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Abstract. We discuss the covariant form of the Dirac equation in
orthogonal curvilinear coordinates and exhibit it explicitly. We present
explicit forms of the Dirac equation in some of the common orthogonal
curvilinear coordinates.

PACS: 11.10.Qr

1. Introduction

The construction of the Dirac equation in Minkowski spacetime is guided by the
requirement of covariance under Lorentz transformations, which ensures consis-
tency with the relativity principle [1]. The Lorentz transformations are linear
transformations between cartesian spacetime coordinates, involving fixed bases
of unit vectors; the corresponding Dirac  matrices are also fixed once a given
representation is chosen. In the study of some problems it may be convenient or
necessary to use curvilinear instead of cartesian coordinates. In such cases, the
coordinate transformations are no longer linear and the unit vector bases change
from point to point, but the covariance requirement must still be satisfied. In the
solution of such problems it is common to use the curvilinear coordinates keeping
the reference to the original cartesian unit vectors and fixed Dirac -y matrices [2].
The question of covariance is not usually discussed, so its analysis is taken up in
this paper. V. Bargmann [3] studied the problem originally.

As the background for the discussion, Section 2 contains a brief review of the
covariance of the Dirac equation in cartesian coordinates, with emphasis on the
effect of Lorentz transformations on Dirac spinors and « matrices. In Section 3, we
obtain explicitly the covariant form of the Dirac equation in Minkowski spacetime
and orthogonal curvilinear coordinates, including the general expressions for the
difference between the covariant and partial derivatives, and for the coordinate de-
pendent Dirac 4’ matrices. In Section 3, the explicit forms of the Dirac equation in
some of the common orthogonal curvilinear coordinates are presented, concluding
with some didactical remarks.
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2. Dirac spinors and  matrices under Lorentz transformations

The analysis of the covariance of the Dirac equation in cartesian coordinates
can be found in the appropriate textbooks [2]. Nevertheless, our own version of
such an analysis is presented in this section for the sake of completeness, and
as a point of reference for the corresponding discussion in orthogonal curvilinear
coordinates. We introduce the Lorentz transformations, first, emphasizing their
interpretation as rotations in the four-dimensional spacetime. Then, we analyze
the covariance of the Dirac equation to show the corresponding transformation
properties of the spinors and 7 matrices, constructing the spinor representation
of the rotations along the way.

The four-vector giving the spacetime positions of events in Minkowski space
can be written as

X =8uTy= é:‘ zL, (1)

in terms of its cartesian components z,(r,y,z2,z4 = ict), in two inertial frames
of reference with orthogonal unit vector bases &, and éL, respectively. We use
the Einstein summation convention over repeated dummy indices p = 1,2,3,4.
The Lorentz transformations give the relation between the primed and unprimed
components, and follow by projecting equation (1) along the desired direction:

!

z, = é:, 8y Ty = O,LLVIV- (2)
The elements of the transformation matrix Oy, = é;‘ - @, are simply the projec-
tions of the unit vectors of one basis along the directions of the unit vectors of the

other basis. The inverse transformation can be written in the alternative forms
Ty =8 -&,z), = (O_I)ﬂﬂ:’ = Opuzy, = (é)#vx:»- (2a)
This allows us to conclude that the transformation matrix is orthogonal
0 1=0 or 00=00=1,

t.e.

0,05, = 050,y =6,

and

O,uz\O)\V = O,\#O,\u = ‘S#U’ (3)

The orthogonality of the transformation is a natural consequence of the orthogonal
character of the unit vector bases. This orthogonality makes it possible to interpret
the Lorentz transformations as rotations in Minkowski space.
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The invariance of the square of the spacetime interval between two events
!
Ax - Ax = AzyAzy = AzyAzL, (4)

can be established directly using equations (1) or (2-3). In some textbooks [2],
this invariance is taken as the starting point to establish the orthogonal character
of the Lorentz transformations.

The proper Lorentz transformations include the identity transformations
Ouv = bup, which can be used to establish that det O = 1.

Infinitesimal Lorentz transformations differ slightly from the identity trans-
formation

OF” == 6#1,- e (77 O#y = 61;“ + Eppy (5)

where |e,,| < 1. From the orthogonality property, equation (3), it follows that
the infinitesimal rotational parameters are antisymmetric

€uw = —€uy. (6)
Then we can rewrite

O = b+ & e —esl) = b+ 4 o0t L s (50)
in terms of the generators of the rotation L*? = E®# — EA® where E®P is a 4 x 4

matrix whose u-th row and v-th column element is (E*#) = 6;}55 .

Any finite Lorentz transformation can be constructed as a succession of
infinitesimal transformations of the type of equation (5a), taking the exponential
form

0 = ccasl™/2, (7)
The summations in the exponent imply a multiplication of exponentials, and the
order of such factors must be taken appropriately because, in general, rotations
do not commute with each other. It is straightforward to establish that the matrix

elements of each one of the exponential factors can be written as

Lnﬂ 2 1 1
(EE“‘S / )py:6#0+£#V+§!-£yA€)\V+ ﬁcykfldfﬂ'”_{—"" (8)

The Dirac equation

(e + ko) (z) =0, ©)



Dirac equation in orthogonal curvilinear coordinates 299

is written in terms of the inverse of the Compton wavelength of the particle,
kg = me/h, the four-component Dirac spinor wavefunction, 1, and the 4 x 4 Dirac
7u matrices that satisfy the anticommutation rules

TV + N Vu = 2641 (10)

The Dirac matrices are not uniquely defined. According to Pauli’s fundamental
theorem [2], other representations of these matrices, 'yL, satisfying the correspond-
ing commutation rules, can be constructed from the starting representation

oy =887, (11)

involving a nonsingular 4 x 4 matrix S. The same matrix relates the new spinor
wavefunction with the original one,

¥'(zy) = Sy(z). (12)

We are interested, now, in analyzing the changes in the quantities appearing in
the Dirac equation when the Lorentz transformation of equation (2) takes place.
From the covariance requirement on the Dirac equation, we expect to be able to
write it as

]
(WLH + kg)'q’)'(:r::,) =, (9a)

The four-gradient operators are connected by the Lorentz transformation of equa-
tion (2),
a dzr, 0 a
__,_z_:’_: s (13)
oz}, 9z, 9z, oz,
as it follows from the application of the chain rule and of equation (2a). The new

spinor wavefunction is expected to be related to the original one through a linear
rearrangement of their components

V(z,) = Ad(z), (14)

where A is a 4 X 4 matrix.

By substituting equations (13) and (14) in equation (9a), multiplying from
the left by A~!, and rearranging the factors in the first term we obtain

_ a
(A IWLO#vAgz—V + ko)uﬁ(z,\) =0, (98)
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which is just the original equation (9), if we identify
T=A"14,0,,X. (15)

This equation (15) gives the connection between the Dirac 4 matrices, reflecting
their behavior as components of a four-vector, equation (2a), and as spinor oper-
ators; it can also be rewritten as

YOy = Ay AL, (15q)

Next, we will construct the explicit form of the spinor transformation matrix
A appearing in equations (14) and (15). Using the freedom allowed by Pauli’s
theorem, equation (11), we also choose the same fixed representation of the Dirac
7 matrices in equations (9) and (9a), i.e. we can take 4}, = 4. First, we consider
infinitesimal Lorentz transformations, equation (5), writing the corresponding
spinor matrices

A=T+feuT™, A'=1-1}euT?, (16)
where T#” are 4 x 4 matrices that share the antisymmetric character THY = —TVH

of the rotational parameters ¢,,. Substitution in equation (15a) leads to the
relation

TN — TV, = 26,7 — 272640, (17)
which is satisfied by the explicit spinor representation of the generators
T = §(vwm — Wu)- (18)

Then the spinor representation of the rotation corresponding to the finite Lorentz
transformation of equation (7) takes the exponential form

A. = CCMVTPV/4 ay 86#:}{1#71/"71;'7#)/8, (19)

constructed with a succession of infinitesimal transformations of the type of
equation (16).

3. Covariant form of the Dirac equations

Let ga(q1,92,93,94) be the orthogonal curvilinear coordinates of points in
Minkowski space. The Jacobian matrix for the transformation from the cartesian
to the curvilinear coordinates can be written as the product of a rotation matrix
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and a scale matrix,

0z _
i Ho04 (20)

The matrix O describes the rotation to go from the unit vector basis associated
with the cartesian coordinates to the corresponding basis associated with the
curvilinear coordinates. Its properties and representations are the same as in
equations (3), (5) and (7), the difference in Sections 2 and 3 being that the
rotational parameters are the same everywhere cartesian coordinates are used,
because the unit vector bases are fixed, while those parameters change from point
to point when curvilinear coordinates are used, because the unit vectors change
from point to point. The matrix H describes the change of scales associated
with the curvilinear coordinates; it is a diagonal matrix if the coordinates are
orthogonal,

Hub = hﬂéab: (21)

where h, is the scale factor associated with the coordinate g,. The Jacobian matrix
for the inverse transformation is the inverse of equation (20),

2~ (07

= (B s (22

ub

The Dirac equation in cartesian coordinates, equation (9), can be rewritten in
terms of curvilinear coordinates as

g, 0
("m%a—qn -+ ko)ﬁ'[zy(qb)] =0. (23)

This form, as pointed out in the introduction, keeps the reference to the original
cartesian unit vectors and Dirac matrices, as witnessed by the continued use of
the index u and of the original wavefunction 1.

If we want to write the Dirac equation in terms of the curvilinear coordinates
and the associated vectors, which may change their orientation from point to
point, it is necessary to recognize that the wavefunction is changed under the
corresponding rotations. The transformation of the spinor wave-function has the
same form as equation (14),

¥'(4a) = Alga) ¥z (ga)); (24)

with the important difference that the rotational parameters, and consequently
the transformation matrix, equation (19), depend on the location.
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Multiplication of equation (23) from the left by the matrix A, insertion of the
unit 4 x 4 matrix A~ A in the first term of the same equation, and straightforward
calculation allow us to write the Dirac equation for the wavefunction in curvilinear
coordinates

s .1/ O oA~
[A “aq:A (aqa +A 0 ) + ko] ¥'(gy) = 0. (23a)

Here we can identify the coordinate dependent Dirac « matrices

9qa ,
= Ay szA (25)
and the compensating field
BA" oA
B, = = ——471 26
¢ BQa 9qa (26)

in terms of which the general form of the Dirac equation in orthogonal curvilinear
coordinates becomes

7]
(s - B2) + ko] W) 0. (231
qa
The expression for the Dirac 4/, matrices, equation (25), can be simplified
through the following considerations. It involves matrix factors of the form
Ag,—A B 1
e”"Be " =B+ |A,B] + E[A,[A,B]]+ 5[A,[A,[A,B}]]+---, (27)

where A = €, T*” /4, equations (18) and (19), and B = <. The corresponding
commutators can be evaluated to be

[3eapT?, 9] = ners- (28)
Therefore for each exponential factor in A, equation (19),

Beuﬂraﬁ/4’7#e_f°‘sTGﬂ/4
1 1
= 1"‘—}-‘7"\6‘\“4-?‘7)‘6‘\0&;“4- 57)\51056115;?#'{'"- (29)

1
= M8 + ap t+ SiercCoptou t-0)-
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It can be recognized that the expression in the last parenthesis is the (Ax) matrix
element of the corresponding factor in the rotation matrix, equations (8) and (7).
Consequently, by successive application of this result to the exponential factors
involved in the rotation operators it is established that

A')',uA_l = 'YTOr,u, (30)

which expresses the effect of the rotation on the ~ matrices, just like equa-
tion (15b). By substituting the result of equation (30) and equation (22) in equa-
tion (25), we finally obtain

_ e

'T:; = ’Yror.u(o_l)pb(H_l)ba = h_a . {25!’)

In conclusion, the covariant form of the Dirac equation in orthogonal curvi-
linear coordinates is

[’7:; Dr;ﬂ + ko] ¥'(@) =0, (23¢)

where the coordinate dependent ~' matrices differ from the ordinary ones by
the scale factor, equation (25b), and the covariant and partial derivatives in
equations (23¢) and (23b) differ by the compensating field B, equation (26).

This general form of the Dirac equation naturally includes the case in which
cartesian coordinates are used. In such a case, the scale matrix is the unit matrix,
all the scale factors being equal to one, and the rotational parameters have the
same values at all points, the new unit vector basis being fixed. Correspondingly,
the 4’ matrices have the same form as the 4 matrices, equation (25b), and the
compensating field is null, equation (26).

4. Explicit forms and discussion

The explicit forms of the Dirac equation in circular cylindrical, elliptic cylin-
drical, parabolic cylindrical, spherical, prolate spheroidal, oblate spheroidal and
parabolic coordinates are presented in this section. The equations are numbered

as in Section 3 after the initials of each type of orthogonal curvilinear coordinates.

Circular cylindrical coordinates

] = pcosp, z9 = psingp, Ty = 2, = tet;

q1 = p, q2 = @, q3 = 2, g4= tet.
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10 00 cosp sing 0 0)
9zy\ _ |0 p 0 O | —sinp cosp 0 O _ ,, pL12
(Bqa)‘_ 0010 0 0o 1 o|=H» (€O
0 0 01 0 0 0 1
cosep —sing 0 0 1 0.0 0
9ga\ | sing cosp 0 0 0 1fp 0 0| _ —pr1?,.—1
(ax,,) =l o0 o 10||lo o 107 H (CCA
0 0 0 1 0 0 0 1
g =gPTB  yE . eTYE (CC19)
1
B, = %T” = %’n'm, ’Y;DBso = —5’11, (CC286.2)
a 1 a 3 a
— | Y=+ — +ko|¢' =0. CC23b
[”“(ap 2p) 12,0690 +736z +74:c6t +ko|¥ ( )
Elliptic cylindrical coordinates
zy = fcoshucosv, z9 = fsinhusinv, Ty = %, Ty= tct;
q = u, q2 = v, qs = 2, q4 = 1t
f\/cosh?u — cos? v 0 00
(az#) = 0 fv cosh®u —cos2v 0 0
9ga /. 0 0 10
0 0 0 1
sinh ucos v cosh usin v 0 0
Veosh? u—cos? v Vcosh? u—cos? v
___coshusinv sinh u cos v 00 all?
X Vcosh? u—cos?y  V/cosh? u—cos?u He ’
0 0 1 0
0 0 01
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P v cosh® u—cos? v ,
Ja —aLl? 0 0 0
(3.’1:#) -l 0 f; Coshzou-—coszu 1@ ) (ECZZ)
0 0 D 1
where
sinh u cosv X coshusinv
cosa = . sina = .
cosh? u — cos? v cosh? u — cos?v
A — eaT”,"2,A-l = e-aT12/2 (Eolg)
18a, 19 sin v cos v
By= T = 1y, EC26.1
7 20u 2(cc\sh2 u cos? v)rn’72 ( )
3 . sinv cosv ’
s 2f(cosh? u cos? v)3/272
10a, 19 sinh u cosh u
By = s THis oy, EC26.2
Y200 2(cosh? u cos? v)ﬁ“’m ( )
sl By i sinh u cosh u 5
i 2f(cosh?u cos?v)3/2
1 ( ad sinh u coshu )
fVcosh? u — cos? v T\ Gu 2(cosh? u — cos? v)
a sin v cos v ad a
+ (—+ ) gz M+ by =0
"2\ v 2(cosh? u — cos? v) ] M5z T Micat 0}‘#’)
(EC23")
Parabolic cylindrical coordinates
= ’}(52 - ’12)» zg = 0, I3 = 2, 1 = 1ek;

q =&, q =, q3 = 2, qq = ict.
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VE2+n? 0 0 0
(az#) B 0 /52 +72 0 0
340 0 0 10
0 0 0 1
p T (PC20)
V€ +n? \/E?n’
e 00 L1
X 24 n? 21 n? He 3
\/6 n \/50 ™ 5 b
0 0 0 1
1
) o B 00
‘h) —all? 0 0 0
(_ - 3 - : (PC22)
Iz, 0 Y Lo
0 0 0 1
where
£ : n
cos @ = ) Sin @ = )
1/‘52_,_”2 ,162_1_"2
A=eoT?2 g1 o meT)2) (PC19)
Be = oo T e, A e L, [PER)
2 0¢ 2(€% +n?) ¢ 2(¢2 +n2)3/2 7
10a
B, = —— 12:— 'B = —-—-— 26.2
n=3 8 2(62 T ng)'fl’ﬂa TnLny 2(52 n 02)3/2’11' (PC26.2)
L (i+_€ﬁ)+ (i+L)
V€2 +n? T8¢ T a7+ n2)) T Moy T 2(e + )
(PC23b)

a a
— — + kg t¢' =0.
tug, T Ut o}lb 0
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Spherical coordinates

zy =rsinfcosp, T9 = rsinfsin p, T3 =rcosb, Tg = 1et:
q =9, a2 =P, gg=r, qq = tct.
r 0 0 0 cosd 0 —sinf 0
(6.’5,.) _ |0 rsinf 0 O [ | 0 0
dg.) |0 0 1 0f|sind 0O cosé O
0 0 0 1 0 o0 0 1
) (S20)
cosp sing 0 O
—sing cosp 0 O = He 9131 lez
0 0 10
0 0 A [ |
iy 0O 00
Bqa) _ L2 _gr3 0 ﬁl—g 0 0
(3:1:# =7 e 0 "581 1ol (S22)
0 0 0: A
. 89T31/2epT12/2, e I E—pTufie*GTm/Z’ (519)
—1msi_d ' 1
By =T = gmm  %Br=—51 (526.1)
s
31
B, = HIT/2 lle —6T>/2 _ %(7172 cos f — ~gyg sin f). (526.2)

The last result is evaluated by using equation (27) and the commutator
[V M) = 2947

1
'Y'qua =

2rsin8(_’“ cosf — ygsind),

g .1 2 ;
(E+ )+‘74;—8?+k0J¢ =0. (523b)

1(3 +lcot0)+ :
n Wrsnaa

ao
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Prolate spheroidal coordinates

z1 = fV(E€ = 1)1 = n?) eosp, =y = f1/(€2 ~1)(1 = n?) sing, 25= [0, z4 = ict;

q=2E¢ q2 = ¥, a3 =1 q4 = ict.

i %—t”; 0 0 0
s L (€-1(1-75) 0 0
= 0 0 nEE o
0 0 0 1
s 3
EIT':,EE 0 Eﬁz_,?l!"? 0 cosep sing 0 0
5 ) 1 ‘ 0 —sing cose 0 0] HeﬁLale”Lu
= L 0 0o 1 0|~ ,
0 0 0 il
(PS20)
1./ €-1
7 giz_—,p (1) 0 0
(Jo) = et 0 FEER O °,
s 1 [1—9?
0 0 Ve 0
0 0 0 1
(PS22)
where
1-n? L. | €2-1
cos ff = mg, sinf = — mn_
A= AT 20T 2 p-1 _ TP /2,—FT% /2 (PS19)
108 1]1-n2

B{ — —WTSI = —= "—nﬂj'f?..nfl) (Pszﬁl)
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L A—=n? n

! _
"B = s @)

31 _ 3731 )
B, = AT N%T“c AT (2 — %(7172 cos f — ygy3 sin 3), (PS26.2)

188 .y 3|81 3

{l E(?_. S )+ 1 -
TINE=E\GE @D AT T @ s ) O
1|1-n2/8 n n d o

Ty 52—1;2(6_7;_2(52—7,2)2(1—172))““55*"0}‘” ik

(PS23b)

Oblate spheroidal coordinates

1= [+ 1)1 —w?) cosp, 23 = J1/(s? +1)(1 - w?) sing, 23 = few, z4 = ict;

qaq =g, q2 = ¢, g3 = w, gy =det.
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Tt
f 5?% 0 0 0
(‘ZI#) - 0 /(€2 +1)(1 - w?) 0 0
0 0 0 i
—_— 2 .
§1+w ¢ D E%:'%}“gw 0 cosp sinp 0 0
’ 2 1 0 —sing cose 0 0| HePLY goL?
o = "
o S‘g-:-u’,l @ 0 gl +l:'1 ¢ 0 0 0 1 0
0 0 1 0 0 0 1
2
1V e ; 0
a 0 ———— 0
(322) = el R GE ,
M 0 0 7 —z—z;—w 0
0 0 0 1
(0S22)
where
1-w? ; ¢?+1
cosf = J;i_f;_i & sinff = — e W.
¥ o eﬁT31/2eWT12/2, A__l _ eﬂpT”/’ZCfﬁTM/Z’ (0519)
: f
1 ()ﬁ 31 1 = (4.'2 w
Bl e PO i - 0526.1
¢~ 3 3¢ 2\ A (2ot ( )
fB o 1 !_l_: ,d2 l,ﬁ
QI 27\ ¢2+w? (¢? wz)'”’
B, - ei,,.,‘,.;n/,z%Tlge,ﬂTalfz = 3(v172 08 8 — Y273 sin ), (0S26.2)

'7:939 =

1{ (241 [1-w?
5

e LT P DR .
MR @D N TS - W)
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138,31 L i¢d+1 3
1005, L g i i 0526.
Bu ZBwT 2V1-w? (§2+w2)7”1 e

1 | ¢2+1 ¢
! - ——
'Ywa —— 2f S'2+w2 (5’2-{-11)2)111

SESEIN U MUY I FPUTST ST |
M7\ re?\ac 2(¢2+1) " 2(c2 4+ w?) 72,"/(;2+1)(1—wﬁ‘3‘9

a4 l ﬂ(i_ a — o )+ i.{_k w’—o
BN T+ \ow 2T rwl) 20—/ T e TR =

(0S23b)
Parabolic coordinates
z1 = €ncosp, z3 = Ensingp, zs = }(€2 - %), T4 = ict;
a =1, q2 = ¥, q3 = 61 q4 = ict.
VEl+n? o0 0 0 \/Ef+n2 B T ;:_,,2 0
(8x,,,) _ 0 ¢n 0 0 0 1 fg 0
99 0 0 é&+n92 0 ~/££+rﬁ 0 vy e A
0 0 0 1 0 0 0 1
cosp sing 0 0
—sinp cosp 1 0| _ BL3 pL12
X 0 0 i ol= He e 3
0 0 01
(P20)
1 0 0 0
Ve
(%) =eel?-pt) 0 5 0 0 (P22)
dzy 0 0 El+fl 0
0 0 0 1
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where ¢
! U
€08 8 = —m=mm sinfl = ————.
1,‘52_!_7]2 1!E2+n2
A= eﬂT31/2epT”/2, o epru/chﬂT-“/z,
= 2R #”fﬂx
T 20n 2062+ 9% "

: 11

£
'YnBﬂ - _Em(gg _I_nz)'m:

31 _ g3t .
By =T 23T12e=BT7 /2 — (45 c08 B — 7273 8in B),

' B _;(,i — )
TpPp = £2+n2 271’?1 2573 )
188, s, "
Be= -V = o
1 it
7eBe

= n
=g F_r +n2 (52 “*“’72)71,

{ ! [(£+i+ s__J4 (i+ ¢ 1
Jata"\on T2 T 2@/ T N\oe T A @+ T 2

1 ad a
—Yg— — + k l=10.
+ En’?zap+’74icat+ o}'f) 0

)

(P19)

(P26.1)

(P26.2)

(P26.3)

(P23b)

As shown in general in Section 3, and as illustrated with specific examples
in this section, the differences of the Dirac equation in curvilinear and cartesian
coordinates arise from the existence of scale factors and the change of orientation
of the unit vector basis associated with the curvilinear coordinates. The scale
factors make the difference between the Dirac v/ and ~ matrices as indicated by
equation (25b). The change of orientation of the unit vector basis from point to

point is the source of the compensating field, equation (26).
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In the specific examples, we can distinguish between the cases of cylindrical
coordinates and of the other coordinates base on surfaces generated by the rotation
of conics around their symmetry axes. For the cases of cylindrical coordinates, only
the scale factors hy and hy may be different from one, and only the rotational
parameter €j9 = —eg; =  or « may be different from zero. For the coordinates
based on conoidal surfaces of revolution, the three scale factors with u = 1,2,3
may be different from one, and the non-zero rotational parameters are e;3 =
—€31 = @ and €3 = —egy = 0 or B. It is the values of these scale factors
and rotational parameters which determine the structure of the 4/ matrices and
compensating fields entering in equations (235).

The solutions of the Dirac equation in the forms of equations (23) and (23b)
are related to each other through the rotation transformation of equation (24).
While equation (23b) emphasizes the covariance of the Dirac equation, its solution
may be more complicated than the solution of the hybrid form of equation (23)
due to the presence of the compensating field. Of course, the solution of equa-
tion (23b) can also be constructed from that of equation (23) through the use of
equation (24).

The anticommutation rules for the 4' matrices can be obtained from equa-
tions (25b) and (10):

bab
TN =221 = 20,1 (10")
hahy,

where g5 = 8,p(hahyp) is recognized to be the metric tensor.

The analysis presented in this paper can be used by the interested reader as a
preliminary step to study the Dirac equation in Riemmann curved spacetime [4]. In
fact, the validity of the equations of Section 3 is extended to Riemmann spacetime
when the appropriate metric is used. This can be understood by identifying the
type of flat spacetime assumed in our analysis as a locally flat spacetime in a
small neighborhood of each point in the curved spacetime.
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Resumen. Se discute y exhibe explicitamente la- forma covariante
de la ecuacién de Dirac en coordenadas curvilfneas ortogonales. Se
presentan las formas explicitas de la ecuacién de Dirac en algunas de
las coordenadas curvilfneas ortogonales mds comunes.



