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Abstract. In the past twenty years a number of efforts have been
undertaken to broaden the scope of linear irreversible thermodynamics
(LIT). These efforts have stemed from the fact that there are a number
of phenomena ocurring in non-equilibrium states lying clearly beyond
the linear regime. Here we present a review of one of such efforts whose
underlying conceptualization is based more on physical ideas closely
connected with LIT. The framework of ideag behind this method as
well as both its comparison with experiment and its derivation from
mesoscopic and microscopic physics is exhaustively dealt with. Unsolved
problems and an outlook are offered at the end of the paper.

PACS: 05.70.Ln; 05.40.+j; 47.10.+g; 82.20.Mj

1. Introduction

The study of time dependent thermal phenomena ocurring in several types of macro-
scopic systems dates back to the mid ninteenth century with the discovery of the
thermoelectric effects known as the Peltier heat conduction and the Seebeck effect.
The first theoretical explanation was provided in 1854 by W. Thomson (later Lord
Kelvin) on the grounds of the still not well developed science of thermodynamics.
By the end of the century a large number of what we now clasify as irreversible pro-
cesses, were well known but no formal theory, neither macroscopic nor microscopic
had been developed to cope with them. We shall not dwell here at all in the historic
aspects of non-equilibrium processes but refer the reader to the appropriate sources
in the literature [1, 3].

The first, and so far unique macroscopic theory that has been set forth to extend
the concepts of equilibrium thermodynamics (thermostatics) to non-equilibrium
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states is hardly sixty years old. Based on the ideas introduced by de Donder [4]
around the early twenties and Onsager’s reciprocity theorem proved in 1931 (5],
Prigogine, Meixner and Casimir in the mid forties developed what is now known
as linear non-equilibrium thermodynamics [2,6]. In 1953 Onsager and Machlup [7]
reformulated the original version of Onsager’s proposal, mainly dealing with the de-
cay of spontaneous fluctuations around an equilibrium state. This theory, although
having several things in common with the Prigogine- Casimir-Meixner version should
really be taken as an independen treatment of non-equilibrium processes. We shall
come back to this point later.

Thus, linear irreversible or non-equilibrium thermodynamics (LIT) is a well
established theory. Based on four postulates, it has been able to describe a wealth
of phenomena in complete agreement with experiment [8,9]. These phenomena en-
compass many fields in science, from physics and physical chemistry, to biochem-
istry, biophysics and many branches of engineering. In the past ten years we have
also learned that LIT has severe limitations [10,11]. A large number of phenomena
ocurring under well defined conditions, or others by their own intrinsic nature, do
not comply with one or several of the basic postulates of LIT. One is therefore
posed with the challenge of either trying to derive a theory from first principles
which is capable of explaining them, or constructing a phenomenological framework
extending the scope of LIT in order to provide an adequate description for them.
Efforts in both directions have been made in various ways giving rise to what may
now be termed extended irreversible (non-equilibrium) thermodynamics (EIT). This
implies that up to now there is no unique theory coping with these systems. But
the non-negligible amount of situations that have been adequately handled by one
of these efforts as well as the fact that it has been also rooted in more mesoscopic
and even microscopic concepts justify a systematic presentation including its scope
and limitations. This is precisely the reason for the title and for the paper itself.
In the past seven years a small group of people has developed a method to handle
systems whose states lie beyond the reach of LIT [12,13). In this paper, I would
like to summarize in a systematic way the underlying ideas behind such method,
the nature of the results drawn from its connection with the basic principles of
statistical mechanics and which are, at present, its limitations. Technical details
will be avoided but an extensive literature will be cited where the reader may find
all the pertinent information.

To keep the paper self contained, section 2 is devoted to a brief summary of
LIT. In section 3 some of the many systems which are beyond the scope of LIT are
discussed, thus serving as a justsification for a broader thermodynamic framework.
In section 4 we discuss the main ideas behind EIT; in section 5 we ennumerate
the most relevant accomplishments of the theory; in section 6 we discuss how its
basic equations are related to fundamental microscopic laws of physics and finally,
in section 7 the present limitations will be mentioned which will serve as an outlook
for the future.
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2. Linear non-equilibrium thermodynamics

Linear irreversible or non-equilibrium thermodynamics (LIT) is based on four
fundamental assumptions which will be briefly sketched here for the sake of con-
venience. For a broader treatment of the subject we urge the reader to consult the
references listed at the end of this paper [2,6,8,9].

The first assumption known as the local equilibrium assumption starts from
the basic idea that the states of the system may be described by locally conserved
densities such as mass, charge, momentum, energy, etc. Furthermore, it establishes
that a local entropy density exists which depends on the position and time only
through a funtional relationship with these densities. In the case of a simple fluid
this relation is expressed as

s(r,t) = sle(r, 1), p(r, )], (1)

where p(r,t) and e(r,t) are the local mass and energy densities, respectively. It
may also depend on the concentrations of the different components which form the
various phases in an open system. Notice that equation (1) is formally identical to
the thermostatic result expressing the entropy S as a function of E, the energy,
and V, the volume. If one uses equation (1) to compute ds/dt and restores to the
conservation equations which are satisfied by the locally conserved densities, one
arrives at the well known equation, (2,6,9]

ds
pEt-+V'J3=cr, (2)
where J, = J¢/T, J; being the heat flux vector in the case of closed systems
d/dt = 8/8t +u -V, where u(r,t) is the hydrodynamic velocity and ¢ a quantity
known as the entropy production defined as:
T i T
o= - Tz-VT—? (Vu) —TV-U. (3)
Here, the momentum flux or stress tensor T has been decomposed into its non-
viscous part, p(r,t) the local hydrostatic pressure and a viscous part whose traceless
part is T and 7 its trace. Also (.A) denotes the symmetric traceless part of any
arbitrary tensor A.
The second assumption of LIT is that

>0 (4)

which as it is shown in the literature [2,9] may be regarded as the extension of
the second law of thermodynamics to non-equilibrium phenomena. It is worthwhile
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stressing that equations (2) and (3), which are not unique as far as the several
ways that J,; and o may be expressed, although preserving always the structure of
equation (2), are in any case a direct consequence of the conservation equations and
the validity of the local equilibrium assumption.

The third assumption of LIT is related to the fact that the conservation equa-
tions, five in total for a simple fluid, contain fourteen unknowns. To supply the
necessary additional information one restores to experiment to find a way of relating
the unknown quantities, the heat flux J,; and the momentum flux T to the state
variables p,u and T, the local temperature. The outcome of this search is that
within a certain range of the thermodynamic forces, given by the gradients of the
state variables, this relationship is a linear one. LIT thus adopts this fact as a
postulate requiring that if g is a column vector whose components are the fluxes
and F another one defined by the forces.

.q:Afa (5)

where A is a matrix whose elements do not depend on F but only on the equilibrium
state variables of the system. For a simple fluid,

Jq £ 0 0 vr} .
T =0 0)|-T"(Vu) |, (6)
T 00 &/ \-77'V-u

where k, 7 and £ are the thermal conductivity, the shear viscosity and the bulk
viscosity of the fluid respectively, and are functions of the equilibrium density and
temperature only.

If one substitutes equation (6) into equation (3) a quadratic form for ¢ is ob-
tained,

'VT)2 (Vn’u’)2 V.uy? .
"_"(T T\ +€(T) ™
which according to equation (4) can hold true only and only if x > 0, n > 0 and
£ > 0, a set of results well confirmed by experiment.

In more complicated systems where A has non-zero off diagonal elements, it is
assumed that A = AT its transposed, meaning that the matrix is symmetric. The
proof of this statement from the microscopic equations of motion was Onsager’s
great achievement now known as the reciprocity principle [2]. Introducing this re-
quirement into the framework of LIT leads to a complete set of partial differential
equations, usually non-linear, whose solution depends on the information available
for the initial state and the boundary conditions.

At present, it has been possible to determine experimentally [8,9] the conditions
under which this linear formalism describes non equilibrium phenomena in a wide
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variety of systems. But on the other hand, we are also aware of many non-equilibrium
states for which this theory is uncapable of providing a satisfactory account of
phenomena ocurring among them. They will be qualitatively described in the next
section.

3. Non-equilibrium states beyond LIT

One of the first objections that was raised against LIT is that some of the
differential equations describing the time evolution of the disturbances propagating
in a medium predict their propagation with an infinite velocity. Such is the case
of the heat conduction equation in a rigid heat conductor (p = const., u(r,t) = 0,
T =0) for which the energy conservation reads as

Oe
—+V-J,=0.
Using the local equilibrium assumption to set de/dt = C,dp/dt and the linear law
[Eq. (6)] so that J, = —kVT, one readily arrives at the heat conduction equation,
namely

aT
— = DV*T,

5 (9)
where D is the thermal diffusivity defined as D = k/pC,. Clearly the absence of a
term ¢~282T/0t? in this last equation can be accounted for only if ¢ = co. In order
to overcome this difficulty Vernotte [14] and Cattaneo [15] independently, proposed
to substitute Fourier’s equation by a relaxation equation for J;, namely,

0]
—7;%}2 = Jg + &VT, (10)

where 7, is a relaxation time assumed to be finite. When equation (10) is substituted
into equation (8) one obtains that

o*T 8T o
%W_‘—_B?_Dv T (11)
where ¢™? = 7T, so that the temperature disturbance propagates with the cer-

tainly large but not infinite velocity ’1}71/2. Equation (11) belongs to a class of
equations that were known since the mid term of the last century. In fact, it was
Kohlrausch [16] who first arrived at an equation of that type when examining the
behaviour of glass fibres and later, in 1867 Maxwell [17] argued that in a viscous
body the state of stress will tend to disappear at a rate which depends on the value



Ertended non-equilibrium thermodynamics, scope and limitations 349

of the state of stress and the nature of the body. Thus the class of equations of the
type (10) which assign a finite relaxation time to the rate of disappearance of a
flux are now referred to as Maxwell-Cattaneo-Vernotte equations. They served as a
basic idea ii the formulation of one version of extended thermodynamics known as
the wave approach [18].

Besides this objection, it is known that there are many other systems which can
be driven into non-equilibrium states whose description lies beyond the scope of
LIT. Perhaps the oldest example of this fact was pointed out by Osborne Reynolds
in 1885 [19,20] when he filled a leather bag with marbles toped it with water and
then twisted it, thereby inducing a shear. The water level drops because the close
packing of the marbles is disrupted as layers of them slide past each other, as a
result the marbles are further apart on the average creating spaces that the water
has to fill. This of course implies that the marble density N[V decreases when
the system is subject to shear at constant pressure and temperature. Therefore the
local equilibrium assumption is violated since the density is no longer a function of
the pressure and temperature, it depends also on the rate of shear (twisting). The
fact that p(T, p;v) < p(T,p;0) where 7 is the shearing rate is called shear dilation.
A similar phenomena pointed out by D. Burnett in 1934 whereby the viscosity of
fluids decreases with v is known as shear thinning. Other examples of systems that

appear to be in contradiction with this one or another of the basic postulates of
LIT will be discussed briefly.

Consider first the case of sound absorption and dispersion by monoatomic
fluids [21-27]. The dispersion relation computed from the linearized version of the
Navier-Stokes-Fourier equations of hydrodynamics is in agreement with experimen-
tal data only in the region of low frequencies. Although the discrepancy is partially
improved by including in the calculation the corrections that come from the linear
terms which are of higher order in the gradients, the so called linear Burnett and
super Burnett terms [28], there is a complete disagreement between theory and
experiment at high frequencies [13,21]. Care should be taken in assessing these
results since the non linear terms inherent in both the Navier-Stokes and Burnett
regimes have never been included in the analysis. Nevertheless, since they represent
corrections of higher order in the wave number x ~ A1 it is doubtful that they
represent a potential improvement of the theory.

The formation of shock wave structures in matter has been extensively studied
both theoretically and experimentally [30, 28]. For the case of weak shocks the Mach
number M = u/vg, vy being the velocity of the medium before the shock wave and
u the velocity of the shock wave, is of the order of one, so that one can attempt a
solution of the linearized equations of hydrodynamics to get the values of relevant
quantities such as the density profile, and the thickness of the wave, in powers of
(M —1) [29]. Comparison of this type of calculations with the rather precise set of
measurements performed by Alsmeyer in 1975 [30], clearly shows that beyond Mach
numbers of the order of 1.75 neither the Navier-Stokes equations nor the corrections
due to Burnett terms agree with experiment [31].
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A much more drastic failure of LIT is observed in viscoelastic media and poly-
meric fluids [10]. For these systems, the ordinary linear constitutive laws of the
Navier-Newton-Fourier hydrodynamics as written in equation (6) are uncapable of
describing the flow of liquids containing polymers. Here, one is dealing of course with
fluids composed of very large molecules, macro-molecules whose typical molecular
weights range from 10° to 10°. A similar comment is valid for viscoelastic fluids or
materials such as rubber. A rather elaborated treatment of the flow of polymeric
fluids has been developed in the past ten years [32-34] both from the phenomeno-
logical and the kinetic point of view as well. The ensuing hydrodynamic equations
fail to belong to LIT scheme.

The subject now known as generalized hydrodynamics, understood as the effort
to extend ordinary linear hydrodynamics which is valid in the low frequency, long
wave length limit, to include higher frequencies and smaller wave lengths (10, 35] is
also known to be at odds with LIT. In fact, the shape of the dynamic structure factor
for simple liquids such as Ne and Ar obtained with neutron scattering techniques
cannot be accounted for in such high frequency small wave length regime using the
Navier-Newton-Fourier equations of hydrodynamics [35,36]. The structure shown
by the Rayleigh peak under these conditions can be accounted for by arbitrarily
proposing that the transport coefficients appearing in these equations become both
frequency and wave length dependent. From the thermodynamic point of view this
is in contraposition with the local equilibrium assumption.

The last and also the oldest example I want to quote in this paper to exemplify
the need to extend LIT, is provided by chemical kinetics. The introduction of the
degree of advancement variable in a homogeneous chemical reaction as a “displace-
ment” variable and the chemical affinity as the thermodynamic force necessarily
requires of an extension of the thermodynamic space of state variables, even in the
context of thermostatics [37]. And furthermore it has been known for many years
that the mass action law as formulated by C.M. Guldberg and P. Waage over one
hundred and twenty years ago [38-40] which holds true for elementary reactions
ocurring in gaseous phase or ideal solutions lies beyond the scope of LIT (41-42).
Understood as a constitutive equation relating the chemical flux with the affinity
(force), it is a highly non linear equation whose macroscopic status is beginning to
manifest itself in a more transparent way [42-44]. The failure of LIT to account
for all of these phenomena and other such as supercooled liquids [45-47], the glass
transition [46-49)], fluids driven far away from equilibrium into steady states [50-53]
and so on, raises the obvious question as to how can one extend such a formalism
with the hope of incorporating into it some, or all if possible, of these phenomena.
This is the main subject to be dealt within the following sections.

4. Extended irreversible thermodynamics

Starting from the assumption that any reader is convinced by now that there
exists a legitimate task of enlargening the scope of LIT to include the wide variety
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of phenomena sketched in the previous section, we now devote ourselves to the
discussion of one possible way of doing so. A word of caution is required since ex-
tended irreversible thermodynamics (EIT) is far from implying a unique framework
to undertake such a program. There exist in the literature under the same or a
similar heading, a wide variety of proposals which claim extensions of conventional
thermodynamics in one or other direction [12,18,53,92]. The one to be presented
here originated in some ideas set forth by Meixner around twenty years ago and that
were more or less put into the form of a theory by I. Mueller in 1967 [54]. Later on
Lebon [12] in Belgium and Casas-Vazquez, Jou, Rubi [12,55,56, 57, 58] and others in
Spain shaped them into a more thermodynamic-like context and attempted to relate
them with kinetic theory. Mention should be made that from an entirely different
point of view and without pinning any name to the results, H. Grad had actually
derived this version of EIT from kinetic theory already in 1949 [59, 60]. But his work
had another objectives and its content, in this context, passed completely unnoticed.
The present version of the theory has been developed in Mexico by the author of
this paper and a small group of collaborators. It has many features in common to
the views of the originators but its physical conceptualization is somewhat different.
[ will avoid a critical comparison of the different versions of the theory as well as its
comparison with others because of space reasons. The interested reader may find
these aspects dealt at length in many different sources (13,61, 62].

For strictly pedagogical reasons the discussion of the underlying principles be-
hind this theory will be set forth using as a prototype system a rigid infinite con-
ductor which being at rest, has a zero velocity u(r,t) = 0 and a constant density
p(r,t) = const. Therefore, it requires only of the energy density e(r,t) as the single
conserved variable necessary to describe its thermodynamic states, according to
LIT. The transcription of the results here obtained to her complicated systems
such as fluids [63-64] binary mixtures [65-66], porous media [67), suspensions [70],
dielectric relaxation in complex materials [68-69), chemical reactions [41,44,71] and
others [72-73a] have been dealt with in detail and as the reader may easily convince
himself it is more a question of semantics and laborious algebra and not of the basic
physics involved in the process.

According to our previous discussions the main stumbling block in LIT ham-
pering its extension to a wider class of phenomena lies in the local equilibrium
assumption. This assumption states that only the locally conserved densities which
are even under time reflections are required to appear as independent variables in
the local entoropy which is further assumed to be a time and space independent
functional of these variables. Therefore, what we are seeking for is to enlarge this
space in a way which is at least asymptotically consistent with this condition. As
H. Grad pointed out in 1949, the best candidates to be raised to the status of
independent variables in the case of fluids are the fluxes themselves, J,, T, and
T, where we follow the notation used in earlier sections. And this is precisely the
content of Mueller’s assumption, to postulate the existence of a “generalized entropy
function” which will depend not only on the locally conserved densities but also on
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a set of fast or non-conserved quantities which he chose to be the fluxes. In the case
or our rigid conductor the only flux is Jg, the heat flux, so that we would have that

n = (e, Jg), (12)

where 7 is by assumption, a continuous and at least twice differentiable function.
But we shall altogether avoid referring to it as an entropy or any other similar
names. Then,

dy = (%);, de + (%)eaq. (13)

Here, the two differential coefficients appearing in equation (13), a scalar and a
vector respectively, can be functions of all the scalar invariants and vectors which
may be defined in the space of state variables [123]. These are e, qu, J;, equ, il
etc. and the vector J,.

Therefore,

(B),, = ferdio (B, =sterhoi

If we manipulate equation (13) with the full information contained in these coef-
ficients we immediately arrive at higly non-linear equations whose full significance
is still obscure. We therefore introduce the approximation consisting in expanding
functions, such as f and g above, in power series of the non-conserved variables
around the local equilibrium state. Keeping the lowest order (first term) in these
expansions and remembering that (9n/0€)ioc.eq = (0s/d€) = T, where T is the
local equilibrium temperature, the first equality following from the fact that for
local equilibrium J; = 0 and 75 reduces to the local entropy s, we may rewrite
equation (13) after dividing by dt as,

dn  1de d,
G- Tq +g(e)dy - T (14)

which is clearly the first order generalization of the Gibbs equation in LIT [2,6,9].
Here g(e) is of course an undetermined function of the local energy density e(r,t)

The objective of any thermodynamic theory is to provide for a complete set
of equations for the variables describing the states of the system. In this simple
example this means we are required to determine the time evolution equations for

e(r,t) and Jg(r,t).

But the former one is known, it is the balance equation for the energy density,
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namely

de
= . Fo =10
P +V-J,=0 (15)
The question is how to obtain the time evolution equation for J,. For this purpose
we introduce the second assumption of this theory, namely, that 7 satlsfles a balance
type equation, necessarily of the form

dn
pgg TV In=om, (16)
where J, is a vector and oy a scalar both defined in the space of state variables.
Following the steps leading to equation (14) this clearly implies that

S P[0 N « T (17)

where B(e) depends only on e(r,t). On the other hand o, is the most general
scalar that may be constructed in the space of state variables therefore implying
that the operations indicated in the left hand side of (16) must lead to quantities
necessarily defined in such a space. Thus equation (16) may be interpreted as a
closure assumption whose full potentiality has been discussed and exploited in more
complex systems [72,73]. Mathematically, this means that

vy = Xy il pile, 2 v i+ Jg 22 p(e)dy - Ty (18)
But we have another independent way of computing o, using equation (14) and

the divergence of J, computed from equation (17). When we compare the two terms
for o, we come to the result that

po(Ty S = 5V g+ B, o

+Jq - VB(e) = p(e)Ig - Iq.

Now we impose the obvious restriction that when the subspace spanned by the fast
variables is the void space, equation (16) must reduce to equation (2), the true
entropy balance of LIT with ¢ given by equation (3). This immediately imposes the
requirement that f(e) = 1/7" and equation (19) reduces to

gl 2

T p(e)VT‘l +J,. (20)

Furthermore, if the left hand side of (20) is such that it is very small compared with
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the terms in the r.h.s., what may be called the stationary value of Jg is reached,
then

1

T T

VT,

which is precisely Fourier’s equation if u(e) = (sT?)~1. Calling now —T, = pg(e)xT?
the relaxation time for the heat flux J, we get that

—%ﬂ — KVT+Jq. (10)
dt

This is precisely equation (10), the equation proposed by Vernotte and Cattaneo
to remove the inconvenient infinite velocity that arises from the LIT formalism.
But some other rather pertinent comments are somewhat useful. The first one
is addressed to the nature of equation (10), in the sense that it is by no means
representative of the generality behind the postulates of EIT. It actually stands for
a first approximation of the theory arising from the fact that we have kept only
the first term in the power series expansions in terms of the fast variables of the
coefficients appearing in equations (13), (17) and (18). When this restriction is
partially removed, one is lead to much broader results [74,75], including the possi-
bility of obtaining non-linear time evolution equations whose full physical meaning
is still unclear. A second comment is concerned with the possibility of deriving the
ordinary constitutive equation required for instance in hydrodynamics. When the
relaxation equations for the fast variables are projected onto the subspace spanned
by the locally conserved quantities by formally setting the relaxation times such
as 7, equal to zero then, as seen above, one recovers Fourier’s equation for heat
conduction and so on. In the general case of a simple fluid the Burnett and higher
order equations of hydrodynamics may be derived [27,63, 76], and similar situations
are found in viscoelastic media [73], dielectric solids [69] and so on. From this point
of view, the enlargening of the space of state variable by including fast variables
may very well serve as a basis to search for a more concrete definition of the up
to now somewhat fantasmagoric concept of “far away from equilibrium”. The third
pertinent comment deals with the nature of the phenomenological coefficients u, g,
etc. which appear in the theory. One must keep in mind that they are quantities
which are still space and time dependent through the locally conserved densities.
In many applications, in order to simplify the solution of the resulting differential
equations, they are taken as constants but this is an additional approximation.
And moreover in equations such as equation (10), J, may be determined from the
microscopic information contained in the time space correlation [unctions of the
fluctuations in the fast variables, the heat flux in the case just mentioned [77-81].
Also one is able to show that g(e) < 0 as equation (10) demands. This provides a
contact between the macroscopic theory and microscopic dynamics. We will come
back to this question later on.
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Summarizing the results of this section, we may conclude by stating that the EIT
in the version here offered, represents an improvement on LIT in that it permits us
to include in the formalism information capable in principle to cope with phenomena
beyond the scope of LIT. This statement will be clarified further in the following
section dealing with applications.

5. Applications of EIT

Although many of the applications of EIT have dwelt with the questions men-
tioned in section 3 of this paper that lead to the formulation of the theory, not
all of them have been studied so far, like shock waves, whereas many others have.
Therefore, to keep track of facts, the applications mentioned here are taken in a
more or less chronological order, and furthermore the list is to be understood as
being indicative and not as an exhaustive one. For the more complete aspects of the
theory as well as other views of extensions of thermodynamics, we refer the reader
to some review articles that have appeared recently [12,13,53, 75].

The first two problems on which in the author’s opinion, EIT has played a
decisive role are in chemical kinetics and in generalized hydrodynamics. As it was
briefly mentioned in section 3 the mass action law which governs the kinetics of
elementary chemical reactions ocurring either in gaseous phase or in ideal solutions
had not find its place in a thermodynamic theory until EIT was formulated. When
written in a conveniente way [2-9] it clearly points out that the relationship between
the chemical driving force, de Donder’s affinity and the chemical flux (reaction
velocity) is far from being a linear one, emphasizing that chemical reactions are
highly non-linear processes. Only when the affinity is small compared with the
thermal energy (RT') the linear relationship between the force and the flux holds as
demanded by LIT. And this may be verified when we are close to equilibrium [44].
By raising the chemical flux to the status of an independent variable it was recently
shown [41,42] that, firstly the generalized mass action law which states that there is
a general relationship among the affinity, the temperature and the concentrations of
reactants and products, may be obtained without restoring to any specific model for
the participant species. Furthermore, if one introduces an additional assumption of
a mechanistic nature which in essence optimizes the nature of the reactive collisions,
Guldberg and Waage’s law is completely recovered. And moreover, if the diffusive
fluxes and the heat flux are included as fast variables several rather interesting
properties about the influence of these quantities in the reaction kinetics, are ob-
tained. A preliminary report on this question was published four years ago [43] and
further work is in progess. In short, EIT is the natural framework for the chemical
processes empirically described by the mass action law.

In the case of generalized hydrodynamics [35], nicely surveyed three years ago
by Alder and Alley [10, 82], the idea is to extend the linearized version of the Navier-
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Stokes-Fourier version of ordinary hydrodynamics to include effects that occur as
we go into the short wave length high frequency regime [35].

This effect is clearly seen in the computer simulations of the transverse compo-
nents of the velocity autocorrelation function, the longitudinal velocity autocorre-
lation function and the dynamic structure factor of a fluid which may be obtained
by neutron scattering experiments. When these quantities are calculated from first
principles [35,83-84], one finds that they obey a linear integral equation which in
general is both non local in space and time. The kernel appearing in such equations,
referred to as the “memory function”is therefore an expression for the correspond-
ing generalized transport coefficient. This quantity still contains the information
relevant to the N-body dynamics so that its explicit calculation has never been
accomplished in a rigorous way. In order to compare the theoretical results either
with computer simulations or with experiments, people have restored to ad hoc
models for such functions, being the exponential and the gaussian functions the
most popular ones [35,36]. The success of EIT in this field is that it allows for
a systematic way of actually deriving the memory functions from the full set of
equations describing the dynamics of the state variables. Clearly the results so
obtained will contain undetermined coefficients, like in all macroscopic formalisms,
which are to be extracted from experiment. Nevertheless forms of such memory
functions which many years ago were adopted ad hoe to describe the experimental
results have been derived for the transverse and longitudinal velocity correlation
function (85, 86], for the diffusion in an inert binary mixture [65], for viscoelastic
fluids [73] for the structure factor of fluids with internal degrees of freedom [87-88]
dielectric relaxation in complex materials [89] and so on.

There are a number of other interesting situations to which EIT has been applied
with encouraging results such as the theory of fluctuations [71,77-81], the constitu-
tive equations of non-Newtonian fluids [73, 73a, 76], thermoelectric phenomena [89]
the flow of fluids in porous media [67) suspensions of neutral brownian particles [70]
resonance phenomena in solids [90] and the properties of fluids driven onto far from
equilibrium stationary states by external gradients [50-53]. There is no space here
to even superficially cover each one of these topics so that we refer the interested
reader to the original sources.

6. Microscopic basis for EIT

One of the stumbling blocks that has hampered the study of non-equilibrium
processes either micro or macroscopically is that contrary to what occurs in equi-
librium where the concept of equilibrium state is unique, a great deal of laxitude
exists as to how to characterize a non equilibrium state. Except for the case of the
local equilibrium state concept basic to LIT, a theory which is well rooted from the
microscopic point of view, we know very little as to how to go about in defining a
non-equilibrium state and even less as to how to provide for a macroscopic basis for
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the phenomenological equations expected to describe its behaviour. EIT is not an
exception to this situation. There are many conceivable ways of extending the local
equilibrium state by adding extra variables [60,91,92].

In mostly all the work that we have referred to here, the fluxes have been raised
to the status of independent variables and the reason for it comes from the work of
H. Grad in 1949 [59]. The revival of his ideas to illustsrate that his work contains
the essence of an extended thermodynamics were published four years ago [93], so
we shall limit ourselves here to a brief discussion of them.

In his study of the possibility of finding general solutions to the full non linear
Boltzmann equation, Grad designed the method now referred to as the moment
method for solving that equation. The method is based essentially in expanding
the single particle distribution function in terms of a complete set of orthonormal
functions namely, n-dimensional Hermite tensor polynomials, around a local or a
true equilibrium state. The coefficients in this expansion are taken to depend both
on space coordinates and time. They therefore play the role of local macroscopic
variables and include the conserved densities: number density, momentum and en-
ergy. Their time evolution is given through an infinite set of coupled differential
equations whose solution requires some arbitrary way of truncating the system.
This truncation happens to be direct for the case of Maxwellian molecules and it
is such that if one keeps the first thirteen moments of the distribution function as
independent variables, one raises the heat flux and the symmetric traceless part of
the stress tensor to independent variables. This truncation is entirely arbitrary and,
in principle, one may keep as many terms as desired. Furthermore the local equi-
librium assumption is not involved nor the Boltzmann equation a priori linearized
as it occurs in the Chapman-Enskog method for its solution [97]. Therefore, the
broadening of the space of state variables is a consequence of the method itself.

One faces still two questions, the existence of an H-theorem which justifies
the identification of the n function of EIT with an entropy, and the possibility of
constructing an entropy balance equation. We recall the reader that the H function
for the Boltzmann equation satisfying the well known inequality dH/dt < 0 is a
global, general property of Boltzmann equation requiring only the existence of a
solution for some arbitrary initial conditions and the convergence of some integrals
in phase space. But the H function is proportional to the thermodynamic entropy
S only and only if the distribution function is taken to be a Maxwellian, local
or equilibrium [60,94-97]. Therefore if we substitute into the definition of H an
arbitrarilly truncated form of the exact solution of the Boltzmann equation we
should not expect to have the H theorem satisfied nor the resulting form for H
identifyable with a thermodynamic entropy. When the calculations are performed
with the thirteen moment form for the solution one finds that [93]

s Tl s sl ol v

pRT2 : = EWJQ : qu, (21)
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where T'ds stands for the local equilibrium entropy density of an ideal gas. This is
precisely of the form of equation (13) had we included there T in the space of state
variables. Notice however that in equation (21) the coefficients of the differentials
of the fast variables are given as functions of the local equilibrium variables p, the
pressure, p the density and T' the temperature.

One can also show that the p-balance equation is satisfied and that

—

1 g
i (22)

q

T, =

(SN

which corroborates the form for J, given in equation (17) in the case of a rigid
conductor; and that

ap = p1odg - Jg + F‘Ulj— 2 7“" (23)

where the coefficients pj9 and pg; are given in terms of complicated collision inte-
grals that we shall not write down here. Also, the general proof that o, > 0 is not
available, but this is a property not required by EIT although some of the adepts
to this theory do insist in including this condition [58,98].

It remains only to discuss the equations of motion for the state variables, in
particular those associated to the heat flux J, and the stress tensor T. Their full
form is too complicated to be reproduced here [60] but in the simplest approximation
they are of the form of the Maxwell-Cattaneo-Vernotte equation as exemplified by
equation (10) although they provide explicit expressiones for the corresponding
relaxation times 7; and 7;. Indeed, one finds that [60, 93]

L=060" T=(C6e)"

where A = (37/2)(2/mK)Y?A3(5), and K is the constant of the law of force, m
the mass of a molecule and A3(5) an integral whose numerical value is given in
the literature [97]. For chlorine, whose properties are well predicted by Maxwellian
spheres at room temperature, and taking the experimental viscosity (7 = 1218 x
107 gm sec™lem™!) to evaluate 2mK ~! one finds that these relaxation times are,
as expected, of the order of magnitude of 1071%sec. which coincides with a mean
free time.

Nevertheless, Grad’s method provides a solid basis for EIT. In a similar fashion,
fluids with internal degrees of freedom may be dealt with macroscopically, using the
methods of EIT [87] to derive the equations of motion of the appropriate macro-
scopic variables, which in turn may be obtained by applying Grad’s method to
solve the Wang Chang-de Boer-Uhlenbeck’s equation [99], the generalization of the
Boltzmann equation to polyatomic gases.

Once more, the comparison too much involved to be summarized here, shows
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that the postulates of EIT are fully contained in the framework of the kinetic the-
ory of gases. Thus, just as the Chapman-Enskog method to solve the Boltzmann
equation to first order in the gradients allows one to derive the basic postulates of
LIT [2], the moment method of Grad yields a kinetic foundation for the basic pos-
tulates of EIT. This last statement has been recently reinforced with the derivation
of the generalized hydrodynamic equations with explicit forms for the transport

coefficients as outlined in section 5, using Grad’s moment method of solution of the
Boltzmann equation [100].

One can also wonder how is EIT related to the basic principles of statistical
mechanics, as for instance LIT may be derived either from the ideas of linear re-
sponse theory [101] or from the Onsagerian approach to the theory of spontaneous
fluctuations [7,102,103]. Although a full answer to this question is still pending, a
partial answer may be sought if one examines the microscopic formulationof the
theory of irreversible processes set forth by Mori [101], and Zwanzig [105, 107] over
twenty years ago. The gist of this method consists in selecting amongst the 2fN
independent variables of a system composed of N particles, each with f degrees of
freedom, those whose relaxation times are the longest in comparison, for instance
with the time duration of a prototype measurement in the laboratory of a set of
macroscopic properties. This means of course that amongst the chosen set, the
constants and quasiconstants of the motion must be included. In classical statistical
mechanics, each of these dynamical variables will depend on the coordinates T in
phase space, and on time. We shall denote the set by {A;(T')} and emphasize on
the fact that their time evolution is dictated by the laws of classical mechanics.
But the quantities the observer is interested in are not the A;(T)'s themselves but
their numerical values a;, which are those obtained through experiment. However,
these quantities are not subject to the ordinary laws of mechanics. Thus one is
forced to seek the time evolution of their distribution function for given initial
conditions [107-110,110a). The differential equations obtained for such distribu-
tions are known as exact kinetic equations because they still contain the totality of
information related to the N-body system. The next step is to learn how to device a
method whereby we can extract the pertinent information which is directly related
to the macroscopic observable properties of the system. Surprisingly enough, it turns
out that such information may be shoveled into a set of variables which are, for a
large class of initial conditions [103,111,112] identical to the so called regression
variables introduced by Onsager in 1931 [5,7]. However, the differential equations
obeyed by these variables are far from being linear and moreover, they are non-local
in time.

At this stage of the procedure one has to invoke some type of scheme in order to
extract from such complicated equations, other simpler ones that may be compared
with available macroscopic theories. One of such schemes, certainly not unique,
is based on the existence of a slowness parameter in the system which governs
the time rate of change of the dynamic Ai(T") variables [104-110,113]. When this
parameter § is known to be less than one [A;(I,t) ~ § < 1], a systematic expansion
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may be performed in a power series in § which allows one to transform the exact
time evolution equations for the regression variables into one which resembles de
Kramers-Moyal expansion for the “master equation’ [115,116, 114]. At this stage one
is able to introduce several approximations, the most drastic one being removing
the non local character of the equations as well as neglecting the non-linear terms
in the a}. One winds up with linear equations for such variables which express the
linear regression assumption introduce by Onsager also in 1931, and thus recovers
the Onsagerian form of what is now referred to as the linear theory for spontaneous
fluctuations [2,5,7]. The remarkable fact about this theory is that the nature of
the {a} variables is not forcefully specified so that one may chose among them
non-conserved variables. In fact, in the strict Onsagerian form of the formulation of
this theory [7] the conserved quantities, which are those whose relaxation times are
the longest and therefore survive to become the equilibrium macroscopic variables,
serve as a basis to describe the reference state, taken to be the equilibrium state
around which the espsontaneous fluctuations take place. One may then easily prove
that all those spontaneous fluctuations which occur among non-conserved variables
and whose time evolution equations are linear regression equations, belong to a
class of processes that are macroscopically included in EIT and characterized by
Maxwell-Vernotte-Cattaneo type equations of the same structure as equation (10)
without the inhomogeneous term. Typical among these are homogeneous chemical
reactions ocurring very close to equilibrium so that the macroscopic fluctuations
may be charactrerized by the degree of advancement of the reaction, which is well
known to obey a linear law [2,6,9]. The chemical transport coefficient may then
be computed from the microscopic equations of motion and shown to be given by
a time correlation function of the chemical flux. This relationship was first derived
by Yamamoto [177] in 1960 using linear response theory. Other relaxation processes
may be shown to belong in the same category [118]. Thus a class of phenomena
naturally beloging to the EIT framework can be extracted in a systematic way from
first principle calculations. The macroscopic analogous of non linear and non-local
regression type equations [103,112-119] are still a subject of study.

Finally we shall also mention that the full form of the generalized Maxwell-
Cattaneo-Vernotte relaxation type equations for fast or non-conserved quantities
seem to follow from first principles calculations based in the projection operator
method [81-110a] and on Zubarev’s method known as the Non-equilibrium Sta-
tistical Operator Method [120]. Exhaustive studies on this latter approach which
look very promising have ben recently carried out by several workers [121] and the
connection with EIT seems to be on its way [122]. If this program is succesfully
accomplished one will have also solved the perennial question concerning the sta-
tistical mechanical justification of EIT.

7. Summary and outlook

A close examination of the material presented in this paper cleary reflects the
status of a theoretical framework that has been set forth to provide for an extension
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of LIT. Such an extension is further supported by a number of phenomena occurring
in nature which are beyond the scope of the linear theory. The theory is based on
iwo rather simple assumptions which describe the properties of a certain function,
taken to be the extension of the local entropy density of LIT, which is defined in a
space of state variables formed by the union of two subsets of variables, one given
by the locally conserved densities and the other one by a set of fast or non conserved
variables. With those assumptions one may derive a complete set of time evolution
equations for the whole set of state variables. The formalism is developed in such
a way that if the subset of the fast or non-conserved variables is the void set then
the results reduce themselves to those of LIT. In general, the full content of the
time evolution equations is difficult to analyze since they are highly nonlinear in
the state variables and contain unknown coefficients which are also not constants.
Therefore, in most of the work performed so far a number of approximations have
been introduced, namely:

a) The coefficients are assumed to be expandable in power series of the non-
conserved variables. In most of the systems dealt with so far only the first
coefficient has been retained.

b) Under the approximation stated in (a), the coefficients appearing in the time
evolution equations which now become linear coupled equations among the state
variables, are still space and time dependent through the locally conserved quan-
tities. Yet in practice they have been taken as constants.

¢) The two approximations described in (a) and (b) lead to time relaxation equa-
tions of the Maxwell-Cattaneo-Vernotte type. That they are indeed relaxation
equations which yield time decaying functions with positive relaxation times is
borne out by kinetic theory [93].

In this context the theory incorporates into the time relaxation spectra, those
times associated with the underlying fast variables. Emphasis should be laid on the
fact that this feature results from the approximations (a) to (c). Nevertheless, it is
precisely in this context in which the theory has been able to yield the successful
explanation of all the systems that were discussed in the text. Furthermore, it is also
in this context where it may be convincingly justified by the methods of the kinetic
theory of gases and of non-equilibrium statistical mechanics. This is rewarding but
far from being fully satisfactory. Some of the open questions that remain to be
aswered to enhance the power of the formalism, are:

i) A study of at least a class of non-linear time evolution equations relevant to
known phenomena is desirable. Lack of experimental results makes this task
rather difficult.

ii) The analytical behaviour of the coefficients appearing in the time evolution
equations is doubtful near points of instability, critical points, etc. Thus the
validity of assumption (a) in these cases, is questionable.
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iii) The relationship between EIT and the laws of microscopic physics beyond the
realxation type equations satisfied by fast variables close to equilibrium is not
yet known.

iv) The nature of the fast variables to be included as state variables has been a

long debated issue. No definite agreement exists yet on the physical criteria one
must use to select them.

v) The physical significance of the 5-function is lacking, in spite of the fact that for
some very particular cases it exhibits all the properties of the entropy function.

vi) The behaviour of truly complex systems such as glasses, supercooled liquids,
polymer solutions, melts, etc. is stilll outside the reach of EIT.

vii) Its extension to include non local effects in space and time is not available.

Other aspects such as the uniqueness of the theory, its comparison with other
versions of extended thermodynamics, the mathematical properties of the space of
state variables, etc. may still be added to this list and when regarded altogether are
clearly indicative of the enormous task that still remains for the future.
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Resumen. Desde hace veinte afios se realizan esfuerzos por tener una
vision mds amplia de los procesos termodindmicos no lineales irre-
versibles. Dichos esfuerzos han surgido del hecho que existan fenémenos
en estados que no estdn en equilibrio y que se encuentran fuera del
caso lineal. Se presenta un resumen de un método cuyos conceptos des-
cansan sobre principios fisicos estrechamente relacionados con los pro-
cesos termodinamicos lineales irreversibles. Se tratan exhaustivamente
el conjunto de ideas detrds del método, asi como su comparacién con
el experimento y su derivacion de la fisica mesoscépica y microscépica.
Finalmente, se ofrecen problemas que no han sido resueltos.



