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.'. Ahstract. The optimiza.tion of a motor and a refrigerator, performing a
Carnot-type cycle, is considered under the criterion that in their best mode of
operation they should produce the minimum possible entropy per cycle. Time
'is introduced assuming heat transfers through walls with finite conductivities.
'These engines turn out to work optimally only in the q\lll.l'Ii-l'ItaticIimit. Then
the special case o£ constll.nt rate of cooling for this rerrigerator is analyzed,
with the result that there now exists a regime of operation where the optimal
condition is fulfilled in finite time. In this case minimal rate of entropy pro-
duction, minimalloss of availability and mll.ximum efficiency are aH equivalent
as criteria of merito

.' rAeS: 05.70.L

1. Introduction

In recent years, following the pionecring work of Curzon and Ahlborn [1]' attention
has becn given to the study of thcrmal engincs taking into account the finitc
duration of their ,cycles. The objetive of this 'finite time thermodynanmics' is to
optimize' 'the performance of machines according to a given critcrion of excellcnce.
For example, Curzon and Ahlborn optimized their engine making it run in such
a way that the power it delivered was maximal. Another method employed has
been to rnaxirnize the efficiency ofwork-producin~ cycles [21. Yet another crherion
has been to optimize processes by requiring that their rate of entropy production
should be rninirnal. This approach has its analogue in a theorem of Prigogine
according to which under stationary conditionsl the £luxes in an open system
not too far from equilibriurn minimize the rate of entoropy production 13]. As
a complcment to these criteria, the concept of thermodynamic potentials has
been generalized to finite time processes and used to obtain bounds on the work
provided by open stationary proccsses [4].The method consists of identifying sorne
,cotlstriction of the form g({Xj}) = O,with {Xj} state variables, satisfied along
the process under consideration, and using it to make dU' 1 the work differcntial
element, into a complete differential along this path. The bounds ohtained through
this approach are consistent with those coming from other methods.

Finite time thermodynamics has entered a dormant pcriod latel)', as the
original'wave: of intcrest tost its momentum, in the absencc of general principies
f~nd láws to guide rcscarch. Thc initial hope of generalizing the second law 'of
therinod};narncis to finite times through the optimization of cycles, just tht~wa)'
it happencd last ccntury with thc work of Carnot, rema.ins unfulfilled. This Iack of
fundamental principIes has also impcdcd mcaningflll comparison with the rncthods
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and results of other approaches to £inite-time processes, such as irreversible [3]and
extended 151 thermodynamics, for example.

Two main attempts have been made to providc a theoretical basis for finite
time thermodynamics. The most recent one \6] generalizes the concept of availabil-
ity to finite times, extending an earlier proposal by Tolman and Fine [7]. \Vhen
considering a finite-time process i -t f undergone by a given system in contact
with a reservoir at temperature and pressure To, Po, instead of Gibbs's inequality
W S -/lA, where W is the work performed .nd A = U + PoV - ToS - Lj l"ojNj
the available energy, Tolman and Fine write an equality:

j,t, .W=-/lA-To Sdt
t,

(1)

where the integral is evaluated along a trajectory of equilibrium sta tes chosen
such that S is known explicitly along it. S being a state function, the choice of
trajectory does not affect the value of ~V.

Andresen e.t al. [6] propose again an upper bound for the work provided:

W S m.xW(Eo,r) (2)

where max ~V denotes the maximum work lV(Eo, r) performed by a different, or
"model" system Ea that changes its parameters from their values at i to those at
f in a time r:

W(EO,r) = -(/lA)Eo - Telo' S(Eo,t) dt (3)

W is then calculated according to the Tolman-Fine prescription, and its extremum
calculated varying sorne internal parameters of Ea, usually employing the tech-
nique of optimal control theory.

The weakest link in the chain of reasoning leading to the bound (2) on lV is
the choice of a "model" system Ea. Each system under study requires one, and
no general rules are given to identify it. Thus it becomes an art to pick a good
Ea, and this has greatly reduced the usefulness of the method just described to
generalize the concept of change in availability when calculating bounds on the
work performed in finite-time processes.

An earlier attempt to put the conceptual basis of finite-time thermodynamics
on a firm foundation was made by Berry e.t al. [8]' who employed minimal rate
of entropy produetion as a criterion of merit for cyclic and general processes. In
fact, when mechanical friction, turbulencc, chemical reactions and othcr sources
of entropy are neglccted, leaving only heat transfers as irreversible processes,
minimal rate of entropy production coincides with minimal 10ss of availability
(el. Appendix A in Ref. 8).

This criterion of minimal rate of entropy produetion has led to sorne general
results about the performance of processes. For example, it implies that for an
optimal n-branch cycle the entropy produced must be a constant along each
branch, and this allows the calculation of bounds for the work provided by the
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cyc1e [8]. Nevertheless, the proof of these results normally ~mploys the involved
techniqucs of optimal control theory, which render the physical considerations of
the problern somcwhat obscure: eliminating unphysical solutions and determining
the allowcd ranges of parameters like conductivities, friction coefficients and
rcscrvoir temperaturcs in tcrms of the convexity of manifolds and the Iike, rapidly
gets ver y complicated as the numbcr of variables increases, making it difficult to
grasp the physical meaning of the results.

In this artic1e the simplest possible cycle is studied: the Carnot-type isother-
mal-adiabatic-isothermal-adiabatie proeess generalized to finite times by Curzon
and Ahlborn. The aim is to discuss the implications of minimal rate of entropy
production with a minimum of mathematieal detail in order to emphasize the
physical argumcnts.

The eonclusions reached are; i} this criterion is fulfilled only in the quasi-static
limit, both when the cyc1c works as a motor and w!len it do es as a refrigerator;
ii} If one restricts the refrigerator to the regime of constant rate of cooling the
eondition of mÍnimal rate of entropy production can be satisfied in finite time,
and this pcrmits the type of analysis mentioned in the above paragraph.

2. Curzon and Ahlborn molor

This engine functions hetween t\vo heat reservoirs, at temperatures TI and T2
(TI> T2), cxchanging heat with them through walls at tcmperatures Th (with
thc hot rcscrvoir) and Ti (\vith the cool one), amI describing a Carnot-type cycle
(,el' Fig. la).

In our case the relevant function is S = l:J.SjT, entropy produced per cy-
elel duration o/ cycle, and we \vill attempt to determine thc internal temperatures
Th and Ti that minimize it.

As the working fluid of th(' engine goes through a c)'c1e, assumed reversible
Cendo-rcversibility' requeriment), entropy will be produced onl)' at the reservoirs,
in the two isothermal branches. This hypothesis of endo-rcversibility disregards
turhulence, chemical rcactions and other entropy producing rnechanisms as the
dominant sources of irrevcrsibility. It is the usual assumption and serves the
pllrpose of freeing the analysis from the de:ails of the working substance. Qne
thcn has:

Q, Q,-. - -- = O
TI, Ti

(cndo-revcrsihility) (4 )

(5)

(:\11 Q's are taken positin'). Time is introduced as a vAriable through finite
conrinc-tivitics at the waJls wh('rc hcat transfers tak(.' place,

Q¡ = otdT¡ - Th)
Q, = fJt,(Ti - T,)

(6)
(7)
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where Q and (1are thermal conductivities, tI and t2 the times during which heat
flows, and a linear conduction law has been assumed: dQ / dt = a 6.T, with !1T
the temperature difference across a given diathermal wall, and a its conductivity.
The duration of the cycle is T = tI + t2, i.e., the adiabatic branches are taken to
last negligibly compared to the isothermal enes. This is again the usual hypothesis
and it amounts to neglecting the masses of pistons and other moving parts, and
disregarding mechanical friction. Otherwise, their equations of motion wenId have
to be included, complicating the problem. Inertial effects were considered in Ref. 9.

Using equalions (4), (6), (7) and T ; tI + 1, lo eliminale Q¡ and Q, one
obtains for the rate of entropy productien

(8)

with x = TI - Th and y = Ti - T2, the temperature d¡fferences across the walls.
For a motor, x 2: O and y 2: O define the right directions of heat flov.;.

"--

Fig.

,,,
"
, ,,

Fig. \ l-b)

FIGURE 1. Cycles performed by the Cunon Ilnd Ahlborn motor jFig. la), and its Il.nll.logous
refrigerlltor [Fig. lb]. Non isothermlll brllnches Ilre Il.dillblltic ones. Dllsherllines denote
isothf'rms Il.nd thick Ilrrows indicllte directions of hellt flow.

Now, keeping the reservoir temperatures TI and T2 fixed, the extrema of S
will be sought varying x and y. Combining the extremal conditions as fax = o
and as / ay ; o leads lo Th/T¡ + TtfT, ; 0, and lhis can o;¡ly he salisfied in lhe
trivial case Th = Ti = O. In fact examination of aS¡ax and aS¡By shows that
they are both posítive for x, y 2: 0, and so S attains its mínimal value (S = O) for
x = y = O, i.e., for Th = T¡, TI = T2, the qua..~i-staticlimit.
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3. Curzon and Ahlborn-lype refrigeralor

It performs the cyclc in Fig. lb, where T2 would correspond to the body being
cooled and Ti to the atmosphere. The endo-reversibility condition (ef. eq. (4))
leads to the same cxpress ion for S as in the case of the motor (eq. (8)), but
now with x :S O and y :S O defining the right directions of heat flow. Doth
~artial derivatives of S turn out to be negative for negative values of x and y (i.e.
S positivc and decreasing as we approach the origin from the left), and so the
minimllm of S is again attained in the quasi-static limit x = y = O.

4. Refrigeralor with fixed rate of cooling

Lct us consider now the special case of fixed rate of cooling (ef. Fig. lb):
Q2/1" = consto == A-l. The cntropy produced per cycle becomes

(9)

As Q2/T, Ti and T2 are constant, the mínima of S will coincide with those of
I '" Th/T¡. Using Q2Ir ~ ).-1 and Q, ~ ot¡(Th - T¡), Q2 ~ I3t2(T2 - T¡),
T = tI + t2 to eliminate Th,

I ~ I(z)~ (T¡) -l---I3-).-z~_--
l3).z2 - (I3)'T2 + 1 - ~) z + T2

(10)

with z = T2 - TI'
This [unetion has its extrema at z ~ (1/13).)[11: (13/0)1/21. The solution

with thc minus sign will now be climinated on physical grounds: one must have
z ~ T2 - T¡ > O, so z ~ (1/13).)[1 - (13/0)1/21 implies 13 < o. One must have, too
(ef. Fig. lb), Th > T¡, and this implies, using reslllts from the former paragraph,

(11)

which is impossible to satisfy with {J < 0;. It is proved in a similar way that
z ~ (1/13).)[1 + (13/0)1/21 is a physieally aeeeplable solulion, and ealculaling lhe
second dcrivative of f (z) one shows that it indeed corresponds to a minimum ir

1 (13)1/2 [ (13)1/2]T¡>-- 1+-
13). o o

(12)

The internal temperatures TI and Th that minimizc entropy production per
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cycle are then readi1y obtained:

1 [ (13)1/2]
TI = T2 - 13>' 1+ ;:;: (13)

1 [ (f!.) 1/2]
("13) 1/2 >. 1 + "

1+ [ 1/2]2T2--h l+(~)
(14)

( 16)

The physical condition Te < T2 is automatically satisfied in cq. (13), and
Th > TI implies

(15)

From TI and Th given by equalions (13) and (14), (S)min can be wrillen
in terms of the fixed parameters of the system: >., T¡, T2, a, /3. The resulting
express ion is not very informative and wiII not be reproduced here.

Consider now the work spent by the refrigerator,

IV = Q2 (Th _ 1)
T T TI

For fixed rate of cooling (Q2/T = const.) the minima of W/T are again those of
f = Th/Tl, and the conditioin for minimal entropy production coincides with that
for maximum efficiencYIwhich is given by

_ lVmin _ [ T2] Q2Ir [ (13)1/2]2
rymax - -- - 1 - - + -- 1+ -

Ql T¡ I3T1 "
(17)

This reduces to the Carnot express ion in the limit Q2/T --t O, as required. The
deviation from the Carnot value comes through an additivc term, and so a re-
frigerator with fixed rate of cooling does not give rise to anything resembling the
famous square root in r¡ = 1- (T2/Tl)I/2, the efficiency of a Curzon and Ahlborn
motor working at maximum power.

5. Conclusion

Minimal rate of entrop)' production is only attained in the quasi-static limit
both for a Curzon and Ahlborn motor and for its analogous refrigcrator. In the
case of constant cooling rate, a refrigerator can be constructed that minimizes the
entropy produced per cycle: its interna1 temperaturcs are given by equations (13)
and (14), and conditions (12) and (15) must be satisfied for physical consistenc)'.
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In this regime of opcration minimal rate of entropy production, minimal 1088 of
availability and maximum efficiency are aH equivalent as criteria of merito
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Resumen. Se aplica el criterio de mínima razón de producción de entropia
a un ciclo del tipo de Carnot funcionando en ambos sentidos, como motor y
como refrigerador. El tiempo se introduce suponiendo transferencias de calor a
través de paredes de conductividades finitllS. En 105dos CIlSOSel ciclo funciona
de manera óptima sólo en el límite cuasi-estático. Se considera a continuaci6n
el caso especial de raz6n de enfriamiento constante para el refrigerador,
encontrlÍnd08e un régimen de operaci6n 6ptimo con duraci6n finita. En e5te
régimen, mínima raz6n de producci6n de entropía, mínima pérdida de energía
utilizable y mlÍxima eficiencia son criterios de mérito equivalentes.


