali-
zadas (ABC's) para una película dieléctrica no-local que in-
teractúa con luz de polarizaci6n ,. Estas ABe's correspon-
den a un parámetro U recientemente "introducido que describe,
macrosc6picamente, la interacción entre una excitación y las su-
perficies del medio no-local. Estando nuestro interés dirigido hacia
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semiconductores del grupo I1-VI también incluimos capas libres
de excitones ("muertas") en las dos superficies de la película del-
gada. La refiectividad, transmitividad y absortividad para CdS
son calculados mediante un enfoque que utiliza una secuencia de
impedancias de superficie. Estos espectros exhiben una serie de
resonancias que son consecuencias de interferencia entre cuatro
ondas planas en el medio no-local. Algunas de las resonancias
pueden ser interpretadllS en términos de resonancias Fabry-Perot
de ondas estacionarias. Los efectos no-locales más fuertes se ob-
tienen para U = -1 (el ABC de Pekar) y los más débiles para
U = 1 (el ABC de Fuchs-Kliewer o de Ting-Frankel-Birman).
También encontramos que los espectros de las películas delgadas
son fuertemente afectados por la presencia de capas muertas, Una
comparación con un espectro experimental de Makarenko, Uralt-
sev y Kiselev favorece el valor U ~ -0.5.

PACS: 78.65.Jd; 78.40.Hs; 73.60.Fw

1. Introduction

This paper is concerned with the generalized additional boundary
condition (ABe) for non-local dielectrics, mainly semiconductors of
the II- VI group that possess a direct excitonic transition. A former
paper by Halevi and Fuchs [1]' (denominated I) introduced the basic
model and gave a calculation of the refiectivity for a simple surface. A
second paper by the same authors [21 dealt with surface polaritons.
In the present paper we will apply the model introduced in I to
non-local thin films interacting with s-polarized light.

The principal advantage in utilizing thin films, rather than mas-
sive crystals, is the possibility of amplifying the non-local effects by
means of Fabry-Perot resonances. It will be remembered that, for
s-polarized light, two plane waves may simultaneously propagate in
the spatially dispersive (non-local) medium. For the same value of
the frequency w one of these waves has a much greater wavevector
Re q than the other wave. It is possible to choose the thickness of the
film in such a way that this "non-local wave" will have an increased
importance. The actual positions of the peaks in the spectrum de-
pends, in a complicated way, on the dispersion relation w(q), the
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thickness of the film, the ABC, and the thicknesses of the exciton-free
("dead") layers.

Kiselev et al. [3]measured the refiection and transmission spec-
tra of several films of CdS and CdSe in the regions for the A- and B-
excitons. By fitting theoretical curves based on the ABC of Pekar [4]
to the experimental ones these authors were able to determine the
parameters in the dielectric function f(W) (Eq. (U)). In the vieinity
of the longitudinal exciton frequency W L the fit was improved by
allowance for a dead layer, originally postulated by Hopfield and
Thomas [5]. Bishop [6] calculated refiection and transmission spec-
tra for three different ABC's and found qualitative differences; she
has also considered the effect of exciton-free layers. In a calculation
involving p-polarized light incident on a thin film of CdS Johnson [7]
called attention to a structure in the refiectivity spectrum that dis-
appears for normal incidence; this effect is caused by a longitudinal
wave. Makarenko et al. [8] took various refiectivity spectra of thin
films of CdS in the region of the A-exciton and obtained the corre-
sponding material parameters by fitting with the Pekar ABC. The
fit is quite good, however the authors assumed that the phenomeno-
logical damping frequency 11 has a value up to five times greater for
W > WL than for W < WL' The aforementioned authors find that
the discontinuity in 11 is greater for smaller thicknesses, which is
attributed to an energy-loss canal associated with the surfaces.

In this paper we utilize the generalized ABC in order to obtain
the refiectivity R, the transmittivity T, and the absorptivity A. In-
cluded in the calculation are dead layers at both surfaces. Reliable
values of the parameters for the A(n = 1) exciton of CdS have
been determined by means of resonant Brillouin scattering (RBS)
by Yu and Evangelisti [9]. This leaves us with the following ad-
justable parameters: the damping frequency 11, the thickness I of
the exciton-free layer, and the parameter U that characterizes the
generalized ABC.

In section 2 we describe the dielectrie response of a non-local
thin film and show that the excitonic polarization P(z) obeys the
ABC of I (for s-polarization) at both interfaces between the spatially
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dispersive bulk and the two exciton-free layers. In section 3 we calcu-
late the surface impedance of the five-Iayer structure (vacuum-dead
layer-non-Iocal bulk-dead layer-vacuum) and we obtain the corre-
sponding expressions for R and T. In section 4 R, T and A are
displayed graphycally as function of the frequency w, the angle of in-
cidence O, and the thickness d of our CdS film. In this section we also
included a comparison between theoretical spectra for severa! values
of the parameter U and an experimental spectrum by Makarenko et
al. [8]. This parameter U is given the values -1 corresponding to
the Pekar ABC; O corresponding to the Agarwal et al. [lO] ABC; 1
corresponding to the Fuchs-Kliewer [11]or Ting et al. [12] ABC; and
the non-integral values :t0.5. Our results are diseussed in seetion 5.

2. Dielectric response of a spatially dispersive thin film

In this section we confine our attention to the non-local bulk
region I < z < d -1; the dead layers on both sides will be included in
the following section. We only eonsider s-polarized light, therefore
longitudinal modes are not excited. Thus we have to deal with the
two transverse modes. The reader is referred to I for details of the
notation and the basic formulas.

The dielectric response of the non-local region is given by the
following model susceptibility function:

X(z, z') = XB(Z - z') + xs(z,z'). (1)

(2)

Rere XB(z - z') is the Fourier transform (1.17) of the bulk suscep-
tibility X(qz); it depends only on the distanee between the points z
and z' and is thus insensitive to surfaee effects. Therefore XB(z - z')
gives the non-local bulk response. The seeond term in Eq. (1) is
defined as

00

xs(z,z') = ¿ Un{XB(,n) + XB('~)},
n=l

where now the arguments In and I~ of the function XB are the pro-
jections on the z-axis of the trajectories followed by the excitan (or,
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possibly, another excitation) after n interactions with the surface.
Here í (í') refers to the case that the first interaction, as we proceed
from the point of excitation r' to the point of observation r, takes
place at the surface z = 1 (z = d - 1). The first few values of ín and
í~are illustrated in Fig. 1. As in l, the phenomenological parameter
U describes the strength of the interaction between the excitation
and the surfaces. lf U is raised to the n'th power it means that
n interactions have taken place. Equations (1) and (2) constitute a
generalization of Eq. (1.16) to the thin film geometry. The quantities
ín and í~ describe the phase changes, in the direction perpendicu-
lar to the film, of the exciton for a given scattering process Un".
According to Eq. (1.22),

fO - 1 iw~ TI I
XB(ín) = ----.¡;- 8(ín) + 81rDr e' fn (3)

with r(w) given by Eq. (1.10),

r={(w2-w}-Dq;+il/w)/D}lj2. (4)

Here qx is the component of the wavevector parallel to the surface,
wT is the transverse frequency ofthe exciton, D = hWT/(m.+mh), fO
is the background dielectric constant, wp is a measure ofthe oscillator
strength, and l/ is the phenomenological damping frequency.

The wavevectors of the two transverse modes are given by
Eq. (1.19). In an unbounded medium this equation has two solutions
for the normal component qz, namely ql and q2. In our bounded
medium, however, we must also include the reflected waves with
the solutions -ql and -q2. For this reason the electric field in the
spatially dispersive region is expected to have the form

E(r, t) = {E(+l)iq¡z + E(+2)eiq2X + E(-l)e-iq¡Z

+ E(-2)e-iq2z }i(q.x-wtl, (1:5 z:5 d -1).

,Because we are considering s-polarized light, and the plane of inci-
dence is the X Z plane, Eq. (5) actually gives the (only) y-component
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of the field. Using the notation of Eq. (I.14) we write E(r, t)
E(z) exp[i(qxx - wt)], etc. Thus

2
E(z) = L {E(+k)eiqkZ + E(-k)e-iqkZ}.

k=l
(5a)

I,
'z: t
I Z' o,
:.,.-- Z l;
¡ ------ Z' I,
I Z --...,; 1;':z'-----, 1

!~
:<=:Z' ¡l;z
, I

kZ !~,
: Z'~ 2, ,

z-o Z*J Z-d-lz.d

FIGURE l. An exciton in "created" at the point r' and .ohserved" at the point r
in the non.local medium. It may proceed from r' to r directly, giving
rise to a bulk procese, ar eIse it may interact with one ar both surface
layers any number of times. The p08sible processes are schematieally
indicated. The normal components af r and r' are z and z', and they
are measured from the left.hand 8urface. The quantities ~n and ~~
are the projections on the z-axis of the trajectories followed by the
excitation aIter n interactions with the eurface¡ ror each value of n
there &retwo possible pracesses.
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By Eqs. (1) and (5a) the polarization in the spatially dispersive
medium is

(6)

Aeeording to Eqs. (2) and (3) the funetions XB(Z - z') and XS(z, z')
are

and

. 2
(

') fO - 1 , IWp irlz-z'lXB Z - Z = -- ó(z - Z ) + -- e
411" 811"Df

(7)

(8)

As ~n and ~~ are positive quantities the Dirae delta function does
not appear in the last equation. After substituting in Eq. (8) the ~n
and ~~as givcn in Fig. 1 the summation may be performed, to yield
thc result
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Next we substitute Eqs. (7) and (9) in Eq. (6) and perform the
integration, giving

where

Mk = [a(qk) + a(-qk)Ué(r+Qk)(d-21)]E(+k)éqk/

+ [a(-qk) + a(qk)Ué(r-Qk)(d-2/J]E(-kJe-iQk/ (11)

Nk = [a(-qk) + a(qk)uérr-Qk)(d-2/)]E(+k)eiQk(d-l)

+ [a( qk) + a( -qk)U é(r+Qk)(d-2/)] E( -k) e-iQk(d-/) (12)
1 U

a(qk) = --+ -- (13)
qk - r qk + r

If we substitute Eqs. (5a) and (10) in the wave equation (I.13)
then we find terms that are proportional to exp(iqlZ), exp(-iqlZ),
exp(iq2Z), exp( -iq2Z), exp(irz), and exp( -ir z). The wave equation
must be satisfied for an arbitrary value of z (between 1 and d - 1)
and therefore the coefficients of aH these terms must vanish. We see
from Eq. (10) that the coefficients of exp(irz) and exp( -irz) are
proportional, respectively, to L,Mk and L, Nk. Thus we conclude
that

2 2
LMk= LNk=O.
k=l k=l

(14)
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Substituting from Eqs. (11) and (12) we get

t [a(qk)E(+k)eiqkl + a( _qk)E(-kliqkl]
k=1

2+ uif(d-21) L [a(_qk)E(+k)eiqdd-ll + a(qk)E(-kle-iqk(d-I)] = O

k=1
andt [a(_qk)E(+kliqk(d-ll + a(qk)E(-k)e-iqdd-lJ]

k=1
2+ Uir(d-21) L [a(qk)E(+kliqkl + a(_qk)E(-kle-iqkl] = O
k=l

Because U2 exp[2ir(d - 2/)1 "f 1 the last two equations may be
satisfied only if each of the two surns vanishes

2L [a(qk)E(+kliqkl + a( _qk)E(-kle-iqkl] = O (15)
k=l

and
2L [a(_qk)E(+kliqk(d-l) + a(qk)EI-kle-iqkld-ll] = O. (16)

1;.01

These are the desired generalized ABC's. They are relations that
must be obeyed by the eleetric field at the planes z = 1and z = d -1,
respectively.

The generalized ABC's may also be expressed in terrns of the
excitonic polarization P(z) that excludes the polarization of the
background dielectrico By using Eqs. (10) and (14) we find that

P(z) = P(z) - [(EO - 1)/41r]E(z)

= ~ t {2 1 2 [E(+kliqkz + El-kle-iqkz]}. (17)
4.,..Dk=1 qk-r
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By substituting Eq. (13) in Eq. (15) we get

(18)

It is easy to show that the first sum is equal to (47rD / iw;){ 8P / 8z} z=/
and that the second sum is equal to (47rD /W;)Pz=l. Hence Eq. (18)
reduces to

ir(l - U)P(l) + (1+ U) dP(l)/dz = O. (19)

In the same way Eq. (16) leads to

ir(l - U)P(d -1) - (1+ U) dP(d -I)/dz = O. (20)

Equations (19) and (20) are the generalized ABC for the excitonic
polarization at the interfaces z = I and z = d - l. Note that these
equations are essential1y the same as Eq. (1.31). The only differences
are that, in the presence ofthe dead layers P(z) is evaluated at z = I
and z = d -1, rather than at z = O, and the obvioUBchange in sign
of the second term in Eq. (20).

It is interesting that the ABC's Eqs. (19) and (20) are indepen-
dent of the width of the non-local region.

3. Optical propertie. of thin film.

We have a system composed of five plane paral1ellayers: vacuum
with a dielectric constanl £ = 1 (z < O), an exciton-free surface layer
characterized by the background dieleclric conslant £ = £0 (O <
z < I)¡ the bulk with the non-local dielectric constant £ = £(w,q)
(1 < z < d - 1)¡ the exciton-free layer on the other side of the film
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with f = fa (d -1 < z < d)¡ and again vacuum having f = l(z > d).
The fields in these media must have the form

(5a)

(21a)
(21b)

z:'::: O¡

O:,::: z :':::I¡

I:':::z:':::d-I;

E(z) = E¡éqozco.8 + ERe-iqOzc098,

E(z) = El+)éq¡Z + El-)e-iq¡Z,
2

E(z) = L [E(+k)éqkZ + E(-k)e-iqkZ] ,
k=1

E(z) = E~+)éq¡Z + E~-)e-iq¡z, d -1:'::: z:'::: d; (21c)

E(z) = ETéqozco.8, z:::: d. (21d)

Here qo = w/c is the vacuum wavevector, q¡ = qO(fO - sin2 0)1/2 is
the normal component of the wavevector in the dead layers, qk = q1
and qk = q2 are the two solutions of the equation f(W, q) = q2c2/w2
and O is the angle of incidence.

As is well known, the s-polarized refiectivity may be expressed
in terrns of a surface impedance Z as follows:

Z _ Z(O) 2
R = -Z-+-ZT::( O') I (22)

where Z(O) = 1/ cos O is the surface impedance of vacuum, and

(23)
and the magnetic field is given by Faraday's law:

_ i dEy(z)
Bx - qo dz . (24)

Because Ey(z) and Bx(z) are both continuous quantities, so is their
ratio and we may define a continllously varying surface impedance
Z(z). Then in Eq. (23), Z = Z(O+). Using Eqs. (23) and (24) and
dropping the subscript y we write

Z(z) = iqoE(z)[dE(z)/dz¡-1. (25)
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The calculation may be performed by means of a scheme that
involves a sequence of impedances. We express Z = Z(O+) in terms
of Z(I+), then express Z(l+) in terms of Z(d - 1+), and finally
express Z(d -1+) in terms of Z(d+) which is, of course the surface
impedance of vacuum. The calculation is based on the continuity
of the field-components Ey(z) and Bx(z) at the interfaces z = O, 1,
d-I, and d. The expressions for these fields are found from Eqs. (5a),
(21a)-(21d), and (25). A considerable amount of algebra leads to the
following sequence, derived in appendix A:

Z = Z(O+) = qo Z(I) - i(qo/q¡) tanq¡1 , (26)
q¡ (qO/q¡) - iZ(I) tanq¡1

Z(l) = qo b¡ (b¡ + b2)Z(d -1) + qo(b¡c2lq - b2c¡fcS), (27)
bs (bs - b4)Z(d -1) + qO(bSC2/C4 + b4c¡fcs)

Z(d -1) = qo Z(d+) - i~qo/q¡) tanq¡1 , (28)
q¡ (qo/q¡) - tZ(d+) tanq¡1

Z(d+) = Z(O) = 1/ cosO. (29)

The quantities bi and ci are given by Eq. (A.10).
The transmittivity is

(30)

where it is shown in appendix B that

ET = 2Ze-iqodcos9 Z(l)
E¡ Z + Z(O) Z(I) cos q¡1 - i(qo/ q¡) sin q¡1

x Z(d-l)(c¡q+C2CS) (31)
Z(d -l)(b¡q + b2Cs) + qO(b¡C2 - b2c¡)

Z(d)
x Z(d)cosq¡l- i(qo/q¡)sinq¡l

Finally, the absorptivity is

A = 1-R- T. (32)
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4. Numerical resulls

4.1. Comparison with other calculations

As a check on our calculations and computer program we made
comparisons wilh theoretical results by Johnson [7) and Bishop [6].
We have calculated the normal incidence reflectivity for a 400 Á
thick CdS film using the ABC's of Pekar and of Fuchs-Kliewer. Our
results coincide with those of Johnson [71, except for small differences
that are attributable to a slightly different set of parameters that we
used.

On the other hand, our results for ZnSe are very different than
those reported by Bishop [6] in spite of the fact that we have used
the very same parameters quoted in her papero We believe that the
value of wp in her computer data was not the same as the value given
in the papero

4.t!. Fabry-Perot resonances o/ the A( n = 1) exciton o/ CdS

In our calculations we have used the parameters for the A(n = 1)
exciton of CdS determined by RBS by Yu and Evangelisti [9]. These
are fO = 9.1. m. + mh = 0.94rna, hWT = 2,552.73 meV, wL - WT =
1.86 meV, and hv = 0.124 meV. We have chosen the thicknesses of
the dead layers as 1 = 100 A each, and the overall thickness of the
film as d = 1,200 Á. The parameter U is given the values 1, 0.5, O,
-0.5, and -1.

In local optics (and a transparent medium) it is well known [13)
that mínima are obtained in the reflection spectrum of a film of
thickness L whenever the condition

(n = 1,2,3, ... ) (33)

is fulfilled. Thus, for normal incidence, these "Fabry-Perot reso-
pances" occur whenever an integer number of half-wavelenghts (11"/ q)
fits into the thickness L. In case of oblique incidence q should be
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n Wn (meY) Re qk 1m qk n Wn (meY) Reqk Imqk

1 2558.0 3.14 omo 7 2554.6 22.00 0.340

2 2551.7 6.:8 0.092 8 2555.2 25.13 0.302

3 2552.7 9.42 0.353 9 2555.9 28.27 0.270

4 2553.2 12.56 0.455 10 2556.6 31.42 0.245

5 2553.6 15.71 0.432 11 2557.5 34.56 0.222

6 2554.1 18.85 0.382 12 2558.4 37.70 0.204

TABLE l. The frequencie. Wn for which Eq. (34) i•• ati.fied either for k = 1 (the
"local wave") or for k = 2 (the "non-local wave"). Re qk and 1m qk are
given in (103 A) -1. The real and imaginary parto of the wavevector qk
are al80 given. Here we coosider normal incidence and d- 21= 1,000 Á.
In the frequency region oC interest only n = 1 corresponda to the "local
wave" 1 while a11the other resonances, 2 ::; n ~ 12 correspond to the
"non. local wave".

replaced by the normal component qz. Moreoyer, in our non-local
medium there are two modes (labeled k = 1,2) and this medium
has a thickness (d - 2/), so we expect that the aboye condition must
be replaced by

k = 1,2, n = 1,2,3, ... (34)

In table 1 we list the frequencies, within the range of interest, for
which Eq. (34) is satisfied in the case of normal incidence. Similarly,
table II giyes the corresponding frequencies for 8-polarized incidence
with O = 80°. The columns for the imaginary part of qk show that
1mqk <t:: Re qb so absorption is not expected to be very important .

./.9. Refleetion

The reflection spectra haye been calculated from Eqs. (22) and
(26)-(29). For normal incidence, O = 0, they are shown in Fig. 2.
First we analyse the case U = 1 corresponding to the Fuchs-Kliewer
or to the Ting et al. ABe. Outside the range (WT,WL) the spectrum
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n Wn (meV) Reqk Imqk n Wn (meV) Reqk Imqk

1 2560.1 3.14 0.005 1 2554.6 22.00 0.338

2 2551.8 6.28 0.105 8 2555.2 25.13 0.301

3 2552.1 9.42 0.365 9 2555.9 28.21 0.269

4 2553.2 12.56 0.456 10 2556.1 31.42 0.243

5 2553.6 15.11 0.432 11 2551.5 34.56 0.221

6 2554.1 18.85 0.383 12 2558.4 31.10 0.203

TABLE 11. As in table 1, however for a-polarized incidence with (J = 800

is very similar to that for the local case (D = O) and the non-local
behavior is confined to the region wT ~ W ~ wL' It was found by
Gaspar-Armenta [14] that, in the absence of dead layers (l = O), the
five minima coincide in positions with the frequencies W2, W3, W4, W5
and W1 in table 1. Here OUT allowance for finite dead layers causes
substantial shifts from the predictions of the rather naive application
ofEq. (34). Intuitively one may expect that the express ion (d-2/) in
Eq. (34) should be replaced by some average of (d - 2/) and d, thus
allowing for the fact that the thickness of the film is actually d. Then
for a given n, Eq. (34) would be satisfied by a smaller value of Re qk>
and as a result, smaller Wn. Indeed, we observe in Fig. 2 a shift of
the minima to lower frequencies: this effect is especially notable for
n = 1, where D.w "" -3 meV. Incidentally, in the frequency range of
interest, this resonance at W "" WL is the only one that is contributed
by the "local wave" .

As we decrease the parameter U, in steps of 0.5, from the value 1
in Fig. 2(b) to the value -1 in Fig. 2(f) three things happen. Firstly,
the ~.bove discussed mínima of Fíg. 2(b) are gradually shifted to
hígher frequencies, secondly, some of the minima below W L disap-
pear. Thirdly, oscillations of increasíng amplitude appear aboye W L.
In this regíon we expect that the minima are related to Fabry-Perot
resonances of the "non-local wave" for high values of n. However,
there is no obvíous correspondence between ~he positions -and even
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FIGURE 2. Normal-incidence refiectivity spectra R(w) of CdS in the vicinity of
the A(n = 1) exciton. The film thickness is 1,200 A and exciton-
free layers 100 A thick have been included at both surf.ces. Other
parameters have be en taken from Yu and Evangelisti [91. The five
values of U in (b)-(f) correspond to five ABC's. The local case
(D = O) is shown for comparison in (.l.

number- of these minima and the Wn in table 1. This situation is
unaltered even for / = O. Clearly, for U :s: O Eq. (34) is not very
useful, because four, rather than two, plane waves (with wavevec-
tors :J::q1 and :J::q2) participate in the process of interference. This is
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FIGURE 3. A. in Fig. 2 for ,-polarized light with an angle of incidente 9 = 80•.

to say that the non-local effects are very important; they are most
dramatic for U = -1, that is, the Pekar ABe.

The case of s-polarized incidence, with (J = 80°, is illustrated
in Fig. 3. Many features of the normal-incidence spectrum, Fig. 2
are repeated. There are, however two notable differences. One is
that now, generally speaking, the refieetivity values are greater (al-
though the relative values of R(w) for different minima are largely
tinaffected). This is to be expeeted: for an angle (J = 80° most of the
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incident light should be reflected provided that W is not very near to
a resonance frequency. The other diffcrence is that the broad min-
imum in the vicinity of WL, for O = O, splits into two minima, thus
increasing by one the number of minima in the frequency range that
wc studicd. Thc minimum at W "" 2,556 meV seems to be related
to the Fabry-Perot resonance W¡ in tablc n. The considerable shift
must be cxplaincd by the participation of the "non-local wave" in
the interference process, and by the prcsence of the dead layers. The
minimum at W "" WL is associated with the "matching frequency"
WM "" WL introduced in 1. This frequency is defined by the equation
Re£(w = wM,q = O) = 1. At W = WM for 11 = O, D = O and in
the absence of dead layers aH the light should be transmitted. Thus,
indecd, we may expect a minimum in the reflectivity.

Because Eq. (34) determines Re qb the real part of the normal
component of the wavevector, the third columns in tables I and n
are cIearly identical. The total wavevector is (q¡ + qa sin 2 O) ¡/2; then
the corresponding frequency Wn may be found from the normal-
incidence dispersion relation. Note, however, that the Wn in table n
are almost the same as the corresponding Wn in table I, the only
exception being W¡. The reason for this is quite simple, namely
qo sinO "" 1.3 x 10-3 Á -¡; then a glance in table n reveals that
qo sin O is quite smaH in comparison to aH the Re qk but Re q¡. The
dependence of R(w) on the parameter U is similar in Figs. 2 and 3.

In Fig. 4 we show an example of an angular scan, fixing the
frequency at W = WL. In the local case, and for U = 1 and U = O a
minimum exists at O"" 55°. However, for U = -1 the reflectivity is
a monotously increasing function of O. We find that the R( O) curves
strongly depend on the choice of W and on the value of d.

We also exhibit the dependence of R on d (see Fig. 5) for normal
incidence and W = WL. T:le case U = 1 is very similar to the local
case, while for U = O and U = -1 we obtain a complex structure
that is related to the interference of the four waves with wavevectors
::I:q¡ and ::I:q2'
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incidence for three ABO's and the local case. The parameters are
the same as in Fig. 2 and W = wL.

1.1. Transmission and absorption

The transmittivity T(w), given by Eqs. (30) and (31) has been
calculated for the same case that we considered in seco 4.2. The
normal incidence spectrum is shown in Fig. 6. Again, the non-local
efI'ects are very weak for U = 1 and they are very prominent for
U = -1. As we proceed from U = 1 to U = -1 the transmittivity
between wT and w L increases, demonstrating that the overall de-
crease in R(w) in this region is not only a resutt of an increase in the
absorptivity. For oblique incidence, ()= 80°, T(w) is given in Fig. 7.
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FIGURE 5. The refiectivity R(d) as a function of the film thickness d for three
ABC's and the local case. The puameters are the same as in Fig. 2
and W = wL'

The absorptivity A(w) for normal incidence has been calculated
from Eq. (32) and is shown in Fig. 8. As for R(w), resonances now
in the form of peaks, rather than minima appear for w > wL as the
value of U is decreased from 1 to -1. These peaks are consequence
of interference of the four partial plane waves.

The positions ofthe resonances in R(w), T(w) and A(w) coincide,
except for w ~ wL'

.¡.5. Comparison with an experimental spectrllm

In this subsection we perform a comparison of calculated refiec-
tivity spectra with an experimental spectrum of a 2,000 Á thick CdS
film, reported by Makarenko et al. [8]. We use the parameters found
by Yu and Evangelisti [9] and we also allow for exciton-free layers
of thickness l = 100 Á. The results for R(w) in the local case and
for five values of U are shown in Fig. 9; the experimental spectrum
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FIGURE 6. Normal incidence transmittivity spectra T(w) for the same set of
parameters as in Fig. 2.

is also drawn with dashed lines. We observe that for U = -0.5 the
number of experimentally observed peaks and their relative height
are well reproduced. However the theoretical minima are displaced
towards lower energies as compared with the experimental minima,
and this e/fect increases for W > WL. For U = -1 (the Pekar ABe)
the positions of the theoretical minima are improved in the region
W < WL, however their width becomes very small for W > WL. The
.lit in the vicinity of W L improves if the thickness of the dead (ayer is



620 J.A. Gaspar.Armenta, P. Ha/evi

LO
08

(a) Local (d) U-O

06

O,
02

>- 00
> 0.8

(b) U-I (,) U•• O~

0.6
E o.
<1>
e 02
o
~ 00
f- r'

08
Celu.o ~ (t) U.-I

06

O.
02

00 j, .l
25450 2550.0 25550 25450 2550.0 2555.0 2560_0

F r e q u e n e y (meV)

FIGURE 7. As in Fig. 6 for .-polarized light with lUl IUlgleof in.ideneo 9 = 80°,

reduced to 80 Á. We note that, for a 8urface, the Pekar ABC gave a
very good agreement with an experimental spectrum.

5. Discussion

The spectra shown in Figs. 2-9 are results oí a complicated
interference of four plane waves with waveveetors ::I:q¡ and ::I:q2 and
amplitudes that depend on the ABC. The strongest effects of spatial
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dispersion are found for U = -1 (the Pekar ABC), and the weakest
for U = 1 (the Fuchs-Kliewer or Ting et al. ABC). The positions of
the resonances are strongly alfected by the mass of the exciton.

We also find that our inclusion of dead layers at both surfaces of
the film strongly alfects the spectra. This is to be expeded because
these layers comprise a sizeable fradion (21/d = 1/6) of the overall
width of our film (d = 1,200 A). The allowance for exciton-free layers
may substantially alter best-fit values of parameters such as the,
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(Makarenko el al. [8J). The film thickness is 2,000 Á; al! the other
parameters are the same as in Fig. 2. The ABO corresponding to
U = -0,5 gives a reasonable 6t to the experimental curve.

exciton mass, deduced from experimental spectra. We have studied
the dependence of the refiectivity on the dead-layer thickness 1 for a
2,000 A thick film. As 1 is increased from 20 Á to 100 Á considerable
changes occur in R (w):
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(a) There is a major shift, +0.7 meV, of the broad, low-energy
mínimum.

(b) The other minima and maxima below WL do not suffer large
shifts (~ 0.2 meV), however, as we approach WL the overall decrease
of R(w) is much more rapid for 1 = 100 A than for 1 = 20 A.

(c) The last two minima, just below WL, are absent for 1 = 100 Aj
it seems that the last three minima for 1 = 20 A have merged into a
single minimum (the last below WL)'

(d) Just aboye WL the spectra for 1 = 20 A and 1 = 100 A are
qualitatively different. The first peak (at - 2,555 meV) is much
more prominent in the latter case.

(e) The positions of the minima aboye WL shift to higher fre-
quencies as we increase 1 from O to 100 A. The shift increases with
(w - WT) and, for sufficiently high frequencies, is well accounted for
by the formula

t,Wn "" 4(wn - wT)t,II(d - 2/). (35)

This is obtained from Eq. (34) by calculating the change in a reso-
nance frequency Wn due to a change t,l in 1.We assumed that, well
aboye WT, the nonlocal polariton branch may be approximated by
the bare exciton dispersion, namely W = wT + ñq2/2m.

(f) W~ile the individual minima aboye WL shift to higher fre-
quencies, the overall (smoothed-out) structure shifts ~ 1meV to
lower frequencies.

On the basis of a microscopic approach D'Andrea and Del
Sole [16] claimed that 1 = 18 A for CdS, rather than ~ 100 A as
believed by most workers in the field. Our discussion aboye, along
with experimental work on high-quality thin films, should settle this
point. However, we should mention that an exciton-free layer is ac-
tually an approximation to a continuously varying surface potentia1.
Continuous models of transition layers have been recently applied
to surfaccs by D'Andrea and Del Sale [16], R. Ruppin and R. En-
giman [17], and Gotthard, Stahl, and Czaijkowski [18].

We have also studied the effect of the damping frequency v on
the spectra. As v is increased from 0.062 meV, through 0.124 meV,
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to 0.248 meV the smaller peaks become shoulders and ultimately
disappear. The increase of v by a factor of fOUTresults in a very
notable smoothing out of the spectrum. However, the positions of
the peaks and minima remain practically unchanged. As may be
expected, there is an overall decrease, with v of R(w); the peak
at 2,555 meV decreases disproportionately, by a factor of two. The
changes are most pronounced in the vicinity of wL.

Our comparison with an experimental refiectivity spectrum (Ma-
karenko [8]) favors a parameter U = -0.5 that corresponds to an
ABC which occupies an intermediate position between the Pekar
ABC (U = -1) and the Agarwal et al. ABC (U = O). On the other
hand, Makarenko et al. preferred the Pekar ABC with a discontinu-
ous jump of the damping frequency v at w O:< wL, which procedure
also gives theoretical spectra that compare well with the experimen-
talones.
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Appendix A. Calculation of the 5urface impedance Z

We wilJ calculate the surface impedance Z, that appears in the
Eq. (22), in terms of a sequence of surface impedances at z = 1+,
d - 21+, and d+.

From Eqs. (21b) and (25) one finds for z = O:

(-) (+)
Z(0+)=.q01+EI/EI;

ql 1 E(-)/E(+)- 1 1
(A.1)
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in the same way for z = 1

q 1+ [EH / E(+)j e-2iq¡/Z(l) = ...Q 1 1 .
q/ 1- [Er-) /Er+)j e-2iq¡¡

From Eqs. (A.1) and (A.2) one obtains Z(O+) in terms of Z(I),
Eq. (26) of the text:

Z = Z(O+) = qo Z(l) - i(qo/q/)tanq¡l. (26)
q¡ (qO/ql) - iZ(I) tanqll

Substituting Eq. (5a) in Eq. (25) with z = 1 and then with z = d-I
one finds the expressions

E%=l [E(+k)éqkl + E(-k)e-iqkl]
Z(l) = -~~-----~~ (A.3)

E%=l {~[E(+k)éqkl - E(-k)e-iqkl]}

To relate the 1ast two expressions, one e1iminates E(-l) and E(-2)
from the ABe's, Eqs. (15) and (16):

E(-l) = ElE(+l) + E2E(+2),

E(-2) = nlE(+l) + n2E(+2),

where

El = ~ [a(q2)a(q¡)é(qt+q2)1

- a( -q2)a( -ql)é(q¡ +q2)(d-I)] e-ir q2-q¡)d,

(A.5)

(A.6)

(A.7a)
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6 = ~ [a2(q2)e2iq21_ a2(_q2)e2iq2(d-l)]e-i(q2-q¡jd, (A.7b)

nI = ~ [a2(_ql)e2iq¡(d-l) - a2(ql)e2iQ¡I], (A.7c)

n2 = ~ [a(-q2)a(-ql)é(Q¡+Q2)(d-I) - a(q2)a(ql)é(Q¡+Q2J1], (A.7d)

t/J = a( -q2)a( q¡)e -i(Q2-Q¡)1 - a( q2)a( -ql)e -i(Q2-Q¡)(d-I). (A. 7 e)

Then, substituting E(-l) and E(-2) from Eqs. (A.5) and (A.6) in
Eqs. (A.3) and (AA) one has for z = I and z = d -1:

qo [bl + b2~¡:~l]
Z(I) = E(+2) (A.8)

bs - b4 E(+l)

and

where

(A.9)

bl = f(q¡,q2, 6,nl,I),
b2 = f(q2,ql,n2,~2,l),

bs = 9(ql,q2,6,nl,I),
b4 = -9(Q2,ql,n2, 6,1),

e¡ = f(Ql,Q2,6,nl,d-l),
C2 = f(Q2,Ql,n2,6,d-I),

Cs = 9(Ql,Q2, 6,nl,d -1),
q = -9(Q2,Ql,n2,6,d-I),

(A.lO)

(A.l1a)

(A.l1b)

Then, from Eqs. (A.8) and (A.9), one obtains the Eq. (27) of texto

(1) bl (bl + b2)Z(d -1) + Qo(b1C2/C4 - b2c¡/cs)
Z = QObs (bs _ b4)Z(d -1) + QO(bSC2/Q + b4c¡fcs) , (27)
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From Eqs. (21c) and (25) one obtains for z = d - / and z = d
respectively:

and

q 1+ [EH/E(+)]e-2iq¡(d-¡)
Z(d -/) = Jl. 2 2 .

q¡ 1- [E~-) /E~+)]e-2iq¡(d-¡)
(A.12)

(A.13)

Relating the last two equations, Z (d - 1) is found in terms of Z (d):

Z(d -1) = qo Z(d) - i(qo/q¡) tanq¡1 . (28)
q¡ (qo/q¡) - iZ(d) tanq¡1

Finally, from Eqs. (21d) and (25), Z(d) can be written

Z(d) = Z(O) = 1/ cosO.

Appendix .8. Calculation of Er/ E¡

To obtain the ratio Er/ E¡ we decompose it in the form

(29)

(B.1)
Er Er E(+) E(+l) E(+)_- 2 1_
E - E(+) E(+l) E(+) E .
¡ 2 1 ¡

From the continuity conditions for E(z) at z = d and the Eqs. (21c)
and (21d) one obtains

(B.2)



(B.3)

(BA)

/ and the

(B.5)
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In a similar way and from Eqs. (A.5)-(A.7) one finds for z = d-/

(+) [+ EI+2)] -iq¡(d-I)
~ _ CI C2El+1T e

E(+I) - 1+ [EJ-)/EJ+)]c2iq¡(d-I)'

where CI and C2 were defined by Eqs. (A.lO).
From the continuity conditions for E(z) at z

Eqs. (21b) and (5a) we have

[
1+ 5.::.:e-2iq¡l] éq¡1

E(+I) E(+)
______ 1 _

Ei+) - b
l
+ b2E(+2) / E(+I) ,

where bl and b2 were defined by Eqs. (A.lO).
In the same way one finds

E(+) 1+ E /El _ R lE -1+ EH/E(+) .
l l l

Substituting the Eqs. (B.2)-(B.5) in (B.1), the ratio ET/ El becomes

( )

1+ [EH /E(+)]e-2iq¡1 (+2)/ (+1)ET ER ¡ l c¡ + C2E E
- = 1+ - --------- ---_~-_~E E 1+ EH/E(+) b¡ + b2E(+2) / E(+I)
1 l ¡ ¡

1+ [EH / E(+)] e-2iq¡1
X 2 2 e2iq¡le-iqodco88.

~[EJ-) /EJ+)]e-2iq¡(d-l)

(B.6)
Then, from Eqs. (A.2), (A.13) and (A.9) one obtains, respectiveiy
the following expressions:

1 [EH/E(+)] -2iq¡1 . I+ 1 1 e _ Z(l)e-,q¡

1+ Ei-)/Ei+) - Z(l)cosql/-i(qo/ql)sinq¡/'
(B.7)
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1+ [E~-) /E~+)]e-2iql¡ _ Z(d)e-iql¡

1+ [E~-) /E~+)]e-2iql(d-¡) - Z(d)cosq¡l- i(qo/q¡)sinq¡l'

and
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(B.8)

(B. 10)

e¡+C2E(+2)/E(+l) _ Z(d-l)(CIC4+C2C3)
bl + b2E(+2) / E(+l) - Z( d - l)(bl c4 + b2C3) + qO(b1 C2 - b2e¡) .

(B.9)
From Eqs. (21a) and (24) one finds

ER 2Z
1+ El = Z + Z(O) .

Finally, substituting Eqs. (B.7)-(B.1O) in the right hand side of
Eq. (B.6), one has ET/ El in terms of the impedances:

ET [ 2Z ] [ Z(l) ]
El = Z + Z(O) Z(l) cosq¡l- i(qO/q¡) sinq¡l

[
Z(d -1)(e¡c4 + C2C3) ]

x Z(d -1)(b1C4 + b2C3) + qo(b1C2 - b2C¡)

[
Z(d) ] -iqodcos9

Z(d)cosq¡l-i(qo/q¡)sinq¡l e .

This is the same as Eq.(31).
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