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Ahstrnct. \\'1' pro\'(' a thcorcm which allows lo construct in explicit
Cnrm ROIlW particular solutinns for difff'rf'nc(-' equations of the hYP('r-
gcometric typf' 00 OOlHlTliforrn lattices. The main properties of thrs{'
soJutions are dcrivcd. \Ve discuss the classical orthogonal polynomials
oCa discrctc variable UIl non-uniform Jattices, the functions of thf' sc-
cond kind of a discrctc variable, as weH as thc differencc analogues nn
lincar nets for classical spccial functions oC mathematical physics as
cxamptcs.

PACS,02.30.+g

In the /ollowing ezpo.~ition o/ the Calculus o/ Pinüe DJfferences, particu.
lar attenh'on ha.'f bf:en paid to the connation o/ its methods with tho,u o/
the DifJerencial Calculus --a conneetion tJJhichin some instances involve.'f
far more than lJ merely formal analogy.

Gcorge Boole !tI

1. Introdüction

Spc~ial functiolls of IIlat hC'IIlatical physi('s (c1assical orthogonal polynomials, hyper-
gcoInetric f'L.n("tions. Desscl fUIIctions, etc.) are widely lIscd in many branches of
physirs. They permeate v(l.rious arcas of mathcmatics and have deep applications
in practicc. Thcrcforc the propcrtics of thcsc functions have bcen studied thor-
ol1~hly (SCl' for ('xarnple rcfcrcnccs 2-0 ana thosc thercin).

Spccial fllIlctinns nsually arisc as solutioIlS of sccona-order differential equa-
tions. In this conn('ctioll tlu'ir theor)' mar be gCIH'ralizc(l in a natural way, replac-
iIl~ tlH':jc differclltial ('qnat.ions hy differcnce OBes (with thc use of the approxima-
tiOll of dcrivativcs OH non-lIniform latticC's for thc general case) and constructing
exact solutions of sllch diffC'rcncc cqllations hy analo~y with thc \\'cll-known 50-

lutions of diffcrcntial OI¡('S. The study of thc class of spccial functions originating
in this way (the diffcrencc analogucs of special functions of hypergeometric type)
bcgan as earl)' as the last ccntnry 11,10--141. As it is clcar now, in these c1assi-
cal works of Doole [11, Thomae [10.111. Chchyshev [121. and Heine 113,141. the
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first families of such functions were introduced. For further developments in this
arca see, for example, the profound works of Hahn [151. But a general thcory
of difference analogu~s of special functions in their totality, exposing results as
explicitly as possible in aH occuring cIasses of non-uniform lattices is apparently
absent in the literature up to now.

The basic idea behind the approach, that we shall discuss in the present paper,
follows from the works [9,17-25] dealing with the classical orthogonal polynomials
of a discrete variable, i. f.. the difference analogues of the Jacobi, Laguerre and
Hermite polynomials on uniform and non-uniform lattices. Here the simple method
of using classical orthogonal polynomials to develop hypergeometric fundions [9]
is generalized to the solutions of appropriate difference equations on non-uniform
lattices introduced in Ref. 18 (see also references 17 and 26). It turns out that such
difference analogues of hypergeometric-type functions can be naturally derived,
characterized and cIassified in this way.

The paper is organizcd as follows. Section 2 deaIs with preliminary notions.
The main theorern is formulated in Section 3. The sketch of the proof is presented
in Section 5, after discussion of the necessary tools in Section 4. Sorne properties of
the aforementioned class of special functions are derived in Section 6 and, finally,
Section 7 contains sorne of the simplest examples including the classical orthogonal
polynomials of a discrete variable and the functions of the second kind.

2. Preliminary nolions and nolations

The special functions of mathematical physics are the particular solutions of
hypergeomelric-lype differenlial equalion [91

a(x)y" + r(x)y' + Ay = O. (1)

In order to generalize their theory we will solve a hypergeometric-type difference
equation on a lattice x = x(z) ",ith the non-uniform step .ó.x(z) = x(z + 1) -
x(z) 117,181:

,,[x(z)1 t1 [_Vy_(_z)]+ _T[x_(z_)1[_t1y_(_z)+ _V_y(_z)]+ Ay(z) _ O
t1x(z - 1/2) Vx(z) 2 t1x(z) Vx(z) - , (2)

where t1y(z) = y(z+ 1) - y(z), Vy(z) = t1y(z -1), ,,(x) and T(x) are polynomials
of degrees at most two and one, respectively, and .\ is a constant.

As it is known [181,for the classcs of non-uniform lattices

{
C¡qZ + C2q-Z + 13/(1 - a),

x(z) =
4/h2 + C¡z + C2,

a '" :I:l,

Q = 1i

(3)

(4 )
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1/2 -1/2(O, /3, Cl and C2 are eonstants, q = ql = q2 1 ql and q2 are the roots of the
equation q2 - 20q + 1 = O), the fundamental property is valid, i.e. the differenee
differentiation of the original equation (2) on a non-uniform lattice results in an
equation of the same type.

The following basic equations are satisfied

~[x(x + 1') + x(x)1 = "(I')x( x + ~) + 13(1'), (5)

x(x + 1') - x(x) = "(I')V'x(x + l' ; 1), (6)

¡Ix(x + 1') - x(x)12 = -y2(1') [( ,,2 - l)x2 (x + ~) + 2(" + l)¡3x( x + ~) + Cs],

(7)

where

for lhe lalliees (3) and (4), respeelively.

DEFINITION. By analogy with the so/utlons (1) (see Re/. 9), solutions 01 equa-
tion (E) will be ealled dillcrcne< lunetions 01 hypergeometrie type.

For >. = >'n= --y(nJl,,(n - I)T' + -y(n - 1)&/1/21,n = 0,1,2, , lhe parlial
solutions of equation (2) are classieal orthogonal polynomials of a diserete variable
on non-uniform lattiees. The general approaeh to the theory of these polynomials
was investigated in Ref. 18 on the basis of equation (2). For further developments
in their theory, see Refs. 9 and 19 to 25, while Ref. 27 eontains considerable
simplifications in the proofs. For the alternative approach based on the use of the
theory of the basic hypergeometric series, see, for example, Refs. 26 and 28 to 34.
The present paper is concerned with the explicit construction of exact solutions
of (2) for arbitrary values of.\. and the derivation of their main properties.
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3. Formulation of the main theorem

The particular solutions of (1) can be constructed by generalization of the
Rodrigues formula for the Jacobi, Laguerre and Hermite polynomials, which leads
in a natural way to the well-known integral representations for classical special
functions of mathematical physics [9J. In Ref. 35 similar exact solutions were
eonslrueted for lhe differenee equalion (2) in lhe case of lhe linear nel x(z) = z.
The presenl paper deals wilh lhe general case of the non-uniform ¡alliees (3)
and (4). The main resull is as follows.

THEOREM (S.K. Suslov). Let a lattiee x(z) satisJy the equations (5)-(7). Then
the equation (2) has the particular :wlutions

(8)

where ev is a constant, 1pvv(z) = f?!JJl,(z)1 ',.. ¡.¡.=v

(9)

(10)

e is a contour in the eomplex S plane, and Xv(8) = X(8 + v/2), provided that
the /our conditions below are satis/ied. They are the properties that generalize to
non-uniform lalliees lhe well-known idenlil!es (8 - z)(s - z)" = (s - Z)"(8 - z) =
(s - z)"+1.

i) Junetions p(z) and (pv(z) are solutions oJ the equations

rv(z)"xHI(Z) = <1(z+ v) - <1(z)+ T(Z + V)"XI(Z + v),

with

t.(<1p) = PT"xI,

<1 = ú(x) - ~r(x)"xI, r=r(x);

(11)

(12)

(13)

and v is a root o/ the equation

>. + a(v - 1h(v)T' + h(v - 1h(v)ú" = O; (14)
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ii) for the "genera/ized power", i.e. for the funelion Ixv(s) - xv(z)I(~), the fol/owing
properties hold

[xv (s) - xv(z)][xv(s) - xv(z -1)I(~)

= Ixv(s) - xv(z)](~)lxv(s) - xv(z - /l)1 = [xv (s) - xv(z)I(~+l), (15)

Ixv-ds) - xV_l(z)I(~)lxv_~(s) - xv-~(z)J

= Ixv_~(s + /l) - xv-~(Z)][Xv_l(S) - xv_l(z)I(~}

= [Xv (s) - xv(z)](~+l); (16)

iii) the differene< differentiation of the funetions <Pv~(z) with /l = 1/ -1 and /l = 1/

may be derived by the formula

(17)

iv) in the cases (g) and (10) the 'boundary conditions' are valid, respectively:

(18)

(19)

This theorem was first formulated in Ref. 23 and it plays the central role in
lhe .ppro.ch under consider.lion (ef. ReL 9).

4. Neccesary lemmas

In this section we introduce lernmas which will be required for the proof of
the main theorem.

LEMMA O. Let the properties (6), (15) and (16) be va/id for the funelions x(z)
and Ixv (s) - Xv (z) I(~),respective/y. Then
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These equations generalize to non-uniform lattices the well-known differentiation
formulas

d d _
-(s - z)~ = --(s - z)~ = -I'(s - z)~ 1,
dz ds

d[ 1] d[ 1] l'
dz (s - z)~ = - ds (s - z)~ = (s - z)~+l .

LEMA 1. Let a lattie< x(z) .ati./y the identities (5)-(7). Then /unetion. uv(z)
and Tv(Z) de/ined by the 'quations

uv(z) = u(z) + ~Tv(Z)'VXv+¡(z),

Tv(Z)'VXv+¡(x) = u(z + v) - u(z) + T(Z + v)'VX¡(z + v),

(lOT u(z) and T(X), .e< (111)) aTe polynomial. o/ degre<. at mo.t two and on, in
Xv = x(z + v/2), Tespectivciy:

uv(Z) = av(xv) = av(O) + a~(O)xv + ~a'~x~,

Tv(X) = 'v(xv) = 'v(O) + ,~xv,

with
a'~ = 2(e>2 - lh(2v),' + e>(2v)a",

,~= e>(2v)T'+ h(2v)a";

a~(O) = (e>2 - lh(v)T(O) + [~(e> + 1)/h(2v) + (e>2 - l)/1(vh(v)j,'

+ e>(v)a'(O) + 1e>(v)/1(v)+ (e> + 1)/1"(2(v)Ja",

'v(O) = e>(v)i'(O)+ 1e>(v)/1(v)+ (e> + 1)/1"(2(v)],1

+ "((v)a'(O) + /1(vh(v)a";
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al' (O) = (o + 1)¡1,(v)T(O) + ,(v)[(a + 1)¡1¡1(v) + 0(V)C3JT'

+ a(O) + ¡1(v)a'(O) + ~[¡12(v) + ,2(v)C3Ja".

Thcsc equations generalizc the equations found in Refs. 18, D, and 21, for v = n =
0,1,2, ... to arbitrary valucs of v.

LE~I~IA 2. Let the conditions 01 the ma&'ntheorem be sati3j&'ed. Then the lunction

has the lorm

where

I'(s) = Ao + Alixv(s) - xdz - I)J

+ A2[xds) - xv(z + 1)lIx,,(.,) - x,,(z -I')J,

.40= ,(1' r l)a(z + 1),

",a(z) - r,,_"(z)'VXV_"+¡(z)
Al = -----------.

",xv_,,(z)

."
A2 = -<>(1' + I)T~ + ,(1' + 1)021' = -X2,,-"

( )' I ( )'"= -o: 2v - Jl - 1 rv - 21 2v - Jl - 1 a ,

(23)

"here Xv = <>(v - I)T' + (1/2)¡(v - l)a".
Proofs of thesc lemmas are obtaincc1 by direct analogy with the mcthod used

in ReL 35.

5. Sketch of the proof

\\'c will derive the tlwOrl'l1l of S('ctioll 3 by allalo~y with the proof of the main
theOTCIn for tlw differcnti¡d e/Iuatioll (1) in H('f. O (s('e aIso Rcfs. 35 and 3G).

Lct liS multiply thc P(!arson-t.ypc eqllatioIl

by 1/[x"u_ ¡(s + 1) - xv- ¡(z + I)J("''') and transform the left.hand side Ilsing the
idcntity

t..IJ(s)g(s)J = J( .•)t..g(s) + g(., + 1)t..J(s)
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with /(s) = a(s)pv(s) .nd g(s + 1) = 1/[xv_¡(s + 1) - Xv_I(Z + 1)1(~+1). Then

{
a(s)pvls) } ( ) a(s)pv(s)'Vxv+1(s)6, ----------- +1 ,,+ 1 ---------

[Xv_I(S) - xv_¡(z + 1)1("+1) [Xv(s) - xv(z + 1)1(~+2)
Tv (s )Pv (s) 'V xv+ ¡(s)=------------

[xv_¡(s + 1) - xv_¡(z + 1)1(~+I) .

Assuming the particular sollltion is in the form of (O), we put here s = a, a +
1, ... ,b - 1 and sum over s taking into account (18). As a result, one can write

(24)

\Vith the .id of (22) .nd (23) we obt.in from (24)

( ) 6'Pv~(z) 6a(=) - TV-"(Z)'VXv_"+l(Z)az+ 1 ---- + ----~---~--PV"(z)
6xv_"(z) £>XV_"(z) (25)

= X2v-"'Pv,~-¡(z),

Using the cquations 6.(apv) = TvPv'VXv+l and Pv-p.(z)vvp.(z) = Cvp.:Pvp.(z), it is
not hard to dC'rive that thc Icft-hand side of (25) is equal to

_1 ( £>VV¡,(z)
C,,¡,a z + l)pv_"(z + 1) ( ) .

6.XV-Jl Z

Thus, we have

(26)

The action of operator (1/'Vx¡)'V on the both sides of (26) leads to the equation

where 1'(,,) = -1(I')X2v-w Putting l' = ", we final1y come to the equation (2)
in the self-adjoint formo Using the same considerations mutatis mutand£s one can
derive the solutions in the integral form (10).
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6. Sorne properties of the difTerence hypergeometric-type functions

The representation (8) allows liS to derive sorne rnain properties of the func-
tions under consideration.

1. In view of (26) we have

t>yv(z)
t>x(z)

CPl
<1(z+ l)p(z + 1) """."-I(Z) (28)

with C~l) = x"C" = [a (v -1) + h(v - l)ull]C". Jt is thus clear that

where

t>(k) = (_t>_) ... (~).
t>xk_l t>xo

k
pdz) = p(z + k) TI <1(z+ p).

p=l

2. From (8) and (28) one can derive the diff,rence differentiotion formula

(29)

(30)

The proof goes sirnilarly as in fief. 9 with proper rnodifications.

9. Under appropriate conditions the three-term recurrence relation

x(z)y"(z) = a"Y"+l(z) + l1"y"(z) + '1"Y"_I(Z)

is also valido The constants 0v, /3Vl and IV are equal to

'1(1' + I)X"C"
Qv = ~, ~I C 1

TvTv-l/2 v+l

¡"-dO) '"(O) [ ) I11"= '1(1') ., - '1(1' + 1)-.-,- - '1(v)D" - '1(1' + 1 D"+I ,
Tv_1 Tv

(32)
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Here, Dv = Ofor {3= Oand Dv = (,,2 - 1/3) for " = 1.

7. Examples

Let us use the main theorem to give thc sirnplest solutions of the equation (2).

a) Classical orthogonal polynomials of a discrete variable

For v = n = 0,1,2, ... we may derive solutions of the equation (2) in thc form (9):

_ _ lnq (n) IJn r Pn(')'V'xn+¡(.) d.
y - Yn(Z) - ql/2 _ q_l/2h(n)] 21rip(z) Je [xn(.) _ xn(z)j1n+1) ,

where h(n)]ln) = ')(1)1(2) ... ')(n), IJn is a eonstanl,

¡ñl¡Xn(') - xn(z - k)l, m> O,
[xn(.) - xn(z)]lm) = k~o

1, rn = Di

(33)

lhe funelion Pn(') is defined hy (26); e is a eonlour in the eomplex • plane
which circurnflexes the points s = z. z - 1, ... ,z - n, does not inelude sorne other
singularities of the integrand and may be shifted by unity.

Using lhe identity

V1nl = (-~) ... (~),
~Xl V'xn

whieh holds for lattiees (3) and (4), and Cauehy's theorem, we ohtain from (33) the
Rodrigues-type formula for elassical orthogonal polynomials of a diserete variable
on non-uniforrn lattices 118,261:

(34)

Rence, the relation (33) is the int~gral repr~s~ntation for these polynomials.
For additional properties of the polynomials under eonsideration, sorne of thcir

applieations and further references, see refercr:.ces 9, 12, 15, 17-26 and 28-34.
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b) The functions o/ the second kind o/ a discrete variable

The second Iinearly-inoepcndent solution of equation (2) for 1/ = n may be written
in the form:

The constants a and b are chosen here in accordance with the condition

(35)

(k=0,1,2, ... ), (36)

\",hich holds for the polynomials (34) in the case of diserete orthogonality relations
(sce, for cxample, Rers. 9 and 21). The functions (35) will be called the ¡unction.
o/ the second kind o/ a discrete variable.

With thc aid or (35) and (34) we can obtain a relationship betwcen the
functions Q,,(z) and the polynomials y,,(z):

Qn(z) = _1_ I!Yn(')P(s)V'X¡(s)
p(z) ,~a x(s) - x(z) (z ¡< a, a + 1, ... , b - 1).

In the points z = a, a + 1, ... , b - 1 one can define the functions Qn (z) by a proper
limit [35]. It is also not hard to define the funetions Qn(z) in the ease of continuous
orthogonality rclations for the polynomials (34), studied in Refs. 22, 24-26, 28,
30, 33, and 34. An example of sueh funetion of the second kind is discussed in
Refs. 37. For additional properties of the aforementioned functions of the second
kind, see Ref. 36.

c) Sorne ana/agues o/ hypergeornetric-type speciallunctions on linear nets

In the case x(z) = z with the aid of linear transformations the equation (2) may
be reduccd to the following canonical forms

(z - -¡)(z - 5)£> V'u + i(o + (J + l)z - -¡5]£>u + o(Ju = O,

(z - -¡)£> V'u + h- tz)£>u - otu = O,

(z --y)c. V'u + -¡c.u - tu = O,

z£>V'u + (t - z)£>u + vu = 0.
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The appropriate partial solutions are 11,10,11,38]

u = F(z,a,13) = f: (z)dah(13h
"I,Ó k=O h)k(Ó)kk! '

~ (z)d"lk ku=F(z,a,"I,t)= L... () k' t,
k=o "1 k .

respectively. Rere ~Vk,p(t) is the \Vhittaker fttllction. For details, see Ref. 38.

d) Some solutions 01 dillerence hypergeometrie-type equation on non-umJorm lat-
tices

With the aid of the main theorem the simpkst solutiolls of the cquation (2)
were constructed aboye. A numbcr of further exarnples can be found in Refs. 15
and 39 to 41. Natural1y, it is of interest to construct an analogue the Gauss
hypergeometric function on non-uniform lattices. In this connection we discuss in
short two more types of solutions.

1. For Ihe ¡alliee x(z) = z2 owing lo (12) we have

u(z) = (z - a)(z - b)(z - e)(z - d),

where a, b, e, and d are arbitrary complcx numbcrs. Lct us cho05e the following
solutions of the equations (11):

p"(s) = Cor(a + v + s)r(a - s)r(b + v + s)r(b -- s)

x r(e + v + s )r(e - s )r(d + v + s )r(d - s) sin 2rr [s + ~(v + 1)l'
p(z) = po(z) ,

sin 21r(05 + ~)
c-1 = (_1}"+lsill~(S - z+v+ 1)

O sin (s - z)~ .

Defining the "gencralized power" in the form [361

[ () ( )1(") - r(s - z + I,)r(s + z + v + 1)
Xv.5 - Xy Z -) ,r(s - z r(s + z + v - l' + 1)

x(z) = z2,
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from (8) and (10) \Veobtain

A [ Pv(.)V'Xv+l(') d.
Yv(z) = p(z) le Ixd') _ xv(z)](v+l)

= ~ JiOO dt r(a + 2 + t)r(a + 2 - t)r(b + 2 + t)r(b + 2 - t) (37)
p(z) -ioo r(2t)r( -2t)

r(e + 2 + t)r(e + 2 - t)r(d + 2 + t)r(d + 2 - t)r(z - 2 + t)r(z - 2 - t)x ----------------~----~----~--r(l+z+ 2 +t)r(l+z+ 2 -t) .

As was shown in Ref. 41, this integral represcntation leads to the function 1F6(1),
which is rcprcsentcd in accordance with Ref. 42 as a sum of two functions of the
.¡F3(1) type.

2. In the case when x(z) = cosh2w, = (1/2)(q' +q-'), q = eZw, according to (12)
it is possible to writc in the vcry general form

<1(z) = q-z'(q' _ a)(q' - b)(q' - e)(qZ - d).

Thcrefore for this case we have

p(z) = p(z,a,b,c,d) = J,(z) rr g(z,~),
~=a,b,c,d

00

g-l(z,~) = rr 11_ ~(qZ + q-Z)l + ~Zq2kl,
k=O

I~I< 1,

and rq(w) is the q-gamma function (see for example Ref. 39). Taking into account
the arbitrariness in the choice of normalization and periodic factors it is not also
difficult to verify that

[ ( ) j(V+l) g(t q1+'+v/z)
Xv t - 4v - xv(z) = constant q-(v+l)z , _ /2 .

g(t,qZ v )

As a result from the formulas (8) and (ID) we obtain the following particular
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solution of the equation (2):

(38)

The contour e' is located on the imaginary axis: t = it', o ~ t' ~ 11" In-1 q; while
-1 :S x(t) :S 1.

According to Ref. 40 the integral representation of the (38) type defines a very
well-poised slpy [421. This permits one to draw an analogy with the known Euler
integral representation for the hypergeometric function. We have obtained that
this function is a solution of the equation (2) and it has aH properties considercd
in Section 6. With the appropriate choice of the parameters (see Ref. 41) in the
limit q ~ 1 the formula (38) goes over to (37).

We have discussed here only the simplest solutions of the equation (2). Simi-
larly using the main theorem one can construct difference functions of hypergeo-
metric type in other cases. Further development of such dass of spedal functions
should certainly be made. In particular, it is worthwhile to study as explicitly as
possible the deep analogy with dassical hypergeometric functions induding new
interpretations and forthcoming generalizations of many well-known results. It
is also interesting to develop group theoretical approach to the theory of these
functions.
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Resumen. Se demuestra un teorema que permite construir en forma
explícita algunas soluciones particulares para ecuaciones diferenciales
del tipo hipergeométrico sobre redes no-uniformes. Se derivan las
propiedades principales de estas soluciones. Discutimos como ejemplos
los polinomios ortogonales clásicos de una variable discreta sobre
redes no-uniformes, las funciones de segunda clase de una variable
discreta, así como las analogías diferenciales sobre redes lineales para
las funciones especiales clásicas de la física matemática.


