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Abstract. We discuss canonical transformations that correspond to changes
in reference frame. We analyze the non-uniqueness of the canonical transfor-
mation, and solve the problem of finding the canonical transformation that
changes both coordinates and momenta.
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1. Introduction

In this work we discuss the relation between canonical transformations and
changes in reference frame in classical mechanics. The aim of retaking this well
known problem [1,2,3,4], is to overcome some shortcomings of the standard presen-
tations, in particular, in connection with the transformation of canonical momenta
in a changing reference frame.

This problem has been addressed by several authors in the framework of
classical field theory and quantum mechanics [5]. We will undertake a more direct
approach based on the canonical formalism.

The plan of the work is to present shortly in the second section the theory of
canonical transformations, mostly to set up the notation. Then, in section 3, we
show how to deal with changes in reference frame in the language of canonical
transformations. We solve the problem of transforming the momenta as well
as the coordinates with a canonical transformation. Then we point out that
a canonical transformation can be defined in such a way as to transform the
momenta only. Finally, in section 4, we present some examples. We also discuss
the similarities and differences between canonical transformations that represent
changes in the reference frame, and those that correspond to electromagnetic
gauge transformations.

2. Canonical transformations

Canonical transformations in classical mechanics are transformations in coor-

dinates and momenta that leave Hamilton’s equations of motion invariant in form.
ML cncme that £ crrnh ormiatinne ran he dediired from an action nrincinle in a
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given set of phase space variables (g, p),
ta to
65 =6 [ atL(g,q,) =6 [ "dt(d-p—H) =0, (1)
1 1
they should be deduced from an action principle in some other set (@, P),
’ t2 : '
65:6£dHFQfH)=Q (2)
1

where sums over canonically conjugate variables are indicated by a dot produect.

A very general relation between § and S’ is given by*

t2 dD
S:§+f b 3

t1 dt ! ( )
where D is called the generating function of the canonical transformation; it
depends on any 2N independent variables and time. It turns out that this type
of canonical transformation is general enough for the description of changes of

reference frame we are considering. Without any loss of generality, one can take
D=F-P-.Q, (4)

in such case from (3) and (4), and taking F = F(q, P,t), we get

dF(q,P,t
g Y (5
q Pt
dF (q, P,t)
Q= —aik] (6)
P |y
and
oF
H=H+—| |, (7)
at |, p

from these equations we can solve for @ and P in terms of ¢ and p. The last

relation gives the new hamiltonian. We can write it down more explicitly

dF(q(Q, P,t), P,t)

HI, BA) =Wyl Pt ol P35+ =

(8)

q,P

* " . " P . E .
The more general canonical transformations includes multiplicative factors in the action.
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3. Changes in the reference frame

Let us now apply this standard formalism to changes in reference frame.
Comnsider the case when the new frame is related to the old one by

Qi = ¢ + fi(t); (9)

although this is not the most general case, Eq. (9) includes both the change to a
linearly accelerated reference frame and, also, the change to a rotating frame if
the adequate coordinates are chosen (cartesian or cylindrical respectively).
Because a canonical transformation relates, in the general case, coordinates
and momenta, it is clear that Eq. (9) does not determine uniquely the canonical
transformation. The question therefore is: What is the degree of arbitrariness of
the new momenta P? To answer this we observe that Eqgs. (5), (6) and (9) require

» dF(q,P,1)
aF
= e g
Q; ap; qt+fl( ) (11)
The last formula is satisfied if
F=P-(qg+ f) + G(q,t), (12)

where G(g,t) is an arbitrary function of ¢ and t. Therefore, from Eqs. (10), (12)
and (7), we get

G
e e 1
PT. pl aq‘l! (3)
. 9G
H’:H+P-f+§. (14)

We observe that the selection of P; is quite arbitrary. In order to fix the
canonical momenta one must select a function G. A possible choice is G(q,t) = Gy
, with G a constant, which gives the so called point transformations

P; = p;, (15)
B[P0 = B[P Q) o[ P Q) L)+ B f. (16)

This selection of G is not very satisfactory if one is looking for the canonical
transformation that relates both the coordinates and the momenta as measured
in the two frames of reference.

A different selection, suggested by the cartesian or the polar forms of the
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kinetic momenta in the new reference frame, would be

dL(q,4,t)

P=
pt 3

i=f

Of course,
L(Q&ést) == q" J L H(Qa?!”!

and in the lagrangian formalism

aliy
—.(QaQst)'

P:aq

The physical interpretation of the ansatz in Eq. (17) is clear if one notes that
dL(q,q, )/Bq} j are the momenta in the new reference frame of a “particle” at
rest in the old reference frame. This connection is obvious if one studies a couple
of examples. Calling

aL(q, 4t
Mqugigil i (18)
T lg=f
we observe from Egs. (13) and (17) that
G:—fd¢h+de (19a)

gives the required momenta, and thus momenta in Eq. (17) are canonical. The
last formula reduces to

6 =g k4 Gilt): (19b)

if h; does not depend on g; . We will restrict ourselves to this case in the following
dlscussmn The corresponding hamiltonian is easily obtained in the canonical
formalism from Eq. (14),

. dh  9Gy
H=H+P - f-q —+——. 20
L B T T (20)
A question that arises naturally in this context is whether or not there exists
a canonical transformation that leaving Q = g transforms P = p + h. The answer
is affirmative and the appropriate generating function is

F=(P—h)-q+Golt). (21)
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4. Some examples

Let us now consider a couple of examples. First, take the change in reference
frame defined by a non-uniform acceleration, for example

X =z + 10+ vot + Jat? + Lbed, (22)
where we identify
J =20+ vt + Lat® + Lbed. (23)

We get, for the momenta in Eq. (17)

P=p4+ — . (24)
oz f
in the non-relativistic case
L=imi®—V(z) (25)
and thus
P = ]
p+mf e (26)
= p+ mlvg + at + 5bt*|.
The new hamiltonian is
P —mf)?
e B +V(X - f)
2m - (27)

selecting Gy adequately we can drop out the terms that depend solely on t; we
get

2
H=2 1v(X-7) - mXla+st). (28)
2m
We observe that this canonical transformation correctly describes the change
in reference frame including the fact that the new hamiltonian function is not
conserved.
As a second example, let us consider the case of a point charge with velocity
v = vZ moving in an electric field E and in a uniform magnetic field B = B2,
The hamiltonian is
1 eA

2
H= " = 1] 29
2m[p+c] ke (29)
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where € is the particle’s charge, m the mass of the point charge, ¢ the speed of

light, A the vector potential, and ® the scalar potential. The lagrangian is

2

L:%f%ﬁv-zﬁf@. (30)

Now, if our objective were to simplify the lagrangian or the hamiltonian, a con-
ceivable option would be to use electromagnetic gauge transformations, i.e., the
new potentials being [6]

A=A+ VI, (31)
10l
' =0-—-_.
c dt
Eq. (30) is transformed to
2 .
L’:m: —-?U-A"—e@’-l—?‘u-v.l-—%%. (32)

We observe that the two last terms are a total derivative, therefore the electro-
magnetic gauge transformation is canonical with a generating function el(q,t)/c
at the level of Eq. (3), depending solely on the coordinates and time.

We can rewrite Eq. (29), using A = B x r/2, and get

2 2

p e e 9
H=—+—p,B+ B* 4 ¢e®. 33
2m * 2mcpZ 4mnc? T )

Of course, under gauge transformations the magnetic field never vanishes.
Thus, to simplify the Eq. (29) or (30) in this way is impossible. An appropriate
way to simplify the problem is to change the reference frame. Let us consider now
the case in which the two frames are related by a uniform rotation along a fixed
axis which we take as the z-axis. If we choose the angular velocity as

T O (34)
2me

Then in polar coordinates
- _ B
z =g P =p, © =+ wt. (35)
Thus the canonical momenta are

Pyl = Pz, pp’ = DPps p@’ = Pp-
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Using Eq. (21) and (34) we get the new hamiltonian

1 9 62
H=_—p°+4
2mp i 4me?

B? 4 9. (36)

Notice that the linearly dependent term on the magnetic field has been eliminated,
as expected from Larmor’s theorem [7].

It is worthwhile to note that in principle a change in reference frame requires
to change also A and ® together with p. This is not made in this work because
the change in the electromagnetic potentials is negligible in the non relativistic
case. This change has been discussed by Schmutzer and Plebanski [5]-

5. Final remarks and conclusions

We can conclude that the canonical transformation determined by Egs. (12)
and (19) properly describes the change in reference frame. This is so because it
not only changes the coordinates but also the momenta. The generating function
was shown to be

F(Q':Pit):_P'(q_f)+Q'h+(;0(t)= (37)

with h defined in Eq. (18) (and dh;/dq; = 0). This transformation is not necessar-
ily more convenient when solving a specific problem as was shown in the second
example of Section 3. There we have eliminated the magnetic field using point
canonical transformations. It is therefore useful to keep in mind the freedom im-
plied in Eq. (12) by the arbitrariness of G(g,¢). An immediate consequence for the
quantum formalism is that the equivalent unitary transformation is not uniquely
fixed. This feature can be used to simplify specific problems as in the analogous
classical case [8,9]. We have shown that it is feasible to take up a problem with-
out formal contradictions and sometimes to simplify it considering observables
in different reference frames. We should remember that gauge transformations
in electromagnetism depend only on ¢ and t. We may add that the apparent
restriction to a particular set of coordinates implied by Eq. (9) can be easily lifted
by an additional canonical transformation. This has not been presented as it tends
to obscure the discussion. But of course many cases of physical interest can be
cast into the form of Eq. (195).
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Resumen. Se discuten las transformaciones candnicas que corresponden a
cambios de sistema de referencia. Se analiza la no unicidad de la transformacién
canénica y se resuelve el problema de encontrar la transformacién canénica que
cambia coordenadas y momentos.



