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Abstract. We prove a theorem which allows to construct in explicit
form some particular solutions for difference equations of the hyper-
geometric type on non-uniform lattices. The main properties of these
solutions are derived. We discuss the classical orthogonal polynomials
of a discrete variable on non-uniform lattices, the functions of the se-
cond kind of a discrete variable, as well as the difference analogues on
linear nets for classical special functions of mathematical physics as
examples.

PACS: 02.30.+¢g

In the following ezposition of the Calculus of Finite Differences, particu-
lar attention has been paid to the connection of its methods with those of
the Differencial Calculus -—a connection which in some instances involves
far more than a merely formal analogy.

George Boole [1]

1. intreduction

Special functions of mathematical physics (classical orthogonal polynomials, hyper-
geometric functions, Bessel functions, etc.) are widely used in many branches of
physics. They permeate various areas of mathematics and have deep applications
in practice. Therefore the properties of these functions have been studied thor-
oughly (sce for example references 2-9 and those therein).

Special functions usually arise as solutions of second-order differential equa-
tions. In this connection their theory may be generalized in a natural way, replac-
ing these differential equations by difference ones (with the use of the approxima-
tion of derivatives on non-uniform lattices for the general case) and constructing
exact solutions of such difference equations by analogy with the well-known so-
lutions of differential ones. The study of the class of special functions originating
in this way (the difference analogues of special functions of hypergeometric type)
began as early as the last century [1,10-14]. As it is clear now, in these classi-
cal works of Boole 1], Thomae (10, 11|, Chebyshev [12], and Heine [13,14], the
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first families of such functions were introduced. For further developments in this
area see, for example, the profound works of Hahn [15]. But a general theory
of difference analogues of special functions in their totality, exposing results as
explicitly as possible in all occuring classes of non-uniform lattices is apparently
absent in the literature up to now.

The basic idea behind the approach, that we shall discuss in the present paper,
follows from the works [9, 17-25] dealing with the classical orthogonal polynomials
of a discrete variable, 1.e. the difference analogues of the Jacobi, Laguerre and
Hermite polynomials on uniform and non-uniform lattices. Here the simple method
of using classical orthogonal polynomials to develop hypergeometric functions [9]
is generalized to the solutions of appropriate difference equations on non-uniform
lattices introduced in Ref. 18 (see also references 17 and 26). It turns out that such
difference analogues of hypergeometric-type functions can be naturally derived,
characterized and classified in this way.

The paper is organized as follows. Section 2 deals with preliminary notions.
The main theorem is formulated in Section 3. The sketch of the proof is presented
in Section 5, after discussion of the necessary tools in Section 4. Some properties of
the aforementioned class of special functions are derived in Section 6 and, finally,
Section 7 contains some of the simplest examples including the classical orthogonal
polynomials of a discrete variable and the functions of the second kind.

2. Preliminary notions and notations

The special functions of mathematical physics are the particular solutions of
hypergeometric-type differential equation [9)

o(z)y" + r(z)y’ + Ay =0. (1)
In order to generalize their theory we will solve a hypergeometric-type difference

equation on a lattice z = z(2) with the non-uniform step Az(z) = z(z + 1) —
z(z) [17,18]:

Al s [Vy(z)] i “F[-'r2(2)] [Ay(Z)

Az(z—1/2) [ Vz(z) Az(z) +ay(z) =0, (2)

where Ay(z) = y(z+1) — y(2), Vy(z) = Ay(z—1), &(z) and 7(z) are polynomials
of degrees at most two and one, respectively, and A is a constant.

As it is known [18], for the classes of non-uniform lattices

2 = {Clqz+02q_z+ﬂ/(l—a), o # +1, (3)
4822 + Cyz + Oy, = I (4)
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(a, B, Cy and Cj are constants, ¢ = ¢;'”" = ¢, /", g and gy are the roots of the

equation ¢ — 2aq + 1 = 0), the fundamental property is valid, i.e. the difference

differentiation of the original equation (2) on a non-uniform lattice results in an

equation of the same type.

The following basic equations are satisfied

oloz + ) +2(2)] = alwa(=+ ) + Blu), ®)
(2 + ) - 2(2) = a() Va2 + L1, (6)
J1z(z + ) = 2(2)) = ¥() [(oﬂ ~1)z(z+5) + 20+ )pa(z+ L) + cs],
(7)
where
ghl? 4 gn/2 ﬂl — o(p)
alp) = 2 ’ Bu) = 1-a’
& Bu?;
g/t — g/ BF LB =T,
2w = | =g Cs=1%""
1 iclz. = 41602

for the lattices (3) and (4), respectively.

DEFINITION. By analogy with the solutions (1) (see Ref. 9), solutions of equa-
tion (2) will be called difference functions of hypergeometric type.

For A = Aq = —y(n)[a(n — 1)7 + v(n — 1)8"/2], n = 0,1,2,..., the partial
solutions of equation (2) are classical orthogonal polynomials of a discrete variable
on non-uniform lattices. The general approach to the theory of these polynomials
was investigated in Ref. 18 on the basis of equation (2). For further developments
in their theory, see Refs. 9 and 19 to 25, while Ref. 27 contains considerable
simplifications in the proofs. For the alternative approach based on the use of the
theory of the basic hypergeometric series, see, for example, Refs. 26 and 28 to 34.
The present paper is concerned with the explicit construction of exact solutions
of (2) for arbitrary values of A and the derivation of their main properties.
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3. Formulation of the main theorem

The particular solutions of (1) can be constructed by generalization of the
Rodrigues formula for the Jacobi, Laguerre and Hermite polynomials, which leads
in a natural way to the well-known integral representations for classical special
functions of mathematical physics [9]. In Ref. 35 similar exact solutions were
constructed for the difference equation (2) in the case of the linear net z(z) = 2.
The present paper deals with the general case of the non-uniform lattices (3)
and (4). The main result is as follows.

THEOREM (S.K. Suslov). Let a lattice z(z) satisfy the equations (5)-(7). Then

the equation (2) has the particular solutions

y=yp(2) = ——)sow(Z), (8)

[z (5) — z,(2))#11)° (9)
pv(8)Vzyy1(s)ds (10)

C 1s a contour in the complez S plane, and z,(s) = z(s + v/2), provided that
the four conditions below are satisfied. They are the properties that generalize to
non-uniform lattices the well-known identities (s — 2)(s —2)* = (s — 2)#(s — 2) =
(s — 2)#*L,

i) functions p(z) and (p,(2) are solutions of the equations

A(op) = prVzy,  Alopy)pumVI,y4g (11)

with
o=6(z) — §7(z)Vz1, r=7(z); (12)
7(2)Vay41(2) = oz +v) — o(2) + 7(z +v)Vzi(z + v), (18)

and v 13 a root of the equation

X+ a(v — 1)y@)7 + 31(v - 1)y(v)8" = 0; (14)
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ii) for the “generalized power”, i.e. for the function [z, (s) —J:,,(z)]("), the following
properties hold

[2(5) — 2 ()]0 (5) — 24 (2 — 1)](¥)
= [2u(5) = 2 ()] ¥z (5) — 2 (2 — )] = [z, (s) = ()] *HY),  (15)
[2v-1(8) = 2u-1(2)]¥) 21— (5) — 2o (2)]
= [2u—p(s + 1) — Zyu(2)][2u1(5) — zy—1(2)]¥)
= [zu(s) — mu(2)]#+Y); (16)
iii) the difference differentiation of the functions ,,u(2) withp =v—1and p=v
may be derived by the formula
Veouu(2)

Varal?) =7(p + ey ps1(2); (17)

iv) in the cases (9) and (10) the ‘boundary conditions’ are valid, respectively:

O(S)Pu(a) b =
[Zy-1(8) - zy—1(z + 1)]("+1) = =1, (18)
o(s)pu(s) N
ch'{[-Tu—l(s) _IV_1(2+1)](V+1)}d3—0. (19)

This theorem was first formulated in Ref. 23 and it plays the central role in
the approach under consideration (cf. Ref. 9).

4. Neccesary lemmas

In this section we introduce lemmas which will be required for the proof of
the main theorem.

LEMMA 0. Let the properties (6), (15) and (16) be valid for the functions z(z)
and [z,(s) — :c,,(z)]('"), respectively. Then

v

A, " :
ey L Al Vg ) - zy41(2)| W)
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= —1()[zu(s) — = (2)] 7, (20)
V2 1
Vz,ut1(2) { (zuks) — zu(2)]¥) }

_ A, { 1 } ¥(1)
Azy-1(5) U[zy-1() = 21 ()W) [m(s) — 2 ()| HY

. (21)

These equations generalize to non-uniform lattices the well-known differentiation
formulas
d d
s—z)F = s—z)H = O
Slo—a = —2(s—2)F = —u(s—2)

%[ﬁ] . _%[(3 —lz)“] = (s —‘;)F‘H i

LEMA 1. Let a lattice z(2) satisfy the identities (5)-(7). Then functions o,(z)
and 7, (z) defined by the equations

ou(z) = o(z2) + %TV(Z)VIV+1(Z),
(2)Vz,41(2) = o(z +v) —o(2) + 7(2 + v)Vzy (2 + 1),

(for o(2) and 7(z), see (12)) are polynomials of degrees at most two and one in
z, = z(2 + v/2), respectively:

ou(z) = 6y(zy) = 3, (0) + 5{,(0)1:,, - %a"yrf,
7(2) = fu(zv) = 7u(0) + 7}z,

with
8", = 2(a? — 1)y(2v)# + a(2v)5",

7, = a(20)# + §y(2v)8";

5(0) = (e = 1()F(0) + |3+ DB1(20) + (o — 1)B()4(v)] 7
+ a7 (0) + [a(r)8W) + (a+ 186",

7(0) = a)7(0) + [a(x)8() + (a + 1822 ()}
+7(¥)a'(0) + B(v)¥(v)3";
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6y(0) = (a+ 1)B(v)7 (0) +y(W)[(a+ 1)8B(v) + a(v)Cs]#
+8(0) + B(v)3'(0) + 5B (v) + +*(v)C3)d".

These equations generalize the equations found in Refs. 18, 9, and 21, for v = n =
0,1,2,... to arbitrary values of v.

LEMMA 2. Let the conditions of the main theorem be satisfied. Then the function
P(8) = A4(p+ 1)o(s) —r(s) [zy_#(s - %)*IV_#(Z 4 %)] (22)
has the form

P(s) = Ag + Aq[zu () — zp(z — 1)]

(23)
+ Aalzu(8) — 20z + 1)][2(5) — 20 (2 - ),
where
Ao =7(u + oz + 1),
by = é“’( )‘TZ;:( 3( )" #*.{(_zl,
A = —a(u+ )7, +y(u+ l)‘% = —X%u—p

= —o2v—p—1)rl — :—12'7(21/ — - 1ja"

where x, = a(v — 1)7 + (1/2)y(v — 1)é"
Proofs of these lemmas are obtained by direct analogy with the method used
in Ref. 35.

5. Sketch of the proof

We will derive the theorem of Section 3 by analogy with the proof of the main
theorem for the differential equation (1) in Ref. 9 (sece also Refs. 35 and 36).
Let us multiply the Pearson-type cquation

Aala(s)Pv(s)l : TV(S)PU(S)vIu+1(3)

by 1/[zpu-1(s+1) —zp—1(2+ 1)}[’”1) and transform the left-hand side using the
identity

As[f(s)g(s)] = f(s)Asa(s) + als + 1)Asf(s)
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with f(s) = o(s)pu(s) and g(s +1) =1/[z,—1(s+ 1) — z,—1(2 + 1)]("‘+1). Then

As{ a(s)pu(s) }+'7(V+1) o(s)pu(s)Vzyi1(s)

(2y—1(5) — Zy—1(z + 1)]e+Y) (24 (s) — 2 (2 + 1)) +2)

u(8)pw (8)V,41(s) -
[ alsst 1) — 2 1{z 1)](,u+1)

Assuming the particular solution is in the form of (9), we put here s = a,a +
1,...,b—1 and sum over s taking into account (18). As a result, one can write

v(8)Vzy11(9)
- [Iu(:; E )%(z :ll)]{ﬁz} P(s) = 0. (24)

With the aid of (22) and (23) we obtain from (24)

Apyu(z) i Ac(z) — T,,_,u,(z)v:c,,_ﬂ;‘,l(z)’

o(z+1) Ay () AT ouu(z) (25)

= XZV—#‘PV,#*I(Z) )

Using the equations A(op,) = mupu Vi1 and pu—p(2)9uu(2) = Cuppru(z), it is
not hard to derive that the left-hand side of (25) is equal to

i Ay, (2)
1 Vi
GV#U(Z T l)p!l-",u(z g 1) AIEU__U_(Z) £
Thus, we have
Ady,(2)
o(z+ 1)py—p(z + 1)‘55;5_‘“:@ = X2V—,ucv,uﬁov,p—1(3)' (26)

The action of operator (1/Vz;)V on the both sides of (26) leads to the equation

A Vi,u(z) N
m a(z)p,,_#(z)vzu_’;(z) + p(v)py—u(2)dup(z) = 0, (27)

where pu(v) = —v(#)x2v—u- Putting p = v, we finally come to the equation (2)
in the self-adjoint form. Using the same considerations mutatis mutandis one can
derive the solutions in the integral form (10).
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6. Some properties of the difference hypergeometric-type functions

The representation (8) allows us to derive some main properties of the fune-

tions under consideration.

1. In view of (26) we have

Ayy(2) C,(,l)
Az(z)  o(z+1)p(z+

1)‘9u,u41(z)

with C,[,I] = xuCy = |a(v — 1) + }y(v — 1)6" |C,. 1t is thus clear that

(k)

A(k)yu(z) = %Itf)@y,u—k(z)

where

Alk) — ( A_ ) (Aia:o) ‘ :(;k) - :1:_[; Xv+pCu,

2. From (8) and (28) one can derive the difference differentiation formula

o) el = X o0+ 1) Ppnala) - ()]

The proof goes similarly as in Ref. 9 with proper modifications.

§. Under appropriate conditions the three-term recurrence relation

I(Z)yu(z) = opYu+1(2) + Buyw(2) + ’)’uyu—l(z)
is also valid. The constants «,, 3., and v, are equal to

_ (v + I)XUCV
" FL%Lk1/20v+l d

8= 1) A o+ )™ 136D, — 4 + 1D, 1)

LI, v

(30)

(31)

(32)
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by ":L_16'u71('“7‘:uv1(0)/ﬂ;71)0y

=]
Tu—l/ZC”_l

=

Here, D, =0 for =0 and D, = (v2 — 1/3) for a = 1.

7. Examples
Let us use the main theorem to give the simplest solutions of the equation (2).
a) Classical orthogonal polynomials of a discrete variable

Forv=n =0,1,2,... we may derive solutions of the equation (2) in the form (9):

Ing

a) Bn Pn(8)Vzy 1(s)ds
Y =uyn(2) = m[’?(")]( ) *

2mip(2) JO [z,(s) — zo(2))(*HD)°

(33)
where [y(n)](®) = y(1)~(2) ---5(n), By is a constant,
m—1
II [zn(s) — zn(z = k)], m >0,
[zn(s) = za(2)]™) = { &0
1, m = (;

the function pn(s) is defined by (26); C is a contour in the complex s plane
which circumflexes the points s = 2,z —1,..., z — n, does not include some other
singularities of the integrand and may be shifted by unity.

Using the identity

" 1 _ ™ i :( v )( v )

za(9) =22} fzn(s) ~ an(2)]"*T V) Ve

which holds for lattices (3) and (4), and Cauchy‘s theorem, we obtain from (33) the
Rodrigues-type formula for classical orthogonal polynomials of a discrete variable
on non-uniform lattices [18, 26]:

Zn g () (2)] (34)

tnl2) = p(z)

Hence, the relation (33) is the integral representation for these polynomials.
For additional properties of the polynomials under consideration, some of their
applications and further references, see references 9, 12, 15, 17-26 and 28-34.
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b) The functions of the second kind of a discrete variable

The second linearly-independent solution of equation (2) for v = n may be written
in the form:

Bn[1(n)]"™ %= pa(s)Vzatils)

y -— Q X = . 35
() p(2) s=a [zn(s) — xn(z)](“+1) ik
The constants a and b are chosen here in accordance with the condition
o(s)p(s)zk(s—- %) =0 (=01, .. (36)
s=a,b

which holds for the polynomials (34) in the case of discrete orthogonality relations
(see, for example, Refs. 9 and 21). The functions (35) will be called the functions
of the second kind of a discrete variable.

With the aid of (35) and (34) we can obtain a relationship between the
functions @ (z) and the polynomials y,(2):

b=1

1 yn(s)p(s)Vz1(s)
Qn(2) = — B z#a,a+1,...,6—1).
a7 PPl )
In the points z = a,a+1,...,b—1 one can define the functions @, (z) by a proper

limit [35]. It is also not hard to define the functions @, (z) in the case of continuous
orthogonality relations for the polynomials (34), studied in Refs. 22, 24-26, 28,
30, 33, and 34. An example of such function of the second kind is discussed in
Refs. 37. For additional properties of the aforementioned functions of the second
kind, see Ref. 36.

c) Some analogues of hypergeometric-type special functions on linear nets

In the case z(z) = z with the aid of linear transformations the equation (2) may
be reduced to the following canonical forms

(z—7)(z—8)AVu+ [(a+ B+ 1)z — y6]Au + afu = 0,
(z — ¥)AVu + (v — tz) Au — atu = 0,
(2 =9)AVu + yAu — tu =0,

zAVu + (t — 2)Au +vu =1,
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The appropriate partial solutions are [1,10,11, 38]

u:F(z’a’ ): i Mk

u=F(z2,a :wjm%k
Fleemt = 2 o b
k

U= t-—#zwé(z‘frxﬁ']),%(z—v)(”‘

respectively. Here W} ,(t) is the Whittaker function. For details, see Ref. 38.

d) Some solutions of difference hypergeometric-type equation on non-uniform lat-
tices

With the aid of the main theorem the simplest solutions of the equation (2)
were constructed above. A number of further examples can be found in Refs. 15
and 39 to 41. Naturally, it is of interest to construct an analogue the Gauss
hypergeometric function on non-uniform lattices. In this connection we discuss in
short two more types of solutions.

1. For the lattice z(z) = 2% owing to (12) we have
o(z) =(z—a)(z-b)(z—c)(z —d),

where a, b, ¢, and d are arbitrary complex numbers. Let us choose the following
solutions of the equations (11):

pu(s) = CoT'(a + v + s)T(a — s)T'(b+ v + s)T'(b - s)

xT(e+v+s)T(c—s)T(d+ v+ s)I'(d - s)sin 27r[s + v+ 1)] ;

po(z) it =

ve18inm(s — z+ v+ 1)
A T 0 )
sm27r(s + ‘2)

1
sin(s — 2}

p(z) =

Defining the “generalized power” in the form [36]

F(s—z+pu)T(s+2z+v+1)
T(s—2)T(s+z+v—-—p+1)’

z(z) = 2%,

[zu(s) — zu(2)) ) =
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from (8) and (10) we obtain

_ 4 pu(8)Vzy,41(s) ds
yV(Z) == ;{;5 -[C [zu(s) - Iy+z)](v+l)
_ A e  Tla+g+tT(a+ g -0+ 5+T(b+5 1)
p(z) J—ieo T(2t)T(—2t)
Tlc+5+t)T(c+ 5 —t)I(d+5+t)[(d+5—t)[(z—5+t)T(z—%§—1)
: Tll42 4+ 5+ 801 +2+ 3 —4) :

(37)

As was shown in Ref. 41, this integral representation leads to the function 7Fg(1),
which is represented in accordance with Ref. 42 as a sum of two functions of the
4F3(1) type.

2. In the case when z(z) = cosh 2w, = (1/2)(¢% + ¢"%), ¢ = €*, according to (12)
it is possible to write in the very general form

o(z) = ¢ *(¢* — a)(¢* — b)(¢" — ¢)(¢" — d).

Therefore for this case we have

p(z) = p(z,a,b,¢,d) = fq(2) H 9(z,9),

d=a,b,c,d

where fg"l(z) =Tq(22)T¢(—22)(¢* —¢7%), lg| < 1;

o0
“Uz,9) = [][1-0(¢" + 97 %)¢" + 9%¢%*), |9/ <1,
k=0

and I'y(w) is the g-gamma function (see for example Ref. 39). Taking into account

the arbitrariness in the choice of normalization and periodic factors it is not also
difficult to verify that

Py (t = %u) = constant p(t,aq"/z,bq"/z,cq"/z,dq”/z),

) 1+z+v/2
[Iy (t B %p) i z”(z)](u = constant q‘(""’l)z g(t,q )

gt,g*v/?)

As a result from the formulas (8) and (10) we obtain the following particular
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solution of the equation (2):

Agl 1) P(tsaqV/z,bQ”/Z,cq”/z,dqvfz)x%t)dt (38)
p(z,a,b,¢,d) Je g(t,q1+z+”/2)g‘1(t,q=*”/2) ;

yu(2) =

The contour C' is located on the imaginary axis: t = it/, 0 < t/ < nln"! ¢; while
—1<z(t) <1

According to Ref. 40 the integral representation of the (38) type defines a very
well-poised gy [42]. This permits one to draw an analogy with the known Euler
integral representation for the hypergeometric function. We have obtained that
this function is a solution of the equation (2) and it has all properties considered
in Section 6. With the appropriate choice of the parameters (see Ref. 41) in the
limit ¢ — 1 the formula (38) goes over to (37).

We have discussed here only the simplest solutions of the equation (2). Simi-
larly using the main theorem one can construct difference functions of hypergeo-
metric type in other cases. Further development of such class of special functions
should certainly be made. In particular, it is worthwhile to study as explicitly as
possible the deep analogy with classical hypergeometric functions including new
interpretations and forthcoming generalizations of many well-known results. It
is also interesting to develop group theoretical approach to the theory of these
functions.
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Resumen. Se demuestra un teorema que permite construir en forma
explicita algunas soluciones particulares para ecuaciones diferenciales
del tipo hipergeométrico sobre redes no-uniformes. Se derivan las
propiedades principales de estas soluciones. Discutimos como ejemplos
los polinomios ortogonales cldsicos de una variable discreta sobre
redes no-uniformes, las funciones de segunda clase de una variable
discreta, asi como las analogfas diferenciales sobre redes lineales para
las funciones especiales clasicas de la fisica matematica.



