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Abstract. The optimization of a motor and a refrigerator, performing a
Carnot-type cycle, is considered under the criterion that in their best mode of
operation they should produce the minimum possible entropy per cycle. Time

"is introduced assuming heat transfers through walls with finite conductivities.
IThese engines turn out to work optimally only in the quasi-static limit. Then
the special case of constant rate of cooling for this refrigerator is analyzed,
with the result that there now exists a regime of operation where the optimal
condition is fulfilled in finite time. In this case minimal rate of entropy pro-
duction, minimal loss of availability and maximum efficiency are all equivalent
as criteria of merit.

PACS: 05.70.L

1. Introduction

In recent years, following the pioneering work of Curzon and Ahlborn (1], attention
has been given to the study of thermal engines taking into account the finite
duration of their cycles. The objetive of this “finite time thermodynanmics’ is to
optimize the performance of machines according to a given criterion of excellence.
For example, Curzon and Ahlborn optimized their engine making it run in such
a way that the power it delivered was maximal. Another method employed has
been to maximize the efficiency of work-producing cycles [2]. Yet another criterion
has been to optimize processes by requiring that their rate of entropy production
should be ‘minimal. This approach has its analogue in a theorem of Prigogine
according to which under stationary conditions, the fluxes in an open system
not too far from equilibrium minimize the rate of entoropy production (3]. As
a complement to these criteria, the concept of thermodynamic potentials has
been generalized to finite time processes and used to obtain bounds on the work
provided by open stationary processes [4]. The method consists of identifying some
-constriction of the form g({x;}) = 0, with {x;} state variables, satisfied along
the process under consideration, and using it to make dW, the work differential
element, into a complete differential along this path. The bounds obtained through
this approach are consistent with those coming from other methods.

Finite time thermodynamics has entered a dormant period lately, as the
original wave of interest lost its momentum, in the absence of general principles
and laws to guide research. The initial hope of generalizing the second law of
thermodynamcis to finite times through the optimization of cycles, just the way
it happened last century with the work of Carnot, remains unfulfilled. This lack of
fundamental principles has also impeded meaningful comparison with the methods
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and results of other approaches to finite-time processes, such as irreversible (3] and
extended [5] thermodynamics, for example.

Two main attempts have been made to provide a theoretical basis for finite
time thermodynamics. The most recent one [6] generalizes the concept of availabil-
ity to finite times, extending an earlier proposal by Tolman and Fine [7]. When
considering a finite-time process 1 — f undergone by a given system in contact
with a reservoir at temperature and pressure Ty, Py, instead of Gibbs’s inequality
W < —AA, where W is the work performed and A = U + PoV — Tp§ — 225 pos V.
the available energy, Tolman and Fine write an equality:

Ly .
W:—AA—TOftISdt (1)

where the integral is evaluated along a trajectory of equilibrium states chosen
such that S is known explicitly along it. S being a state function, the choice of
trajectory does not affect the value of W.

Andresen et al. [6] propose again an upper bound for the work provided:

W < maxW(Zo,7) (2)

where max W denotes the maximum work W (Zg, ) performed by a different, or
“model” system g that changes its parameters from their values at i to those at
f in a time 7:

W(Zo,7) = —(AA)gg —To [ S(Zo,) de (3)

W is then calculated according to the Tolman-Fine prescription, and its extremum
calculated varying some internal parameters of T, usually employing the tech-
nique of optimal control theory.

The weakest link in the chain of reasoning leading to the bound (2) on W is
the choice of a “model” system Ty. Each system under study requires one, and
no general rules are given to identify it. Thus it becomes an art to pick a good
Tp, and this has greatly reduced the usefulness of the method just described to
generalize the concept of change in availability when calculating bounds on the
work performed in finite-time processes.

An earlier attempt to put the conceptual basis of finite-time thermodynamics
on a firm foundation was made by Berry et al. (8], who employed minimal rate
of entropy production as a criterion of merit for cyclic and general processes. In
fact, when mechanical friction, turbulence, chemical reactions and other sources
of entropy are neglected, leaving only heat transfers as irreversible processes,
minimal rate of entropy production coincides with minimal loss of availability
(cf. Appendix A in Ref. 8).

This criterion of minimal rate of entropy production has led to some general
results about the performance of processes. For example, it implies that for an
optimal n-branch cycle the entropy produced must be a constant along each
branch, and this allows the calculation of bounds for the work provided by the
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cycle [8]. Nevertheless, the proof of these results normally employs the involved
techniques of optimal control theory, which render the physical considerations of
the problem somewhat obscure: eliminating unphysical solutions and determining
the allowed ranges of parameters like conductivities, friction coefficients and
reservoir temperatures in terms of the convexity of manifolds and the like, rapidly
gets very complicated as the number of variables increases, making it difficult to
grasp the physical meaning of the results.

In this article the simplest possible cycle is studied: the Carnot-type isother-
mal-adiabatic-isothermal-adiabatic process generalized to finite *imes by Curzon
and Ahlborn. The aim is to discuss the implications of minimal rate of entropy
production with a minimum of mathematical detail in order to emphasize the
physical arguments.

The conclusions reached are: i) this criterion is fulfilled only in the quasi-static
limit, both when the eycle works as a motor and when it does as a refrigerator;
ii) If one restricts the refrigerator to the regime of constant rate of cooling the
condition of minimal rate of entropy production can be satisfied in finite time,
and this permits the type of analysis mentioned in the above paragraph.

2. Curzon and Ahlborn motor

This engine functions between two heat reservoirs, at temperatures Ty and Ty
(Ty > T3), exchanging heat with them through walls at temperatures Ty, (with
the hot reservoir) and Tj (with the cool one), and describing a Carnot-type cycle
(see Fig. 1a). .

In our case the relevant function is S = AS/r, entropy produced per cy-
cle/duration of cycle, and we will attempt to determine the internal temperatures
Ty and T; that minimize it.

As the working fluid of the engine goes through a cycle, assumed reversible
(‘endo-reversibility’ requeriment), entropy will be produced only at the reservoirs,
in the two isothermal branches. This hypothesis of endo-reversibility disregards
turbulence, chemical reactions and other entropy producing mechanisms as the
dominant sources of irreversibility. It is the usual assumption and serves the
purpose of freeing the analysis from the de‘ails of the working substance. One

then has:
%I - %2 = (endo-reversibility) (4)
i 4 1. 1 Q: @
= (A = Q= - )+ (————)-—_-——— 5
=+ (A8]eycle Ql(Th )"\ )T T (5)

(All @’s are taken positive). Time is introduced as a variable through finite
conductivities at the walls where heat transfers take place,

@1 = aty(Ty — Ty) (6)
Q2 = Pty(T; — Ty) (7)
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where a and f are thermal conductivities, ¢; and ¢9 the times during which heat
flows, and a linear conduction law has been assumed: dQ/dt = ¢ AT, with AT
the temperature difference across a given diathermal wall, and o its conductivity.
The duration of the cycle is = t; + t9, t.e., the adiabatic branches are taken to
last negligibly compared to the isothermal ones. This is again the usual hypothesis
and it amounts to neglecting the masses of pistons and other moving parts, and
disregarding mechanical friction. Otherwise, their equations of motion would have
to be included, complicating the problem. Inertial effects were considered in Ref. 9.

Using equations (4), (8), (7) and r = #; + t9 to eliminate Q; and Q9 one
obtains for the rate of entropy production

$ =

(As)cycle A ( af ) I2yT2 + zy2T1 (s)

T T\Ty/ aTez + BTy + (o — B)zy

with £ = T1 — T}, and y = T} — Ty, the temperature differences across the walls.
For a motor, z > 0 and y > 0 define the right directions of heat flow.

Fig. (1-b)

FIGURE 1. Cycles performed by the Curzon and Ahlborn motor [Fig. la], and its analogous
refrigerator [Fig. 1b]. Non isothermal branches are adiabatic ones. Dashed lines denote
isotherms and thick arrows indicate directions of heat flow.

Now, keeping the reservoir temperatures T} and Ty fixed, the extrema of S
will be sought varying z and y. Combining the extremal conditions 65‘/6:5 =10
and 8S /3y = 0 leads to Ty /Ty + T;/T; = 0, and this can oaly be satisfied in the
trivial case T, = T} = 0. In fact examination of 3S/8z and BS/ay shows that
they are both positive for z,y > 0, and so S attains its minimal value (S 0) for
z=y=0,1e,for Ty =Ty, T} = Ty, the quasi-static limit.
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3. Curzon and Ahlborn-type refrigerator

It performs the cycle in Fig. 1b, where Ty would correspond to the body being
cooled and T; to the atmosphere. The endo-reversibility condition (cf. eq. (4))
leads to the same expression for § as in the case of the motor (eq. (8)), but
now with z < 0 and y < 0 defining the right directions of heat flow. Both
partial derivatives of § turn out to be negative for negative values of £ and y (i.e.
S positive and decreasing as we approach the origin from the left), and so the
minimum of S is again attained in the quasi-static limit z = y = 0.

4. Refrigerator with fixed rate of cooling

Let us consider now the special case of fixed rate of cooling (¢f. Fig. 1b):
Q2 /7 = const. = A~ L. The entropy produced per cycle becomes

v (Q\(Th 1

o (2)(B- 2
As Q9/r, T1 and Ty are constant, the minima of S will coincide with those of
f = T,/T;. Using Qz/r = A1 and @, = at1(T} — T1), Q2 = Bt2(T3 — T}),
T =ty + tg to eliminate T},
1— 8z

= 2] = T
f f() (l)g)\zzf(ﬁAT2+l_g)z+T2

(10)

with z =T, — T,

This function has its extrema at z = (1/8A)[1 £ (8/a)/?). The solution
with the minus sign will now be eliminated on physical grounds: one must have
z=Ty—T;>0,s0 z= (1/8))[1 - (B/a)llfz] implies 8 < a. One must have, too
(cf. Fig. 1b), Ty > Ty, and this implies, using results from the former paragraph,

My -—(%)1/2,2 [ﬁAer (1 s g)} (11)

which is impossible to satisfy with # < «a. It is proved in a similar way that
z = (1/8A)[1 + (8/a)'/?) is a physically acceptable solution, and calculating the
second derivative of f(z) one shows that it indeed corresponds to a minimum if

2w )"+ (9] =

The internal temperatures T; and T} that minimize entropy production per
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cycle are then readily obtained:

Ty =Ty - % [1 + (g)l/z] (13)

. Y (g)m
(aﬁ)1;2A il
1/212
SEINON
The physical condition T} < Ty is automatically satisfied in eq. (13), and

Ty, > Ty implies )
1 g\ 1/2
7> 2 [1 + (E) ] (15)

Tp=T |1+ (14)

From T; and T} given by equations (13) and (14), (§)min can be written
in terms of the fixed parameters of the system: A, Ty, Ty, a, 8. The resulting
expression is not very informative and will not be reproduced here.

Consider now the work spent by the refrigerator,

Y@

For fixed rate of cooling (Q2/r = const.) the minima of W /7 are again those of
f = T}, /Ty, and the conditioin for minimal entropy production coincides with that
for maximum efficiency, which is given by

O

o

This reduces to the Carnot expression in the limit Q9/7 — 0, as required. The
deviation from the Carnot value comes through an additive term, and so a re-
frigerator with fixed rate of cooling does not give rise to anything resembling the
famous square root inn = 1— (Tg/Tl)l/z, the efficiency of a Curzon and Ahlborn
motor working at maximum power.

5. Conclusion

. Minimal rate of entropy production is only attained in the quasi-static limit
both for a Curzon and Ahlborn motor and for its analogous refrigerator. In the
case of constant cooling rate, a refrigerator can be constructed that minimizes the
entropy produced per cycle: its internal temperatures are given by equations (13)
and (14), and conditions (12) and (15) must be satisfied for physical consistency.
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In this regime of operation minimal rate of entropy production, minimal loss of
availability and maximum efficiency are all equivalent as criteria of merit.
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Resumen. Se aplica el criterio de minima razén de produccién de entropia
a un ciclo del tipo de Carnot funcionando en ambos sentidos, como motor y
como refrigerador. El tiempo se introduce suponiendo transferencias de calor a
través de paredes de conductividades finitas. En los dos casos el ciclo funciona
de manera éptima sélo en el limite cuasi-estatico. Se considera a continuacién
el caso especial de razén de enfriamiento constante para el refrigerador,
encontrandose un régimen de operacién éptimo con duracién finita. En este
régimen, minima razén de produccién de entropfa, minima pérdida de energia
utilizable y méxima eficiencia son criterios de mérito equivalentes.



