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Abstract. A self-consistent Hartree-Fock analysis for the ground state energy
per particle for the electron gas in jellium is carried out. The low, intermediate,
and high density regions are considered. The paramagnetic and ferromagnetic
states are studied to determine the nature of the ground state. Wigner crys-
tallization at zero temperature in the low density region is observed in all the
cases studied. Our results are compared to recent calculations.

PACS: 67.90.+z; 61.90.-d

1. Introduction

The electron gas in jellium is a useful model for many body systems. It is a sim-
plified and interesting model for metals [1,2| and even for stellar matter [2,3]. Since
many years ago, much effort has been devoted toward theoretical understanding
of the phase properties of the electron gas in its ground state [4,5]. As it is well
known, calculations with this model have established that at high densities, where
the electron-electron interactions can be considered like small perturbations, the
system approaches a perfect gas [6]. At low densities, the electron-electron inter-
actions are more relevant and the electrons crystallize in a body-centered-cubic
structure (7.

Only for these extreme densities the properties of the ground state have rigor-
ously been established. It would be interesting to have a method that includes the
intermediate density region. Among other propositions at intermediate densities,
in order to seek whether there are precursors to the crystallized phase. Overhauser
considered the so called charge density waves [8,9] (CDW), which are periodic
solutions and the electron density is non-uniform, but varies periodically. In this
model the background is not rigid, but completely deformable (deformable jellium
model), and this fact guarantees local neutrality and lowers the energy. It had also
been suggested that at intermediate densities the ferromagnetic state (all spins
up) is more stable than the normal paramagnetic (as many up as down spins) [10].
In fact, exchange interactions among itinerant electrons always favor the parallel
alignment of spins. However correlation corrections to the independent particle
model cancel substantially the effects of exchange [8]. Certainly there are marked
differences between the magnetic character of the ground state of the metals and
some results obtained in the independent particle model at high densities [11].
Then in order to determine the regions of stability of the different phases, it is
necessary to do a calculation for all densities.
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In this work a self-cosistent Hartree-Fock (HF) calculation of the ground state
energy per particle for the electron gas in the deformable jellium, is presented as a
function of the interparticle distance, rs. The high, intermediate and small density
regions are considered. We are looking for the possibility of paramagnetic or
ferromagnetic states, as well as the possibility of periodic density. As ground state
function it is used an Slater’s determinant of the orthonormalized spin-orbitals.
For the orbitals it is proposed an expansion in terms of periodic functions, and
the coefficients of this are self-consistently determined.

In the paramagnetic fluid, as well as in the ferromagnetic, it is observed a
transition from uniform to non-homogeneous, periodic particle density in the low
density regimen. The energies for the ground state are compared to recent results
that employ the Green function Monte-Carlo method [12], and to results obtained
with the integral approximant method [13]. .

2. The model

The Hamiltonian for the electron gas in the jellium is well know [2,14]. When
the deformable jellium model is used in the independent particle approximation,
the cancelation of the background and direct electron energy terms has been
imposed in similitude to the HF results using plane wave (PW) solutions in the
jellium model. However it was shown [14], that this cancelation of energy terms can
be obtained from a variational principle giving, in this way, formal justification to
the deformable jellium model. Then in order to evaluate the ground state energy,
it is necessary to handle only with the kinetic and exchange energy terms, ;-
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where ¢; is the notation for the spin-orbitals. The orbitals used in this work are
expanded in terms of periodic functions. So, we used the next spin-orbitals
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with r = éyzy + éyz9 + €373 = E?:l éz; and n = Z:}:I é;n;. With these spin-
orbitals it is possible to describe systems with different symmetries. So, with equa-
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tion (2a) the system may present periodic density along one axis (the direction of
qo).

Equation (2b) describes a system which may have periodicity along two or-
thogonal directions. Finally, equation (2¢) describes a system which can have
periodic non-homogeneous density along three orthogonal directions. In Eq. (2¢),
E,jf is a simplified notation (Eanz_N EnszfN E::;:—N)’ where all the sums run
from —N up to N. Also Cy is a compact notation for Chny,ng,n3- The electron
density obtained with these functions is given by

p=poY_ > Ca Cn,cos((ng —ny)gy-r], (3)

n; ny

where pg is the PW density.

With any of the three functions proposed by equations (2), the total momen-
tum of the system is equal to zero, in similitude with PW results. To determine
the coefficients of the state function, it is necessary to solve self-consistently the
corresponding HF equations [15]. Once the coefficients Cp and the parameter
go are determined, substitution in equation (1) gives the ground state energy.
We consider two cases, the paramagnetic state with both spin states for each
one-electron orbital, and the ferromagnetic state for an electron gas of identical
particle density.

3. Results and discussion

We will now show the results for the ground state energy per particle, in
Rydbergs, as a function of the parameter r, (in Bohr radius). The value of the
parameter gp must be ¢go > 2kp in order to satisfy the HF equations, as was
shown in reference 16. From our calculation we find that ¢y = 2kp gives the
best energy for both, the paramagnetic and ferromagnetic states at all densities
and for the three symmetries considered by equations (2a) to (2¢). This optimum
value of gy was also found in reference 17, where they use particular cases of the
expansion given by equation (2a), as state functions. In reference 18 this value
was also obtained in calculations for the fermion gas in jellium, interacting via
screened Coulombic interactions.

At high densities, r; small, the self-consistent HF solution both in the param-
agnetic and ferromagnetic cases becomes a plane-wave (PW). That means that all
the Cp self-consistently determined are zero, except Cg. When r, increases, the
electronic density will acquire periodic character. With the paramagnetic state,
the HF solution is different from PW beginning at r, = 32, and t}1is result is tiie
same for the three symmetries considered in this work, equatiorls (2a) to (2.
With the ferromagnetic state the transition from PW to periodic fuctions (PF)
happens at r; = 40.33, and this result is also the same for the three symmetries.
Then, the HF state function for small ry (from ry < 1 until ry = 32) is the PW
both, in the paramagnetic and ferromagnetic cases.
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As it is well known, when it is used the PW as state function for the electron
gas, the ground state has paramagnetic character until ry = 5.47, and starting
with this value the ground state becomes ferromagnetic (10,19,20]. So, the HF
ground state in this work is paramagnetic PW (PPW) until rg = 5.47, from this
value just up to ry = 40.33 the ground state is ferromagnetic PW (FPW). At
rs = 32 the paramagnetic state is a PF, while the ferromagnetic remains a PW;
however in the region between 32 < ry < 40.33, the energy with the FPW is lower
than the energy obtained in the paramagnetic case, as can be seen from table L.
That fact let us conclude that the ferromagnetic PW is the ground state up to
r; =40.83.

Ta Ef.,,-_ EEar.
32 -3.264 -2.745
34 -3.091 -2.656
40 -2.666 -2.424
50 -2.431 -2.113
60 -2.165 -1.867
70 -1.967 -1.669

TABLE 1. Paramagnetic and ferromagnetic HF energies at intermediate
values of ry. The energy is in Rydbergs x 10”2 and the r, in
Bohr radius. The state function we use for this calculations is
given by Eq. (2¢).

Beginning at rs = 40.33 the ground state of the system presents non-
homogeneous, periodic density, according to the Wigner hypothesis. Direct substi-
tution of the self-consistent determined coefficients Cp, in equation (3), shows that
this behavior becomes more pronounced when the density diminishes, ¢.e., when
rs increases. The transition from PW to PF at ry = 40.33 is between the values
of ry given by references 21 and 22. In reference 21, using the density functional
method, they get r, = 26. While in reference 22, with the variational Monte-Carlo
method, they get rs = 67. These results are different from those of references 12,
13 and 23, since they get rs = 100 as the point where the Wigner transition takes
place. Qur transition value is under the lower limit given by Wette [24,25]. As it is
well known the value of the transition point, at which periodic density takes place,
is a subject that remains rather open. As a matter of fact, previous estimates of
rs ranged from ry =~ 2 to ry = 700 [25,26].

As can be seen from table I the ground state above rs = 40.33 has ferromag-
netic character, since the ferromagnetic PF (FPF) gives lower energy than the
corresponding paramagnetic PF (PPF), for the three symmetries considered in
this work.

In figures 1 and 2 we show the results for the ground state energy per particle,
in the density regions where we get better solutions than PW. In figure 1 is
displayed the ground state energy at intermediate and small densities, for the
three symmetries represented by the state functions given by equations (2a) to
(2¢). As was said before, in this region the ground state is a ferromagnetic BH.
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FIGURE 1. Ground state enrgy per particle, as a function of r,, in Bohr radius, for the three
symmetries considered in this work. Curve 3 is the energy with state function (2¢).
Curve 2 shows the results with function (2b), and curve 1 is the energy obtained
with function (2a). These results are compared to the energy obtained with the
ferromagnetic PW, dashed curve.

The curves 1 and 2 are the results with the functions in equations (2a) and (2b)
respectively. With equation (2a), we use N =5, i.e. an expansion with 11 terms.
Using this state function the convergence for the energy is good, because the
difference with the results for N = 6 is less than 10~8. Using the state function in
equation (2b) good convergence for the energy is obtained since N = 2, having in
that way 25 terms in the expansion. The lowest energy, curve 3, is for the function
in equation (2¢) where we took N = 1, i.e. an expansion with 27 terms. With this
function we have good convergence for the energy results. As can be seen from
figure 1, the energy with the three functions proposed is lower than the energy
with the FPW state function.

In figure 2 we compare with recent results our lower ground state energy
obtained with the symmetry given by equation (2¢), which have periodic non-
homogeneous density along three orthogonal directions. We consider the interme-
diate and low density regions. The full curve represents our results, while dashed
curve is for results with the Green function Monte-Carlo method [12], where they
used a variational wave function of the Bijl-Jastrow-Slater type. The point-dashed
curve represents the results with the integral approximant method [13]. In refer-
ence 12 we took the results that appear in table I. On the other hand, the results
taken from reference 13 are those that appear explicitly in their highly schematic
figure 3. As can be seen, both curves coincide at ry = 100. This is because au-
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FIGURE 2. Energy per particle, in the intermediate and low density regions, as a function of the
parameter ry. Full curve are the results in this work with state function (2c). The
point-dashed curve is the energy obtained with the integral approximant method.
The dashed curve are the results with the Green function Monte-Carlo method. The
double point-dashed curve is the energy per particle obtained with the paramagnetic
state,

thors in reference 13 choose their ferromagnetic fluid parameter to reproduce the
Monte-Carlo energy [12] at ry = 100. It is interesting to see that our results for
the energy in this region are good, however we are using an independent particle
model as method of calculation. We also draw the HF results for the paramagnetic
PF energy, double point-dashed curve. These are sensibly above the ferromagnetic
energy.

In the high density region, r; < 40.33, our energy results are not as good as
those in references 12 and 13. This is because our state function becomes PW,
both in the paramagnetic rs < 5.47, as in the ferromagnetic (5.47 < r; < 40.33)
cases.

In this work we have presented a systematic method to evaluate the ground
state energy for the electron gas in jellium, at all densities. With this method the
Wigner crystallization is obtained in a natural way at low densities. The magnetic
character of the ground state had also been investigated. According to our results,
the ground state is paramagnetic PW until ry = 5.47. From this value until r; =
40.33, 1t is ferromagnetic PW. This result disagree with other calculations where
the paramagnetic state is more stable at all densities [5,27]|. At r; = 40.33 the
density of the system becomes periodic, and this characteristic, as was said before,
becomes more pronounced when the density diminishes. Finally, it is interesting



th

Ground state energy of the electron gas in jellium 53

at notwithstanding we are using an independent particle approximation, our

results for the ground state energy in the intermediate and low density regions,
are good compared with others that take correlations into account.
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Resumen. Se efectiia un anélisis Hartree-Fock autoconsistente para la energia
del estado base por particula del gas de electrones en el modelo de jalea. Se
consideran las diferentes regiones de densidades de particulas, desde altas hasta
muy bajas densidades. Con el propésito de determinar la naturaleza del estado
base, se consideran tanto los estados paramagnéticos como ferromagnéticos.
La cristalizacién de Wigner a temperatura cero se observa en la regién
de densidades bajas en todos los casos estudiados. Nuestros resultados son
comparados con otros calculos recientes.



