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Abstract. In this paper we find the equation of state for a one di-
mensional binary fluid through an analysis that involves the use of
the Partition Function, the Gran Partition Function and Generalized
Ensemble. The binary fluid treated here has some intrinsic interest,
firstly because we will apprroach the continuum by means of a lat-
tice variable, and secondly, because we assume the interaction between
nearest neighbor particles to be arbitrary.

PACS: 05.20.-y

1. Introduction

In this paper we generalize the method used by Poland and Scheraga [1] to
solve a one dimensional fluid lattice model, for the case in which two different
types of particles (4 or B) are assumed, t.e. for a one dimensional binary fluid.
Furthermore we will prove in a straightforward form that the solution of the
Generalized Ensemble leads to obtain the Kikuchi [2] equation of state, if we let
the lattice variable § — 0. However, since the result obtained through this analysis
is valid for any shape of the pair potential between nearest neighbor particles we
will also prove that the solution includes as a particular case the lattice model of
regular solutions discussed by Guggenheim [3]. Moreover, using the analytic result
obtained in this analysis we will find an analytic expression for the free energy
change of the mixture.

Finally, if we consider the binary fluid mixture as a Markoff chain, we will
find an analytic expression for the conditional probability that, given a particle
(A or B), will be followed by a specified particle (4 or B) independent from the
number of unoccupied sites between them.
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We think that the analysis developed in this paper can be useful for physicists
for three reasons. First of all, because it provides an alternative point of view
to obtain classical results in Statistical Mechanics, such as the Kikuchi equation
of state. Second, because this kind of analysis might lead to a good workable
model for the study of more complex systems in one dimension for example,
when we assume that there are many types of particles; i.e. for a one dimensional
multicomponent mixture. And third, because the following analysis is an unusual
application of the Generalized Ensemble, which permits us to derive many analytic
relations of physical interest.

The outline of the paper is as follows. The binary mixture model is introduced
and solved in section 2. The equilibrium constant obtained in the quasi-chemiecal
approximation, as well as the analytic expression for the conditional probability
(for the case in which we consider the chain as Markovian) are derived in section 3.

2. The binary mixture model

In the following we assume that the reader knows the work of Poland and
Scheraga [1], so we omit the discussion of the many aspects related to the lattice
model. As in the one dimensional lattice fluid [1], we consider that each particle
of the mixture is assigned the constant interatomic potential ¢(n) over the inter-
atomic distance rgé(n — 1/2) to rob(n + 1/2). For the case in which we let § — 0,
#(n) approaches the smooth function ¢(r). Moreover, in this model we assume
that the interaction potential between nearest neighbor particles is arbitrary, and
we take the potential as

00 for r < rg,
¢(r) = { é(r) for rg < r < 2, (1)
0 for r > 2rg,

or since r = nrgé for n lattice sites ¢(r) = 0 for n > ng = 2/6.

Furthermore, a Boltzman factor q,’f"‘ is assigned to a pair of particles separated
by n lattice sites

q::./l _ eﬁ.[jgﬁ(nroﬁ)‘ (2}

where 3 = (kBT)”l, kp denotes the Boltzman constant, and T the absolute

temperature. There is, of course, a similar equation for a pair BB or AA. Then,
taking into account equation (1) the Boltzman factor will satisfy

q,‘fB = q;M = q,.‘?B = 1, for n>2/6. (3)
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On the above assumption, it is easy to see the binary mixture as a series of
succesive independent sequences of particle A or B and a run of holes (because of
the cut-off of the potential at 2rg). For example, for one possible distribution of
A and B particles, we can see the lattice as

...A0000 BOOO AO00 BOO B---, (4)
e —— S—— S — S——
AB AB AB BB
95 94 93 93

where A stands for a particle A (idem for B) and 0 for a hole. The contribution
of the se}uence given in the above distribution to the Partition Function would
be quBq4 B ... Each sequence contains a particle A or B, and is assigned a factor
A~ from the momentum integration. In the following we assume that this factor
A~ is absorbed in the Boltzman factors. Then it is not difficult to see that the
Partition Function is given by

Naa 4 Npgp ot Nap i
Z(N’M) = Z Z H qno Z H qna Z H q"‘a 1 (5)
Nan nﬁA o=1 HUBB o=1 nAB o=1

where o is an index designating the number of sequences. In equation (5) there
are two constraints

Naa Nagp NBB
Y. A 3 g 3w =M, (6)
o=1 o=1 o=1

where M represents the number of sites, and
N = constant, (7

where N represents the number of particles.

It is important to take into account that the following relation between
(N4,Np) and (N4 4, N4p, Ngp) will be useful [6]

N =N4+ Np,
2N4 =2Ngp+ Nyp, (8)
2(N — N4) =2Npp + N4B,

where N4 and Np represent the number of particles of A and B type, and Ny4,
Npgp or N4p, represent the number of pair AA, BB or AB particles.
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Under the above constraints, we know no easier way to evaluate the Partition
Function explicitly. However, the Gran Partition Function is given by

Z(N,M)YN (9)

84}
il
M=

2
i

0

with only one constraint (given by equation (6)).

If we continue with this procedure [1], we find that the Generalized Ensemble
is given by
M
N = Z(N,M)YNx—M, (10)
0ON=0

RNgE

where all the constraints have been removed and where X = &£PS.

In the above expression, if we take into account both [1]

(11)

o
T
o

NE
Mz
1

M3

and the following relation

Naa BB Nag

HX”“ILT HX‘ (12)
we can write the Generalized Ensemble as

T ¥ CN(Z B )NM(f q,‘;’BX‘")NAB (i quX‘")NEBYN.

N=0Nugp n=1 n=1 (13)

The factor C)y appears when we eliminate the constraint over the order of
sequence, and is givey by

NN — N)!

ON = Nap/2B(Na — Nap/2) (N — Ng— Nag/ol"

(14)

The exponents of the parenthesis in equation (13) represent the molar fractions
of particles for each species (A or B), and can be modified using equation (8) and
the following relations:

0 =N4/N and (1-6)=(N - N4)/N, (15)
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obtaining

o) o _ANju /=  \Nup, @ A Nhg
1=3 T Lt ) L )03 oR0xny o,
N=0Nup n=1 =] n=1
(16)

Njs=(0—Nyp/2N) and Npg=(1-0- Nyp/2N),

In order to evaluate the double sum in equation (16) we are going to maximize
the second sum, respect to Nyp and then we are going to sum over N. The
condition for finding out the maximum is given by

3lnE(N’,NAB)/8NAB=0, (17)
where ¢(N', N4p) is any term of the Generealized Ensemble and is given by

j it N'(f—a)
E(N',N4p) = Cﬁv(zqrf’ix )

) (E q,’f"BX‘") N'(1-0-a) (Z quX_")zN'a, (18)

with
a= Nyu/2N', #=Ny/N' and (1-6)=N'— N4/N, (19)
Then, with (17) in (16) we find:

1/2
omCy (Enqé"X‘“)(anfﬂXﬁ”)
ey _ i

ON4p (En q#Bx—n)

Using the Stirling approximation we can find in a straighforward way the next
equality

oCy _, (6- "2 -0-a)/2
BN a

(21)
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From equations (20} and (21) the following relation is found

0-a)i—0-a) _(Zns*X)(Saad?x )
; - . (22)
(ana‘BX‘")

o

On the other hand [1,5] for undistinguishable particles the following relation is
valid

oC
¥ ¥ g X %=l (23)

n=1

Then we can say, without loosing generality, that the next relation is valid too

oo
Vil Y 4 X %=1 (24)

=1

The above equation represents an analytic relation between the activity (V),
the intereaction potential (¢) and the pressure (p) for one system with A particles
only. Then, taking into account that Y44 = efhan we can write equation (24) as
follows

oo
e Braa _ Z qrf:lflx—n, (25)
n=1

where 4 4 represents the chemical potential for the A species. If we put equa-
tion (25) in (22) we find

.(F’;‘?)(!?: b-a) (HAD BBBBAA . B (26)
- ‘

which gives a cuadratic relation for a(N4p). If we solve this, we find the value
of N3p which maximized the second sum in equation (16). We pause here to
consider the meaning of equation (26). Through this equation we can see that
if w is negative, the pairs (AA) and (BB) are more stable than (4B). On the
other hand, if w is positive, the pair (AB) is more stable than (AA) or (BB) pairs
and if w is zero, the distribution of the pairs is random. We can understand this
more easily, if we view the term P in equation (26) as the equilibrium constant
(associated with the molar free energy change) or the reaction

2(AB) = (AA) + (BB). (27)
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Returning to the evaluation of «, if we solve equation (26) for &, we find

_20(1-0)

= e=[1-40(1 - 8)(1 — ¥))1/2. (28)

Using the above relation we can write for the Generalized Ensemble the following
expression

v=§ocN{(E )’ (Z X )B'@quB-\’"")a’}NYN, (29)

withf=0—-0,0' =1—0 — a, o =2« and

(NO)I(N(1 - 8))!
(Na)2(N(0 — ) (N(1-0—a))! "

Cn = (30)

If we apply Stirling approximation to equation (30) we can rewrite equation (29)
in such a way that the following relation is easily found |5] (after taking into
account that v~ ! = 0):

(ot (spanttx (o))
[ a9 — a)ﬂ—a(l -0 — )0 |
(31)

Y:

Using this relation we can find the equation of state in a straightforward form, if
we compute

p=618InY/dlnX)! (32)

for the density p. Taking into account that a = 26(1 — §)/(e + 1) wen can rewrite
equation (31) as

InY = —In(e+1) +0{In(e—1+20)+Bus4}+(1-0){In(e+1-26)+Bupp}. (33)

Then the equation of state is given by

a
p—{aﬂ [1n(£+ 1) —0{ln(e — 14+ 20) + Bry4} -

o |
~(1 = 0){In(e + 1 - 20) + fupp}]| }
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The above expression represents the well known Kikuchi equation of state (2]
for a one dimensional binary fluid. It is important to mention that in the earlier
procedure we said nothing with respect to the value of the lattice variable é. In
particular, if we want to obtain the solution for a continuum fluid the following
relation substitutes equation (24) for the chemical potential

i Pl foo e~ B(ij(r)+pr) dr, (35)
§—0 0

Furthermore, one thermodynamic parameter that we can compute using equa-
tion (33) is the free energy change for the mixture. As it is known, the following
relation is valid

e~ PG/N — e Ph, (36)

where G represents the Gibbs free energy for the mixture and g the chemical
potential. Using equation (36) we obtain the following expression for the free
energy change of the mixture

BAmG/N = B(G —0G44 — (1-0)Gpp)/N
=fln(e—1+20) +(1—0)In(e+1—20) —In(e + 1)

(37)

where G 44 and G gp represent the Gibbs free energy for the pure species A and
B respectively.

3. A particular case: the lattice regular solution

As we mentioned in the introduction, the result obtained in the above analysis
is independent from the shape of the pair potential interaction. Then we will be
able to obtain the results for the lattice regular solutions, as we can see in what
follows. The Bragg-Williams 6] theory assumes that the distribution of particles
is random in a binary solution. This assumption is not true in general, because if
the forces between (AA), (BB) or (AB) particles are not the same, the order in
the lattice is more favorable for certain sequences than for others. Naturally, this
effect will be small for high temperature, because the thermic agitation breaks
any order. On the other hand, Guggenheim (3] proposes an approach to take into
account that the distributions of the pairs AA, BB or AB are not the same. He
assumes that the value of N4p, can be obtained from the following equilibrium

sy 2(AB) 2 (AA) + (BB). (38)

This procedure is analogous to a chemical reaction, and Guggenheim refered
to it as a quasi-chemical equilibrium. In our model the conditions given in the
quasi-chemical approximation, which in one dimension is exact, are given by
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1) § = 1, this means, any particle occupies only one site

2) Ny + Ng = M, this means, each site is occupied by only one particle.

Under this conditions, the Boltzman factors, defined in equation (2), are given
by

gap=e¢ PAr, gqpp=ePBB and gp4 = e 4B, (39)

where € 4 4 represents the interaction energy between AA pair (tdem for BB and
AB). In this case w, as defined in equation (26) is given by

w=€ap—€44/2 — €pp/2 = A¢/2, (40)

then the equilibrium constant for the reaction given in equation (38) is given by
¢ (41)

which is the same that we would obtain through the quasi-chemical approxima-

tion.

Another information of interest that can be computed related to the condi-
tional probability P4,4, which represents the probability that given any particle
A, it will be followed by another particle A, independent from the number of
unoccupied sites between them.

To obtain one analytic expression for P, /A We defined this as

Py/a = FaalFa, (42)
then taking into account that
Fyap=Nyga/N and F4u = Ny/N, (43)
with
2Ny =2N44+Nyp and 0 —a= Nyu/N, (44)

we can write equation (42) for Py, as
PA/AZO—C!/G. (45)
Let us remember that the parameter « is defined as

a=20(1-18)/(+1)
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then the conditional probability PA/A is given by the following expression

It is not difficult to obtain a similar expression for Pg,p and P4,g. Now, if
we considere the binary mixture as a Markoff chain, the probability to find the
following sequence

--AAAAABBAABBBBBAAAABAA---

is given by
+(Paya)®(PasB)®(Ppyp)°. (47)

It is important to mention that in the above analysis we have omited the
thermodynamic discussion of the one dimensional mixture or of the regular so-
lutions, because the reader can find this in the original paper by Kikuchi [2] or
Guggenheim |[3].

In this paper we analized the one dimensional binary fluid model, but the
method discussed can be entirely extended to any number of components. In this
case it is possible to derive the result obtained by Longuet Higgins (4] for a one
dimensional multicomponent mixture.
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D O

Resumen. En este trabajo nosotros encontramos la ecuacién de es-
tado de un fluido binario unidimensional a través de un analisis que
involucra el uso de la Funcién de particién, la Gran funcién de par-
ticién y el Conjunto generalizado. El fluido binario tratado aquif tiene
un interés particular, primero porque aproxima el continuo por medio
de una variable de red y segundo porque supone que la interaccién
entre vecinos cercanos es arbitraria.



