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Abstract. In this paper we find the equation of state for a one di-
mensional binary fluid through an analysis that involves the use of
the Partition Function, the Gran Partition Function and Ceneralized
Ensemble. The binary fluid treated here has some intrinsic interest,
firstly because we will apprroach the continuum by means of a lat-
tice variable, and secondly, because wc assume the interaction between
nearcst neighbor particles to be arbitrary.

PACS, 05.20.-y

1. Inlroduction

In this paper we generalize the method used by Poland and Scheraga [11 to
solve a one dimensional fluid lattice model, for the case in which two different
types of partieles (A or B) are assumed, I.e. for a one dimensional binary fluid.
Furthermore we will prove in a straightforward form that the solution of the
Generalized Ensemble leads to obtain thc Kikuehi ¡2J equation of state, if we let
the lattiee variable 6 ---+ O.Howevcr, sincc thc result obtained through this analysis
is valid for any shape of the pair potential betwecn ncarcst ncighbor partieles we
will also prove that the solution ¡neludes as a particular case the lattiee model of
regular solutions diseussed by Guggenheim 13J.Moreover, using the analytie result
obtained in this analysis we will find an analytic express ion for the free encrgy
ehange of the mixture.

Finally, if we consider the binary fluid mixture as a Markoff ehain, we will
find ao analytic expression for the conditional probability that, given a particle
(A or Bl. will he followed hy a specified partide (A or Bl independent from the
number of unoeeupied sites between them.
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\Ve think that the analysis devcloped in this paper can be useful for physicists
for thrce reasons. First of a1l, because it providcs an alternativc point of vicw
lo obtain classical rcsults in Statistical I\lechanics, such as the Kikuchi equation
of slnte. Second, becausc this kind of analysis tnight Icad to a gaod workable
model for the study of more complex systcms in ane dirncnsion for example,
when we assurnc that thcre are many types of particlcs; i.e. for a ene dimensional
multicomponent mixture. And third, because the following analysis is an unusual
application of the Generalized Ensemble, which permits U5 to derive many analytic
rclations of physical interest.

The outline of the paper is as follows. The binary mixture model is introduced
aJl(i solved in scction 2. The equilibrium constant obtainecl in the qua3i-chemicaJ
approximation, as well as the analytic exprcss ion for thc conditional probability
(for the case in which \Ve consider the chain as ~farkovian) are dcrived in scction 3.

2. The binary mixture model

In the follo\\'in~ we aSSllme that the read('r knows the work of Poland amI
S('h('ra~a [1]. so \Ve amit th(' discussion of the lIlany aspects related to the lattice
lllo<1('1..\s in the one dim(,Ilsional latticc fluid ¡tI. we consiclcr that cach particle
of t1l(' mixture i~ assi~n{.d the constant intcratomic potential 4>(11) over thc intcr-
atolllir distallce rob(n - 1/2) to rob(n -1-1/2). For the ("<ISC in which we let b -"0,
4>(n) approaciH's the SlIlooth fllllction ó(r). ),loreovf'f, in this model wc a."sume
that tI\(' interactioJl potC'lItial b<'tw('cn IlNl.rest ll£'ighhor particlcs is arbitrary, and
we t ake tIll' pot('ntial as

for r :s ro.

for ro :s r < 2ro.

for r 2: 2ro,

(1)

or sincc r = nrob for n lattirc sitcs eP(r) = O for n 2: nO = 2/6.

Furthcrmorc, a Doltzlwm factor q~1A is assign('d to a pair of particles separatcd
by n lattice sites

(2)

where 13 = (k lJT) -), k IJ denotes the Doltzman constant, and T the absolute
tcmpcratllTc. Thcrc is, of conTSC, a similar cqllation fOTa pair n n OTAA. Thcn,
taking into account cquation (1) the Doltzman factor will satisfy

for n 2: 2/8. (3)
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On the aboye assumption, it is easy to see the binary mixture as a series of
succesive independent sequences of particle A or B and a run of holes (because of
the cut-off of the potential at 2ro). For example, for one possible distribution of
A and B particles. we can see the lattice as

... AOOOO-...----
q~B

B ... , (4 )

where A stands for a particle A (idem for E) and O for a holeoThc contribution
of the se1uence given in the aboye distribution to the Partition Function would
be q:Bq4 B .... Each sequence contains a particle A or B, and is assigned a factor
A-1 from the momentum integration. In the followíngwe assume that this factor
A-1 is absorbed in the Boltzman factors. Then it is not difficult to sce that the
Partition Function is given by

(5)

where a is an index designating the number of sequences. In equation (5) there
are two constraints

NAA NAB NBB
L n~A + L n:B + L n~B = M,
~=1 ~=1 ~=1

where M represents the number of sites, and

N = constant,

where N represents thc number of particles.

(6)

(7)

It is important to take into account that the following relation between
(NA,NB) and (NAA,NAn,NBB) will be useful16]

N=NA+NB,

2NA = 2NAA + NAB,

2(N - NA) = 2Nnn + NAn,

(8)

where NA and NB represent the number ofparticles of A and B type, and NAA.
NBn or NAB, represent the number of paír AA, BB or AB particles.
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Uuder the above constraints, we know no easier way tú evaluate the Partition
Fundian explicitly. However, the Gran Partition Function is given by

M
6 = L Z(N,M)yN

N=o
(9)

with only one constraint (given by equation (6)).

If we continue with this procedure [1J,we fiud that the Generalized Ensemble
is given by

00 M
1= L L Z(N,M)yNX-M,

M~ON~O

where aH the constraints have been removed and where X = e/3p6.

In the above expression, if we take into aecauat both [11

and the following relation

NAA AA NBn BB NAB AB
X-M = TI X-na TI X-na TI X-na ,

0'=1 0"=1 (1=1

we can write the Generalized Ensemble as

(10)

(11)

(12)

The factor eN appears when we eliminate the constraint over the arder oC
sequence, and is givey by

The exponents of the parenthesis in equation (13) represent the molar fractions
of particles for each species (A or B), and can be modified using equation (8) and
the following relations:

0= NA/N and (1- O)= (N - NA)/N, (15)
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obtaining

where

NÁA = (O - NAB/2N) and NiJD = (1 - O - NAD/2N),

In order to evaluate the double sum in equation (16) we are going to maximize
the second sum, respect to N AH and then we are going to sum over N. The
condition for finding out the maximum is given by

(17)

where e(N',NAn) is any term ofthe Gcncrcalizcd Ensemble and is given by

with

(18)

O = NA/N' and (1 - O) = N' - NA/N, (19)

Then, with (17) in (16) we find:

(20)

Using the Stirling approximation we can find in a straighforward way the next
equality

(21)
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From cquations (20) and (21) the following relation is found

(O - a)(1- O - a)
a'

(Lnq~Ax-n) (¿nq~Bx-n)

(Ln q~BX-n)
(22)

On the other hand [1,5] for undistinguishable particles the following r<'1atioll is
valiJ

00

y L qnX-n = 1.
n=l

(23)

Then we can say, without loasing generality, that the ncxt rclation is valid too

00

y "qAAX-n ~ 1AA L n -.
n=l

(24)

Thc aboye equation rcprcscnts an analytic rclation l)('twCCJl the actiYity (1").
the intcrcaction potential (</1) and the prcssurc (JI) for ane systcm \Vith A p<lrtir1c's
onlr. Thcn, taking jnto account that YAA =: ef3IlAA \Ve can write c<¡uation (24) as
follows

e-¡JIlAA =
00
,- AA v-n
L qn.A ,

n=l

(25)

whefe 'lAA rcprcscnts the chcmical potcntiai for thc A spccics. Ir \\'(' put cqua-
lion (25) in (22) \Ve f¡nd

(O - a)(1 - O - a)
-----~2---- (2G)

which givcs a cuadratic rclation for n(NAlJ). If w(~solve this, we find tlw valuc
of S;1B which maximized the !'ic{"ondSUtIl in cquation (16). \\'c pause hefe to
considcf the mcaning of cquation (26)., Through thi!'i eC],uation w(' can scc that
if w i!'i ncgativc, the pairs (AA) and (DD) are more stable than (AD). On the
other hand, if w is positive, the pair (AD) is mOfe stable than (AA) or (EE) pairs
and if w is zero, the distribution of the pairs is random. \\'e can understand this
more easily, ir we vicw the term e/1w in cquation (26) as the equilibrium constant
(associatcd with the molar free energy change) or the reaction

2(AB) '" (AA) + (BB). (27)
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Returning to the evaluation of 1, if we solve equation (26) for a, we find

a = 20(1- O) and ,= [1 _ 40(1 - 0)(1 _ ePW)]1/2. (28)
,+ 1

Using the aboye relation we can write for the Generalized Ensemble the following
express ion

with O = O - a, O'= 1 - O - a, a' = 2a and

(NO)!(N(1 - O))!
eN = (NaJ!2(N(O _ a))!(N(I- O _ a))!. (30)

If we apply Stirling approximation to equation (30) w(' ("8n rewrite cquation (29)
in such a way that the following relation is ca"ily found ¡5] (after taking into
account that '"(-1 = O):

(
8 (J' . Q'

Y = [0
0 (1 - 0)l-9 L:::'=1q~Arn

) (L:::'=1 q~Brn
) (L:::'=1 (J~BX-u) 1

a2,,(0 - a)O-"(1 - O - a)I-O-" J.

(31)

Using this relation we can find the equation of state in R. straightforward form, if
we compute

(32)

for the density p. Taking into account that a = 20(1 - 0)/(, + 1) wcn can rewritc
equation (31) as

In Y = - ln(, + 1)+O{ln(, -1 + 20) + ¡¡I'AA} + (1- O){ln(,+ 1- 20) + ¡¡I'BB}. (33)

Then the equation of state is given by

p = {a:p [ln(, + 1) - O{ln(, - 1 + 20) + ¡¡I'AA}

-(1 - O){ln(, + 1 - 20) + ¡¡I'BB} l} -1.
(34)
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The aboye expression represents the well known Kikuchi equation of state [2]
for a ane dimensional binary fluid. It is important to mentioo that in the earlier
procedure we said nothing with respect to the value of the lattice variable ó. In
particular, ir we want to obtain the solution for a continuum fluid the following
relation suhstitutes equation (24) for the chemical potential

(35)

Furthermore, Qnethermodynamic parameter that we can compute using equa-
tian (33) is the free energy change for the mixture. As it is knowol the following
relation is valid

e-pG(N = e-P~, (36)

whcre G represents the Gibbs free energy for the mixture and J1. the chemical
potential. Using equation (36) we obtain the following express ion for the free
encrgy change of the mixture

f3~mG/N = f3(G - OGAA - (1- 0)G88)/N

= Oln(, -1 + 20) + (1- O)ln(, + 1- 20) -In(, + 1)
(37)

where GAA and GBB represent the Gibbs free energy for the pure species A and
B respectively.

3. A particular case: the laHice regular solution

As we mentioned in the introduction, the result obtained in the aboye analysis
is independent from the shape of the pair potential interaction. Then we will be
able to obtain the results for the lattice regular solutions, as we can see in what
follows. The Bragg- Williams 161 theory assumes that the distribution of partides
is random in a binary solution. This assumption is not true in general, because if
the forces between (AA), (BB) or (AB) partides are not the same, the order in
the lattice is more favorable for certain sequences than for othcrs. Naturally, this
effect will be small for high temperature, because the thermic agitation breaks
any order. On the other hand, Guggenheim [3]proposes an approach to take into
account that the distributions of the pairs AA, BB or AB are not the same. He
assumes that the value of N AB, can be obtained from the following equilibrium
processes

2(AB) '" (AA) + (BB). (38)

This procedure is analogous to a chernical reaction, and Guggenheim refered
to it as a quasi-chemical equilibrium. In our rnodel the conditions given in the
quasi.chemical approximation, which in one dimension is exact, are given by
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1) 6 = 1, this means, any partiele oeeupies only one site

2) NA + N B = M, this means, eaeh site is oeeupied by only one particle.

Under this eonditions, the Boltzman faetors, defined in equation (2), are given
by

(39)

where EAA represents the interaetion energy between AA pair (idem for B B and
AD). In this case w, as defined in equation (26) is given by

w = 'AB - 'AA/2 - 'BB/2 = 6.,/2, (40)

then the equilibrium eonstant for the reaction given in equation (38) is given by

(41)

which is the same that we would obtain through the quasi-chemical approxima-
tion.

Another information of interest that ean be eomputcd related to the eondi-
tional probability PA/A, which represents the probability that given any particle
A, it will be followed by another partiele A, independent from the number of
unoeeupied sites between them.

To obtain one analytie express ion for PAlA we defined this as

(42)

then taking into aeeount that

(43)

with

we can write equation (42) for P Al A as

PAlA = 0-0./0.

Let us remember that the parameter Q is defined as

o. = 20(1 - 0)/(, + 1)

(44)

(45)
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then the conditional probability PAjA is given by the following expression

PAlA = '-1+20/(,+ 1). (46)

It is oot difficult to obtain a similar expression for PB/ B and PAl B. No••••., ir
we considere the binary mixture as a Markoff chaio, the probability to fiud the
following sequence

... AAAAABBAABBBBBAAAABAA ...

is given by
(47)

It is important to mentian that in the aboye analysis we have omited the
thermodynamic discussion of the ane dimensional mixture or of the regular 50-

lutions, hecause the reader can find this in the original paper by Kikuchi [2] or
Guggenheim 13].

In this paper we analized the one dimensional binary fluid fiadel, but the
method discussed can be entirely extended to any numher of components. In this
case it is possible to derive the result obtained by Longuet Higgins [41 for a one
dimensional multicomponent mixture.
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Resumen. En este trabajo nosotros encontramos la ecuación de es-
tado de un fluido binario unidimensional a través de un análisis que
involucra el uso de la Función de partición, la Gran función de par-
tición y el Conjunto generalizado. El fluido binario tratado aquí tiene
un interés particular, primero porque aproxima el continuo por medio
de una variable de red y segundo porque supone que la interacción
entre vecinos cercanos es arbitraria.


