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Abstract. We discuss the covariant forrn of the Dirac equation in
orthogonaJ curvilinear coordinates and exhibit it explicitly. \Ve present
explicit forrns of the Dirac equation in sorne of the cornrnon orthogonal
curvilinear coordinates.

PACS: 1l.10.Qr

1. Inlroduction

The construction of the Dirac equation in Minkowski spacetime is guided by the
requirement of covariance under Lorentz transformations, which ensures consis-
tency with the relativity principIe 111. The Lorentz transformations are linear
transformations between cartesian spacetime coordinates, involving fixed bases
of unit vectorsj the corresponding Dirac 1matrices are also fixed once a given
representation is choseo. In the study of sorne problems it may be convenient or
necessary to use curvilinear instead of cartesian coordinates. In such cases, the
coordinate transformations are no looger linear and the unit vector bases change
from point to point, but thc covariance requirement must still be satisfied. In the
solution of such problems it is common to use the curvilinear coordinates keeping
the reference to the original cartesian unit vectors and fixed Dirac 1matrices [2].
The question of covariance is not usually discussed, so its analysis is taken up in
Ihis papero V. Bargmann [31 sludied Ihe problem originally.

As the background for the discussion, Section 2 contains a brief review of the
covariance of the Dirac equation in cartesian coordinates, with emphasis on the
effcet of Lorentz transformations on Dirac spinors and 1matrices. In Section 3, we
obtain explicit1y the covariant form of the l:Jirac equation in Minkowski spacetime
and orthogonal curvilinear coordinatcs, including the general cxpressions for thc
difference between the covariant and partial derivatives, and for the coordinate de-
pendent Dirac l' matrices. In Section 3, the cxplicit forms of the Dirac equation in
sorne of the cornmon orthogonal curvilincar coordinates are presented, concluding
with Bornedidactical remarks .
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2. Oírae spínors and 1 malrices under Lorenlz lransformalions

The analysis of the covariance of the Dirae equation in eartesian eoordinates
can be found in the appropriate textbooks [21. Nevertheless, our own version of
such an analysis is presented in this section for the sake of completeness, and
as a point of reference for the eorresponding diseussion in orthogonal eurvilinear
coordinates. \Ve introduce the Lorentz transformations, first, emphasizing their
interpretation as rotations in the four-dimensional spacetime. Then, we analyze
the eovariance of the Dirac equation to show the corresponding transformation
properties of the spinors and 1 matrices, eonstructing the spinor representation
of the rotations along the way.

The four-vector giving the spacetime positions of events in Minkowski space
can be written as

(1)

in terms of its cartesian componcnts xJl(x, y, z, X4 = iet), in two inertial frames
of reference with orthogonal unít vector bases eJl and e~,respectively. \Ve use
the Einstein summation convention over repeated dummy indices Ji. = 1,2,3,4.
The Lorentz transformations give the relation between thc primed and unprimed
components, aHd follow by projecting equation (1) along thc desired direetion:

(2)

The elements of the transformation matrix OJlV == e~.ev are simply the projee-
tions of the unit veetors of one basis along the directions of the unit vectors of the
other basis. The inverse transformation can be written in the alternative forms

(20)

This allows us to conclude that the transformation matrix is orthogonal

I.t:.

0-1 = Ó or oó = ÓO = 1,

and
(3)

The orthogonality of the transformation is a natural consequence of the orthogonal
character of the unit vector bases. This orthogonality makes it possible to interpret
the Lorentz transformations as rotations in Minkowski space.
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The invariance oC the square oC the spacetime intervai between two events

(4 )

can he estahlished directly using equations (1) or (2-3). In sorne texthooks [21.
this invariance is taken as the starting point lo establish the orthogonal character
oC the Lorentz transformations.

The proper Lorentz transformations inelude the identity transformations
GJlV = ÓjlVl which can be used to establish that del O ;;;;;lo

Infinitesimal Lorentz transformations differ slightly from the identity trans-
formation

(5)

where ['""1 « 1. Frorn the orthogonality property. equation (3), it follows that
the infinitesimal rotational parameters are antisyrnmctric

Then we can rewrite

(50)

in tcrms oC the generators of the rotation LaP = EOI,8 - E.8o:, where EOP is a 4 x 4
matrix whose J.l-th row and v-lh column clernent is (EcrP),.w = ó~óe.

Any finite Lorentz transformation can be constructed as a succession of
infinitesimal transformations of the type of equation (5a), taking the exponential
form

(7)

The summations in the exponent imply a multiplication of exponentials, and the
order of su eh faetors mllst be taken appropriately because, in general, rotations
do not eommute with eaeh othcr. It is straightforward to establish that the matrix
elcments of eaeh ene of the exponcntial factors can be written as

(8)

The Dirac equation

(9)
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is written in terms of the inverse of the Compton wavelength of the particle,
ka = me/"', the four-component Dira.cspinor wavefunction, tP, and the 4 x 4 Dirac
"1p matrices that satisfy the anticommutation rules

(10)

The Dirac matrices are not uniquely denned. According to Pauli's fundamental
theorem [2], other representations ofthese matrices,1~, satisfying the correspond-
ing commutation rules, can be constructed from the starting representation

I 8 8-11p = 1p , (11)

involving a nonsingular 4 x 4 matrix S. The same matrix relates the new spinor
wavefunction with the original one,

(12)

We are interested, now, in analyzing the changes in the quantities appearing in
the Dirac equation when the Lorentz transformation of equation (2) takes place.
From the covariance requirement on the Dirac equation, we expect to be able to
write it as

(,a )"7~ax~ + ka !/J (xv) = o. (9a)

The four-gradient operators are connected by the Lorentz transformation of equa-
tion (2),

(13)

as it follows from the app1ication of the chain rule and of equation (2a). The new
spinor wavefunction is expected to be related to the original one through a linear
rearrangement of their components

(14)

where A is a 4 x 4 matrix.

By substituting equations (13) and (14) in equation (9a), multiplying froro
the left by A.-l. and rearranging the factors in the first term we obtain

(9b)
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which is just the original equation (9), if we identify

(15)

This equation (15) gives the connection between the Dirae 1 matrices, reflecting
their behavior as components oC a four-vector, equation (2a), and as spinor oper-
ators; it can also be rewritten as

(15a)

Next, we wiU construct the explicit form oC the apinor transformation matrix
,,\,appearing in equations (14) and (15). Using the freedom allowed by Pauli's
theorern, equation (11), we also rooase the aame fixed representation oC the Dirac
"1 matrices in equations (9) and (9a), i.t. we can take 1~= "'t1J' First, we consider
infinitesimal Lorentz transformations, equation (5), writing the corresponding
spinor matrices

,,\,-1 1 1 T~v= - ¡EpI.' , (16)

where Tlw are 4 x 4 matrices that ahare the antisymmetric character TPv = _TJljl

oC the rotational parameters EpI." Substitution in equation (15a) leads to the
relation

(17)

which is satisfied by the explicit spinor representation of the generators

(18)

Then the spinor representation of the rotation corresponding to the finite Lorentz
transformation of equation (7) takes the exponential form

(19)

constructed with a succession of infinitesimal transformations of the type of
equation (16).

3. Covariant form of the Dirac equations

Let qa(q¡, q2, q3, q.f,) be the orthogonal curvilinear coordinates of points in
Minkowski space. The Jacobian matrix for the transformation from the cartesian
to the curvilinear coordinates can be written 8.8 the product oC a rotation matrix
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and a seale matrix,

(20)

The matrix O describes the rotation to go from the unit vector basis associated
with the cartesian eoordinates to the corresponding basis associated with the
curvilinear coordina tes. Its properties and representations are the same as in
equations (3), (5) and (7), the difference in Sections 2 and 3 being that the
rotational parameters are the same everywhere cartesian coordinates are used,
because the unit vector bases are fixed, while those parameters change from point
to point when curvilinear coordinates are used, because the unit vectors change
from point to point. The matrix H describes the change of seales associated
with the eurvilinear coordinates; it is a diagonal matrix if the eoordinates are
orthogonal,

(21)

where ha is the seale factor associated with the coordinate qa. The Jacobian matrix
for the inverse transfonnation is the inverse of equation (20),

aq. _ (0-1) (H-1)a - #lb baox~
(22)

The Dirae equation in eartesian coordinates, equation (9), ean be rewritten in
terms of eurvilinear eoordinates as

(23)

This form, as pointed out in the introduetion, keeps the referenee to the original
cartesian unit vectors and Dirae matrices, as witnessed by the eontinued use of
the index Jl. and of the original wavefunetion ,p.

Ir we want to write the Dirae equation in terms of the eurvilinear coordinates
and the associated vectors, whieh may change their orientation from point to
point, it is necessary to recognize that the wavefunction is changed under the
eorresponding rotations. The transformation of the spinor wave-function has the
same forro as equation (14),

(24)

with the important differenee that the rotational parameters, and consequently
the transformation matrix, equation (19), depend on the loeation.
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Multiplication of equation (23) from the left by the matrix A, insertion of the
unít 4 x 4 matrix A.-1A.in the first term of the same equation, and straightforward
calculation allow us to write the Dírac equation for the wavefunction in curvilinear
coordinates

(23a)

Here we can identify the coordinate dependent Dirac 1 matrices

(25)

and the compensating field

(26)

in terms of which the general form of the Dirac equation in orthogonal curvilinear
coordinates becomes

(23b)

The expression for the Dirac 1~ matrices, equation (25), can be simplified
through the following considerations. It involves matrix factors of the form

eA Be-A = B + lA, BI+ ~IA, lA, BJ] + ~IA, lA,lA, BIII+ "', (27)2. 3.

where A = ,~"T~" /4, equations (18) and (19), and B = 1w The corresponding
commutators can be evaluated to be

(28)

Therefore for each exponential factor in A, equation (19),

1 1
= 1~+ 1~'~~+ 2!1~'M'a~+ 3!1~'~a'ap'p~+... (29)

1= 1~(6~~+ ,~~+ 2!'~a'ap'p~+ ...).
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It can be recognized that the express ion in the last parenthesis is the (AP.) matrix
eIement of the eorresponding factor in the rotation matrix, equations (8) and (7).
Consequently, by successive applieation of this result to the exponential faetors
involved in the rotation operators it is established that

(30)

which expresses the effeet of the rotation on the ....,matrices, just like equa-
lion (156). By subsliluling lhe resull of equalion (30) and equalion (22) in equa-
lion (25), we finally oblain

(256)

In conclusion, the covariant form of the Dirac equation in orthogonal curvi-
linear coordinates is

(23c)

where the eoordinate dependent ....,'matrices differ from the ordinary ones by
the seale factor, equation (25b), and the covariant and partial derivatives in
equalions (23c) and (236) differ by lhe compensaling field Ba• equalion (26).

This general form of the Dirac equation naturally includes the case in which
cartesian eoordinates are used. In such a case, the seale matrix is the unit matrix,
aH the scale factors being equal to one, and the rotational parameters have the
same values at aH points, the new unit vector basis being fixed. Correspondingly,
the ....,'matrices have the same form as the...., matrices, equation (25b), and the
compensating field is null, equation (26).

4. Explicit form5 and di5cuuion

The explicit forms of the Dirac equation in circular eylindrical, elliptic cylin-
drieal, parabolic cylindrical, spherieal, prolate spheroidal, obIate spheroidal and
parabolic coordinates are presented in this section. The equations are numbered
as in Section 3 after the initials of each type of orthogonal curvilinear eoordinates.

Circular cylindrical coordinates

Xl = PCQS!P,

ql = P,

X2 = psinrp, X4 = ict;

q4 = ict.
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(dXp) = (~
O O O) ( cos~

sin I.p O ~)p O ~ -T~cos r.p O L" (CC20)
dqa O O 1 O 1

= He'P 1

O O O O O

( COS~
- sin I.p

O 0)(1
O

O O)(dqa) = sin~ cos I.p O O O l/p O O __ "LI' H-1 (CC22)
dXp O O 100 O 1 O -e ,

O O O 1 O O O 1

B 1T12 1,,= ~ = 2"11"12,

(CCI9)

(CC26.2)

Elliptic cylindrical coordinates

(CC23b)

Xl = fcoshucosv, X2;;;; ¡sinhusinv,

qZ = v,

X3 = z, X4 = jet;

q4 = iet.

sinh "C05 ti

Vcosh'l U-C052 ti

cosh ti. sin ti

Vcosh'l u-cos2 ti

O
O

0.£12=He ,

(

fJcosh2 u - cos2 v

(
dXp) O
dqa . = O

O

O
fJcosh2 tL - C052 V

O
O
cosh ti. sin v

vcosh'l u-cas2 ti

sinh ucos ti

v'cosh'l u-cos2 ti

O
O

~~]
1 O
O 1

¡¡]
(EC20)
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o
¡

IVcosh2 u-cos2 ti

O
O

o O]O O
1 O
O 1

(EC22)

where

cos a =
sinh ti cosv

Vcosh2 u - cos2 v '

cosh usin v
sino =

Vcosh2 u - cos2 v

(EC19)

B = ~aaTl2
u 2 au

sinvcosv
2 2 ,112,2(eosh u eos v)

(EC26.1)

, B sinvcosv
1u u = - 2 2 3/2'2,2f(eosh u eos v)

Bv = ~ 80T12 = _ sinhucoshu 1112,
2 av 2(eosh2 u eos2 v)

(EC26.2)

1~BtI= sinh ucosh u
2f(eosh2 u eos2 v)3/2'1>

{
1 [ (a sinh u eosh u )

fVeosh2 u _ eos2 v ,1 au - 2(eosh2 u - eos2 v)

(a sin v eos v )] a a } I+ ,2 -a + (2 2) + '3 -a + ""'--a + ko ,p = O.v 2 cosh u - cos v Z le t
(EC23")

Parabolic cylindrical coordinates

Xl = ~(e_ ry2¡,
q¡ = €, qz = '1,

X3;;;;;: z,

q3 = z,

X4 = iet;

q ..• ;;;;;:£ct.
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(N+" O O ¡](aX~) = O J~2 + ry2 Oaqa O O 1
O O O[~----"L_ O :] ,,"

(PC20)
';,'+.'

x -* -L- O
~ = He ,

O 1 O
O O O 1[ ,

O O ¡]';,'+.'(aqa) = e-aL" O
1 O

~ (PC22)ax~ O O 1
O O O

"",here
~ ry

cos o: = J~2+ry2' sino: = 1Je + ry2

A=eoT12j2, A-1 = e-nTt2/2, (PC19)

(PC26.2)

(PC23b)
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Xl = rsinOcosr.p, x2 = rsinOsinr.p, x3 = rcosO, x4 = iet;
q¡ = O, q2 = <P, q3 = r, q4 = iet.

(aXy
) = (~

O O ~)(CO~O O -sinO ~)r sin () O 1 O
aq. O O 1 O sinO O cos ()

O O O 1 O O O

sin<p O ~) (820)
( cos~-st cos r.p O 8L31 -pL12X

O 1 = He e 1

O O

O
¡

r"sm6
O
O

O O)O O
1 O '
O 1

(822)

(819)

/ 1
10Bo = --2 13,r .

(826.1)

(826.2)

The last result is evaluated by using equation (27) and the cornrnutator
hy1Y,1Y1Ai = 21y1A'

1~B", = ~O( -1[ cos 0- 13sinO),
2rsm
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Prolate spheroidal coordinates

XI = IV(~' - 1)(1- ry') eos", x, = IV(~' - 1)(1- ry') sin", X3 = I~ry, x. = jet;
q¡ ::: e, q3::: "" q4 = iet.

[f~ o o

¡](aX") = o V(E' - 1)(1- ~') o
aqa o o fJ~_';1-"o o o

(~' o JS=:!' ¡] sin i.p O
~) fiL" "L"' -" ,-" ~ ( eo~\O O1 - sm I.p cos I.p

x -!ti; O Me O O 1 O = He e ,,-" ~ e -'1 ... O O O 1O O O
(PS20)

1J ','-1, O O O
7 ,-"(aq~) = e-rpL!2 e-flL31 O I O O

1v'("-I)(I-"')
ax" o O 1J 1,_"', O7 ,-"o O o 1

(PS22)

\".hcre

_ fiT" /' "T"/'A - e e ,

. {H'-1sm(3 = - -,--,~'E - ~

-1 _ -"T"/, -fiT"/'A - e e , (PSI9)

(PS26.1)
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(PS26.2)

(PS26.3)

ObIate spheroidal cooTdinates

"1 = IJ(,' + 1)(1 - w') cOS'P, ", = IJ<,' + 1)(1 - w') sin'P, "3 = I,w, ", = ;ct;
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(//% O O

¡], +1

(aX~) = O 1)(,2 + 1)(1 - w2) Oaq. O O IV"+w,'I-w
O O O

(v;g O
mi" ']

sin r.p O ~)~:::+wl~ ( cos~
1 O -I~cos I.p O ¡JL31 ¡pL1Zxrf'E l-w2 O

= He e .
-\ ,~+w' w O v,L, , O 1

O O O 1 O O

IV ,,'+1, O O O7 ~ +w

(8qa) __ rpL1Z _{3L31 O I O O
- -e e [)(,'+I)(I-w')ax~

O O lffii; O7 ,'+w'
O O O 1

(0522)

whcrc

cos j3 = sin ti = -
,2 + 1
---w,2 + w2 .

(0519)

(0526.1)

1 11-: w2 w--- 1--.-- ..- ---13
21 ~ " + w' (,' ,w2) ,

(0526.2)
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(0526.3)

Parabolic coordinates

q¡ = 77, q2 = /.P,

X3 = ~(€2 _ q2),

q3 = €,
X4 = ict¡

q4 = iet.

(J€2+q2 O O ")[~ " - Víl+.' !](8x") = O €q O O O 18q. O O J€2 + q2 O ~ O ~O O O 1 eO+' O O

(COS\? sin\? O O)
- sin ep cos ep 1 O _ H {3L31 <pLI2

X O 010-ee,
O O O 1

(P20)[~O O :](8q.) _ _"L12 -{3L31 O 1 O- -e e <'i 1 O '
(P22)8x" O O

~
O O O 1
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where

• _ PT31 /2 ..,T12 /2
¡). - e e ,

sin¡J = ~=~==.Ve + ~2

(PI9)

'B _ I (_~ _~ )
"1.., .., - V€2 + ~2 2n "11 2€ "I~ ,

(P26.1)

(P26.2)

(P26.3)

(P23b)

As shown in general in Seetion 3, and as illustrated with speeifie examples
in this seetion, the differenees of the Dirae equation in eurvilinear and eartesian
eoordinates arise froIDthe existenee of seale faetors and the ehange of orientation
of the unit vector basis associated with the eurvilínear eoordinates. The seale
faetors make the differenee between the Ditae l' and 1 matrices as indieated by
equation (25b). The change of orientation of the unit vector basis from point to
point is the Boureeof the eompensating field, equation (26).
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In the specific examples, we can distinguish between the cases of cylindrical
coordinates and of the other coordinates base on surfaces generated by the rotation
of conics around their symmetry axes. For the cases of cylindrical coordinates, only
the scale factors hl and h2 may be different from one, and only the rotational
parameter f12 = -f21 = t.p or a may be different from zero. For the coordinates
based on conoidal surfaces of revolution, the three scaIe factors with J..I. = 1,2,3
may be different from one, and the non-zero rotational parameters are f12 =
-£21 = t.p and f13 = -£31 = O or (J. It is the values of these scale factors
and rotational parameters which determine the structure of the l' matrices and
compensating fields entering in equations (23b).

The solutions of the Dirac equation in the forms of equations (23) and (23b)
are related to each other through the rotation transformation of equation (24).
While equation (23b) emphasizes the covariance of the Dirac equation, its solution
may be more complicated than the solution of the hybrid form of equation (23)
due to the presence of the compensating field. Of course, the solution of equa-
tion (23b) can also be constructed from that of equation (23) through the use of
equation (24).

The anticommutation rules for the l' matrices can be obtained from equa-
tions (25b) and (10):

(10')

where gab = bab(hahb) is recognized to be the metric tensor.
The analysis presented in this paper can be used by the interested reader as a

preliminary step to study the Dirac equation in Riemmann curved spacetime 14J. In
fact, the validity of the equations oC Section 3 is extended to Riernmann spacetime
when the appropriate metric is used. This can be understood by identiCying the
type oC flat spacetime assumed in our analysis as a locally flat spacetime in a
amall neighborhood of each point in the curved spacetime.
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Resumen. Se discute y exhibe explfdtamente la- forma covariante
de la ecuación de Dirac en coordenadas curvilíneas ortogonales. Se
presentan las formas explícitas de la ecuaci6n de Dira.c en algunas de
las coordenadas curvilíneas ortogonales mAscomunes.


