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Abstract. In the past twenty years a n1lmber of efforts have heen
undertaken to broaden the scope of linear irrev('fsihle thermodynamics
(LIT). These efforts have stel1led from the fact that there are a Ilumber
of phenomcntl. onrring iu nOlH'quilihrium states Iying clearly beyond
the linea.r l'C'gilllC'.I1ere we presC'llt a revicw of olle of s1lch efforts whose
underlyillg ('OllcC'plualizatioJl is h<ls(>d mor(> 011 physical ideas closely
COUIlC'Cl{,¡Jwith LIT. 'I'lle fralllC'\.....ork of idC'a..~behind this method as
weH as hoth its {:omparisoll with C'xperimellt aud its derivation [rom
mesoscopic and microscopic physics is exhausli .....cly dealt with. Ullso1ved
problems and an outlook are offen.'d at the end of tite papel'.

PACS: 05.70.Lllj 05.40.+j¡ 47.10.+g¡ 82.20.!\lj

1. Introduction

The study of time depcn<!f'llt thennaJ plH'1l0IlH'na o(,lIlTing in several \.ypcs of l11acro-
scopic systcms dates haek to tJw 11lid lJint.e{'lllh ("(,lltury with tJw discovcry of lhe
thcrrnoeJedric dred s klL()WIlas 1.111'1'('11in Ilf'ilt conclnct.ioll ane! t he S(,•.lwck eHect.
The first theordica! eXplilll<llioll \\';)S pro\'id(,d in u~:¡\by \V. 'I'holllson (1.11<'1'Lord
Kdvin) on lhe grolll1ds of 1.l1('st ill !lO!. \\"('11d('\'(,lol){'d sci(']l('(' of l1wl'lllodynil.J]lics.
By thc clId of lhe n'lltury i\ I"rg(' 111\11\1)('1"of wll¡lt. \V(' 110\\'dilSif.v ¡lS irn'H'["si!>lc pro-
cesscs, w('r(' w('l1 knowll hu\. !lO forlllal 11l('ory, \witlH'1" 1l1iH"I"OScopicHUI" 1l1icl"oscopic
had becn deve10IH'd lo (,01)(' \\'it.h tlwlII. \VI' slli\11 ]lot {h\"f'11hen' al ¡dI in l,l\(' historie
aspects of non-equilibriulll pron'ss{,s bul n-[('r lJlC' ]"(',I(it-I" Lo t.Iw approprii\t.l' soul"('('s
in the literatlll'e {!, :;1.

Thc firsL, and 1'0 far 1Il1iqllf' l1li\cros("opic t.h{'ol'~' thilt ]¡;¡s Iw(,1l set. fort h lo eXlcll{l
the conccpts of eqllilihrilllll tlH'l"lllOdYl\illllics (11]{,l'Il1ost;¡tics) lo lIoll-l'qllilibriull1

•Also at Colegio ~a('ional
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states is hardly sixty years old. Based on the ideas introduced by de Donder [4]
around the early twenties and Onsager's reciprocity theorem proved in 1931 [51,
Prigogine, Meixner and Casimir in the mid forties developed what is now known
.., linear non-equilibrium thermodynamics [2,6]. In 1953 Onsager and Machlup [7)
reformulated the original version oí Onsager's proposal, mainly dealing with the de-
cay of spontaneous fluctuations around an equilibrium state. This theory, although
having several things in common with thc Prigogine-Casimir-Meixner version should
really be taken as an independen treatment of non-equilibrium processes. We shall
come back to this point later.

Thus, linear irreversible or non-equilibrium thermodynarnics (LIT) is a well
established theory. Based 00 four postulates, it has been able to describe a wealth
of phenomena in complete agreement with experiment [8,9]. These phenomena en-
compass many fields in science, from physics and physical chemistry, to biochem-
istry, biophysics and many branches of engineering. In the past ten years we have
a150learned that LIT has severe limitations [10,11]. A large number of phenomena
ocurring under well defined conditions, or others by their own intrinsie nature, do
not comply with one or several of the basic postulates of LIT. Qne is therefore
posed with the challenge of either trying to derive a tbeory from first principies
which is capable of explaining them, or eonstructing a phenomenological framework
extending the scope oí LIT in order to provide an adequate deseription for them.
Efforts in both directions have been made in varÍous ways giving rise to what may
DOW be termed extended irreversible (non-equilibrium) thermodynamics (EIT). This
implies that up to now there is no unique theory coping with these systems. But
the non-negligible amount of situations that have been adequately handled by one
oí these efforts as well as the fact that it has been also rooted in more mesoscopic
and even microscopic concepts justify a systematie presentation including its scope
and limitations. This is precisely the rea..c;onfor the title and for the paper itself.
In the past seven years a small group of people h.., developed a method to handle
systems whose states lie beyond the reach of LIT [12,13). In this paper, I would
like to surnmarize in a systematic way the underlying ideas behind such method,
the nature of the results drawn from its connection with the basie principies of
statistical mechanics and which arel at present, its limitations. Technical details
will be avoided but an extensive literature will be cited where the reader may find
aH the pertinent information.

To keep the paper self contained, seetion 2 is devoted to a brief summary of
LIT. In section 3 sorne of the many systems whieh are beyond the scope of LIT are
discussed, thus servíng as a justsific~tion for a broader thermodynamic framework.
In section 4 we discuss the maio ideas behind EIT; in section 5 we ennumerate
the most relevant aceomplishments oí the theory¡ in section 6 we discuss how its
basie equations are rclated to fundamental microscopic laws of physics and finallYI
in section 7 the present limitations will be mentioned which will serve as an outlook
for the future.
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2. Linear non-equilibrium thermodynamics

Linear irreversible or non-equilibrium thermodynamics (LIT) is based on four
fundamental assumptions which will he briefly sketehed here for the sake of con-
venience. For a broMer treatment of the subject we urge the rcacler to consult the
references listed at the end of this paper [2,6,8, 9J.

The first assumption known as the loca.l equilibrium assumption starts from
the basic idea that the states of the system may be dcscrihed by locally conserved
densities such as rnass, chargc, momentum, energ)\ etc. Furthermore, it establishes
that a local entropy density exists which depends on the position and time only
through a funtional relationship with these densities. In the ca..<¡eof a simple fluid
this relation is expressed as

.(r,t) = sie(r,t),p(r,t»), (1 )

where p(r, t) and e(r, t) are the local mass and energy densities, respectively. It
may also depcnd 00 the coocentrations of the different components which form the
various phases in an open system. Notice that equation (1) is formany identical to
the thermostatic result expressing the entropy S as a function of E, the energy,
and V, the volume. If one uses equation (1) to compute dsJdt and restores to the
conservation equations which are satisfied by the loca.lly conserved densities, one
arrives at the well known equation, [2,6,9]

ds
P di + V. J, = ", (2)

where Js = JqJT, Jq being the heat flux vector in the case of dosed systems
d/dt = a/al + u. V, where u(r,t) is the hydrodynamic velocity and" a quantity
known as the entropy produdion defined as:

J, T., T
,,=--.VT--'(Vu) --V.u

T' T' T' (3)

Rere, the momentum flux or stress tensor T has been decomposed into its nOD-
viscous part, p(r, t) the local hydrostatic pressurc and a viscous part whose traceless
part is t and T ¡ts trace. AIso (A.)' dcnotes thc symrnetric traccless part oC any
arbitrary tensor A.

The second assumption oC LIT is that

(4 )

which as it is shown in the literature [2,9] may be regarded as the extension of
the second law oí thermodynamics to I1on-equilibrium phenomena. It is worthwhile
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stressing that equations (2) and (3L which are not unique as far as the several
ways that J" and (J' may be expressed, although preserving always the structure oC
equation (2), are in any case a direct consequence oC the conservation equations and
the validity of the local equilibrium assumption.

The third assumption of LIT is related to the fad that the conservation equa-
tions, five in total for a simple fluid, (ontain fourteen unknowns. To supply the
necessary additional inCormation one restores to experiment to find a way of relating
the unknown quantities, the heat flux Jq and the momentum flux T to the state
variables p, u and T, the local temperature. The outcome of this search is that
within a certain range of the thermodynamic forces, given by the gradients of the
state variables, this relationship is a linear one. LIT thus adopts this fact as a
postulate requiring that if 9 is a column vector whose components are the fluxes
and :F another one defined by the forces.

g=AF, (5)

where A is a matrix whosc elements do BOtdepcnd Oil F but only on the equilibrium
state variables of the system. For a simple fluid,

(t)=(~ o
ry
O

(6)

where K., r¡ and ~ are the thermal conductivity, the shear viscosity and the bulk
viscosity of the fluid respectively, and are functions of tlle equilibrium density and
temperature only.

If one substitutes equation (6) into equation (3) a quadratic form for a is ob.
tained,

(VT)' (VU')' (V. U)'(7=<- +ry- +(--T T T (7)

which according lo equalion (4) can hold Irue only and only if < > O, ry > O and
{ > O, a set of results well confirmed by experimento

In more complicated systems where A has non-zero off diagonal elements, it is
assumed that A == AT, its transposed, meaning that the matrix is syrnmetric. The
proof of this statement from the microscopic equations of motion was Onsager's
great achievement now known as the reciprocity principie [2]. Introducing this re--
quirement into the framework of LIT leads to a complete set of partial differential
equations, usually non-linear, whose solution depends on the information available
for the initial state and the boundary conditions.

At present, it has been possible to determine experimentally [8,9J the conditions
under which this linear formalism describes non equilibrium phenomena in a wide
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variety of systems. But on the other hand, we are also aware of roany non.equilibrium
states ror which this theory is uncapable oC providing a satisfactory account oC
phenomena ocurring among them. They will be qualitatively described in the next
seetion.

3. Non-equilibrium sta tes beyond LIT

One oí the first objections that was raised against LIT is that some oC the
differential equations describing the time evolution oí the disturbances propagating
in a medium predict their propagation with an inCinite velocity. Such is the case
oC the heat conduction equation in a rigid heat conductor (p = const., u(r, t) = O,
T = O) Cor which the energy conservation reads as

ae
Pat +'V.J, =0. (8)

Using the local equilibrium assumption to set [Jejat = Cv8pj8t and the linear law
IEq. (6)] so that Jq = -,..,VT, one readíly arrives at the heat conduction equation,
namely

aT = D'V'Tat ' (9)

where D is the thermal diffusivity deCined as D = Kj pCv. Ctearly the abscncc oC a
term c-282Tj8t2 in this last equation can be accounted for only if e = oo. In order
to overcome this difficulty Vernotte [14Jand Cattaneo [15J independently, proposed
to substitute Fourier's equation by a relaxation equation for Jq name1y,

iJJ
-Toa! = J, + <'VT, (10)

where Tq is a re1axation time assumed to be finitc. \Vhen equation (10) is substituted
into equation (8) one obtains that

a'T aT 2
Tq at' + a¡ = D'V T, (11 )

where c-2 = Tq so that thc temperature disturban ce propagates with the cer-
tainly large but fiot inCinite velocity Tq-l/2. Equation (11) belongs to a class oC
equations that were known since the mid term of the last century. In fact, it was
Kohlrausch [16] who first arrivcd at an equation of that type when examining the
behaviour of glass fibres and later, in 1867 Max\vell [17] argued that in a viscous
body the state oí stress will tend lo disappear at arate which depends on the vatue
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of the state of stress and the nature of the body. Thus the class of equations of the
type (10) which assign a finite relaxation time to the rate of disappearance of a
flux are now referred to as Maxwell-Cattaneo. Vernotte equations. They served as a
basic idea il! the formulation of one version of extended thermodynamics known as
the wave approaeh [18J.

Besides this objection, it is known that there are many other systems which can
be driven into non-equilibrium states whose description lies beyond the scope of
LIT. Perhaps the oldest example of this fact was pointed out by Osborne Reynolds
in 1885 [19,201 when he filled a leather bag with marbles toped it with water and
then twistea it, thereby inducing a shear. The water level drops because the close
packing of the marbles is disrupted as layers of them slide past each other, as a
result the marbles are further apart on the average creating spaces that the water
has to fill. This of eourse implies that the marble density N/V deereases when
the system is subject to shear at constant pressure and temperature. Therefore the
local equilibrium assumption is violated since the density is no longer a function of
the pressure and temperature, it depends also on the rate of shear (twisting). The
fad that p(T, P;1) < p(T, p; O) where I is the shearing rate is ealled shear dilation.
A similar phenomena pointed out by D. Burnctt in 1934 whereby the viseosity of
fluids dcereases with / is known as shear thinning. Other examples of systems that
appear to be in contradiction with this one or another oC the basic postulates of
LIT will be disctlssed bricfly.

Consider first the case of sound absorption and dispersion by monoatomic
fluids [21-27]. The dispersion relation computed from the lillearized version oí the
Navier-Stokes-Fourier equations of hydrodynamics is in agreement with experimen-
tal data only in the region oí low frequencies. Although the discrepancy is partially
improved by including in the calculation the corrections that come írom the linear
terms which are oí higher order in the gradients, the so called linear Burnett and
super Burnett terms [28]' there is a complete disagrcement between theory and
experiment at high írcqueneies [13,21]. Care should be taken in assessing these
results since the non linear terros inherent in both the Navier-Stokes and Burnett
regimes have never been included in the analysis. Nevertheless, since they represent
corrections of higher order in the wave number 1'C ""-' ).-1 it is doubtful that they
represent a potential improvement of the theory.

The formation of shock wave ~tructures in matter has been extensively studied
both theoretieally and experimentally [30,281. For the case of weak shocks the Maeh
number M = u/va! va being the velocity of the medium beíore the shock wave and
u the velocity of the shock wave, is oí the order of one, so that one can attempt a
solution of the linearized equations oí hydrodynamics to get the values oí relevant
quantities such as the density profile, and the thickness oí the wave,in powers oí
(M - 1) [29J. Comparison of this type of ealculations with the rather precise set of
measurements performed by AIsmeyer in 1975 [3D}, c1earlyshows that beyond Mach
numbers of the order of 1.75 neither the Navier~Stokesequations nor the oorrections
due to Burnett terms agree with experiment {31].
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A much more drastic íailure oí LIT is observe<!in viscoelastic media and poly-
meric fluids (10). For these systems, the ordinary linear constitutive laws of the
Navier-Newton-Fourier hydrodynamics as written in equation (6) are uncapable of
describing the flow oí liquids containing polymers. Bere, one is dealing of course with
fluids composed oí very large molecules, macro~moleculcs whose typical molecular
weights range from 105 to 109. A similar comment is valid for viscoelastic fluids or
materials such as rubber. A rather elahorated treatment of the flow of polyrneric
fluid. has heen developed in lhe pasl len year. [32-34} bolh from lhe phenomeno-
logical and the kinetic point of view as well. The ensuing hydrodynamic equations
fail lo belong lo LIT .cheme.

The subject now known as generalized hydrodynamics, understood as the effort
to extend ordinary linear hydrodynamics which is valid in the low frequency, long
wave length limit, to inelude higher frequencies and smaller wave lengths ¡lO, 35}is
also known to be at odds.with LIT. In fact, the shape of the dynamic structure factor
for simple liquids such as Ne and Ar obtained with neutron scattering teclmiques
cannot be accounted for in such high frequency small wave length regime using the
Navier-Newton-Fourier equations of hydrodynamics [35,36]. The structure shown
by the Rayleigh peak under these conditions can be accounted for by arbitrarily
proposing that the transport coefficients appearing in these C<luationsbecome both
frequency and wave length dependent. From the thermodynarnic point of view this
is in contraposition with the local equilibrium assumption.

The last and also the oldest example 1want to quote in this paper to exemplify
the need to extend LIT, is pro.,;ided by chemical kinetics. The introduction of the
degree of advancement variable in a homogencous chemical reaction as a "displace-
ment" variable and the chernical affinity as the thermodynamic force necessarily
requires of an extension of the thermodynamic space of state variables. even in the
context of thermostatics [37J. And furthermore it has been known for many years
tbat the mass action law a.s formulated by C.M. Guldberg and P. Waage over one
hundred and twenty years ago (38-40} which holds true for elementary reactions
ocurring in gaseous phase or ideal solutiolls hes beyolld the scope of LIT [41-42].
Understood as a constitutive cquation rcla.ting the chemical flux with the affinity
(force), it is a highly non linear cquatioll whose macroscopic status is beginning to
manifest itself in a more transparcnt ~ay [42-44). The failure of LIT to account
for aH of these phenomcna and otber such as supercoolcd liquids [45-47], the glass
transition {46-49],fluids driven far away from cquilibrium ioto steady states [50-53]
and so on, raises the obvious question as to how can one extend such a [ormalism
with the hope of incorporating iDto it SOIne,or al! if possible, of thesc phenomena.
This is tbe main subject to be dealt within the following sections.

4. Extended irreversible thermodynamics

Starting from the assumption that any reacler is convinced by now that ther~
exists a legitimate task of enlargening the scope of LIT to include the wide variety
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oí phenomena sketched in the previous section, we now devote ourselves to the
discussion oí one possible way of doing so. A word oí caution is required since ex.
tended irreversible thermodynamics (EIT) is far from implying a unique framework
to undertake such a programo 'fhere exist in the lilerature under the same or a
similar heading, a wide variety oí proposals which claim extcnsions of conventional
thermodynamics in one or othcr direction [12,18,53,92]. The one to be presented
here originatcd in sorne ideas set forth by Meixner around twenty years ago and that
wcre more or less put into the form of a theory by 1. Mueller in 1967 [54). Later on
Lebon [12] in Uelgium and Casas-Vázquez, Jau, Rubí [12,55,56,57,58) and others in
Spain shaped them into a more thermodynamic-like context and attempted to relate
them with kinetic theory. Mention should be marle that from an entire1y different
point of view and without pinning any name to the results, H. Grad had actually
derived this version oC EIT Cromkinetie theory already in 1949 [59,60]. Out his work
had another objectives and its content1 in this conlext, passed completely unnoticed.
The present version of the theory has been developed in Mexico by the autbor of
this paper and a smalI group of collaborators. It has many features in cornmon to
the views oí the originators but its physical conceptualizatioo is somewhat different.
I will avoid a critical comparison of the differcot versions of the thcory as well as its
comparison with others because of space rcasoos. The interested readcr may f¡nd
these aspeets dealt at length in many different sources [13,61,62].

Por strictly pcdagogical rcasons the discussion of the undcrlying principies be--
hind lhis theory will be sel íorth using as a prolotype syslem a rigid infinite con.
ductor which bejng at rest, has a zero velocity u(r, t) ::;:Oand a constant density
p(r, t) = consto Therefore, it requires only of lhe energy density e(r, t) as the single
conserved variable nccessary to describe its thermodynamic stales, according to
LIT. The transcription of the results here obtained to her complicated systems
sueh as f1uids [63-64) binary mixtures [65-66], porous media [67]' suspensions [70]'
dielectric relaxation in complex materials [68-69], chemical reactions [41,44,71] and
others (72-73aJ have been dealt with in detail and as the reader may easily convince
himself it is more a qucstion of semantics and laborious algebra and 110tof the basic
physics ¡nvolved in the procesS.

According to our previous discussions the majo stumbling block in LIT ham-
pering ¡ts extension to a wider class of phenomena lies in the local equilibrium
assumption. This assumption states that only the locally conserved densities which
are even under time reflections are required to appear as independent variables in
lhe local entoropy which is further assumed to be a time and space independent
funclional of these variables. Therefore, what we are seeking for is to enlarge this
space in a way which is al least asymplotically consistent with this condition. As
H. Grad pointed out in 1949, the best candidatcs to be raised to the status oí
independcnt"variables in the case of fluids are the f1uxes themsclves, Jq, T, and
T, where we follow the notation used in earlier sections. And this is precisely the
content of Mueller's assumption, to postulate lhe existence oC a "generalized entropy
function" which will dcpend not only on the locally conserved densities hut aloo 011
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a set oí fast or non.conserved quantities which he chose to be the fluxes. In the case
or OUT rigid conductor the only flux is Jq, the heat flux, so that we would have that

~ = ~(e,J,), (12)

where '1 is by assumption, a continuous and al least twice differcnliable fundion.
Bul we shall altogether avoid referring lo it as .an enlropy or any other similar
names. Then,

d~ = (~~) J, de + (:J~),dJ,. ( 13)

Rere, the two differentiaJ coefficients appearing in equation (13), a scalar and a
vector respectively, can be funclians oí aH the salar invariants and vectors which
may be defined in the space oí slate variables [123]. These are e, Ji 1 J:, eJ;, ""'
elc. and the vector Jq•

Therefore,

(~)J,= f(e,J;, ... ); (:J). =g(e,J;, ... )J,.

If we manipulale equation (13) w¡lh the fuIl informalion conlaincd in these coef-
ficients we immediately acrive at higly non-linear equations whose fuIl significance
is still obscure. We therefoce introduce the approximation consisting in expanding
functions, such as f and 9 aboye, in power series oC the non-conserved variables
around the local equilibrium state. Keeping the lowest order (first term) in these
expansions and remembering lbal (a~/aehoc."l. = (as/ae) = T-1, where T is lhe
local equilibrium temperature, the firs~ equality following from the fact that for
local equilibrium Jq = O and '1 reduces to the local entropy s, we may cewrite
equalion (13) afler dividing by di as,

d~ 1 de dJ,- = -- + g(e)J .-
di T dt 'dt

(14 )

which is c1early the first order generalization of the Gibbs equation in LIT {2,6, 9}.
Rece g(e) is of course an undetermincd function of Lhelocal energy density e(r, t)

The objective of any thermodynamic theory is to provide foc a complete set
of equations foe the variables describing the sLates of the system. In this simple
example this means we are requiero to determine the time evoluLion equations for
e(r, t) and J,(r, t).

But the former Qne is known, it is the balance equation foc the energy density,
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namely

(15 )

The qllcstion is how to obtain the time evolution equation for Jq. For this purpose
we introduce the second assumption of this theory, namely, that 71 satisfies a balance
type cquation, neccssarily of the form

d'l
Pdt +\7.J.=<7., (16)

where J'I is a vector and (7'1 a scalar both defined in the space of state variables.
Following the steps leading to equation (14) this clearly implies that

J. =/3(e,J;, ... )J, "" /3(e)J" (17)

where f3(e) depends only on e(r, t). 011 the otller hand (7'1 is the most general
scalar that may be constructed in the space of state variables thcrefore implying
that the operations indicated in the left hand side of (16) must lead to quantitie:s
necessarily defined in such a space. Thlls cquation (16) may be interpreted as a
c10sure assumption whose full potentiality has been discussed and exploited in more
complex systems [72,73]. Mathematically, this meallS that

<7.= X,, J, = p(e,J;, ... )J,' J, ""p(e)J,. J,. (18)

But we have another independent way of computing (7'1 using equation (14) and
the divergence of J'I computed fram equation (17). When we compare the two terms
for at¡ we come to the result that

dJ, 1
pg(e)J, .dt - 'i,\7. J, + /3(e)\7. J,

+ J,' \7/3(e) = ¡,(e)J" J,.
(19)

Now we impose the obvious restriction that when the subspace spanned by the fast
variables is the void spacc, cquation (16) must rcduce to equation (2), the true
entropy balance of LIT with <7 given by equation (3). This immediately imposes the
requirement that /3(e) = 1fT and c-quation (19) reduces to

pg(e) dJ, = __ l_\7T-' + J,.
p(e) di ¡,(e) (20)

Furthermore, if thc left hand side of (20) is such that it is very small compared with
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the terrns in the r.h.s., what may be called. the stationary value of Jq is reached,
lhen

which is precisely Fourier's equ.lion if /'(e) = (~T2)-1 C.lling now -70 = P9(e)~T2
the relaxation time for the heat flux Jq we get that

dJ,-7odt = ~VT+ J,. (lO)

This is precisely equation (10), the equation proposed. by Vernotte and Cattaneo
to remove the inconvenient inf¡nite velocity that ariscs from the LIT Cormalism.
Hut sorne other rather pertinenl commems are sorncwhat useful. The first one
is addressed to the nature oC equation (lO), in the sense that it is by no means
representative of the generality behind the postulates of EIT. It actually stands for
a first approximation oC the theory arising froID the fad that we have kept only
the first term in lhe power series expansions in terms of the fast variables of the
coefficienls .ppe.ring in equ.lions (13), (17) .nd (18). When lhis reslriclion is
partially removed, one is lead to much broader results [74,75], including the possi.
bility oC obtaining non-linear lime evolulion equations whosc full physical meaning
is still uncIcar. A second comment is concerned with the possibility oC dcriving the
ordinary constitutive equation required for instance in hydrodynamics. When the
relaxation equations for the fast variables are projected onto the subspace spanned.
by tbe locally conserved quantities by formally setting the relaxation times such
as Tq equal to zero then, as secn abovc, one recovcrs Fouricr's equation íor heat
condudion and so on. In thc general case oC a simple fluid the Burnett and higher
order equations oí hydrodynamics may be derived. (27,63, 76], and similar situations
are found in viscoelastic media [73]' dielectric solids [69]and so OIl. Prom this point
oC view, the enlargening of the space oC state variable by including Cast variables
may very well serve as a basis to search for a more concrete dcfinition of the up
to now somewhat fantasmagoric concept of "far away from equilibriurn". The lhird
pertinent eornrnent deals with the nature of the phenomenological coefficients ¡.t, g,
etc. which appear in the thcory. Qne must keep in mind that they are quantities
which are still space and time dependent through the loeally conserved. densities.
In many applications, in order to simplify the solution of the resulting differential
equations, lhey are taken as constants hut this is an additional approximation.
And moreover in equations such as equation (10), Jq may be determined from the
microseopic iníormation contained. in the time spacc correlation functions of the
f1ucluations in the fast variables, the heat flux in the case just mentioned 177-81].
AIso one is i:Lbleto show that g(e) < Oas equation (10) demands. This provides a
conta.d between the macroscopic theory and microscopic dynamics. \Ve will come
ba.ck to this question later on.
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SUlllmarizjng the rcsults of this sect.ioll, \Ve IlHIYcondude by sL1ting tha.t tile el'!'
in tlle vcrsion here offcred, reprcsl'nt.s ¡UI improVClllt'ut OH LIT iu that jt pcnnits tI'i

to indude in the formalislTl jnformation capable in principie lo cope w¡th phenomcna
beyond the "cope of LIT. Thi., statelllcnt will be darified furthcr in the following
section dcaling with applical iOlls.

5. Applications 01 EIT

Although many of tile applieatiolls of EIT J¡¡t\"e dwclt \\"ilh lhe qu('stions men-
tioned in section 3 of this papel' that kad to t.la- formulation of lhe theory, not
aH of them have bccn studicd so 1"ar,likc shock wan,'s, where(ls lIIany others- have.
Thercforc, to keep track of facts, the applications mClltioncd hcrc are taken in a
more 01' less chronological order, ami flll'thermorc the list is to be understood as
being indicative and not as an CXhi'lllstiveone. For thc more complete aspects oC the
thcory as well as ot1l('r views of cxtcnsiolls of thcl'modynamics, we rder the ,ea<ier
lo sorne review articles that have appeared recently [12,13,53,75].

The first two problems on which in the allthor's opinion, EIT has played a
decisive role are in chemical kinetics and in gCllcralized hydrodynamics. As it wa..."
briefly mentioncd in scction 3 the Illass actioll law which govcfIls the kinelics of
elementary chemical reactions oCllrring either in gaseo liS pha.'5c01' in ideal solulions
had not find its place in a thermodynamic theory unlil EIT was fonnulaled. \Vhcn
written in a conveniente way [2-9] it c1early points out that the relatiollship belween
the chernical driving force, de Donder's affinity and the chemical flux (reactjon
velocity) is far from being a linear one, empha.'5izing that chemical reactions are
highly non-linear proccsscs. Only when the affinity is small comparcd with the
thermal energy (RT) lhe lineal' rclalionship betwcen the force and the flux holds a.'5
demanded by LIT. And this may be verified when we are close to equilibrium [44].
By raising the chemical flux lo the status of an independent variable jt was recentIy
shown 141,42) that, firstly tlle generalizc<i Illa.'5Saction law which states that there is
a general relationship among the affillity, the temperature and the concentrations of
reactants and products, may be ohtaincd without l'estOl'ing to an)' specific model for
the participant spccit.'S. Furthennore, if one introduces an additional assumption of
a mechanistic nature which in essence optimizes the nature of thf' reactive collisions,
Guldbcrg and \Vaage's law is completely recovered. And moreover, if the diffusive
fluxes and the heat flux are inc1uded as fast variables several rather interesting
properties about the influcnce of thcse quantities in the reaction killetics, are oh.
tained. A preliminary report on t.his r¡lH'stioll \\-'aspublished four years ago [43] and
further work is in progess. In short, EIT is the natural framework for the chemical
processes empirically described by the lTIassaction law.

In the case of gencralized hydrodynamics [35]' nicely surveyed three years ago
by Aldcr and Alley [10,82], the idea is to extend the linearized versioll ofthe Navicr-
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Stokes.Fourier version of ordinary hydrodynamics to inelude effccts that oceur as
we go into the short wave length high frequeney regime [35].

This effect is c1early secn in the computer simulalions of the lransverse compo-
nenls of the velodty autocorrelation function, the longitudinal velocity autocorre-
lation function and the dynamie strueture factor of a fluid which may be obtained
by neutron scattering experiments. When these quantities are ealculated from first
principies [35,83-84], one finds tha! they obey a linear integral equation which in
general is both non local in spaee and time. The kernel appearing in such equations,
referred to as the "memory function"is therefore an expression for the correspondo
ing generalized transporl coefficient. This quantity still eontains lhe information
relevant to the N-body dynamics so thal its explicit calculation has never been
accomplished in a rigorous way. In arder to compare the theoretical results either
wilh computer simulalions or with expcriments, pcople have reslored to ad hoc
models for such functions, being the exponential and the gaussian functions the
mast popular ones {35,36]. The success of EIT in this field is that it allows for
a systematic way of actually deriving the memory functions from the fuIl set of
equations deseribing the dynamics of the statc variables. Clearly the results so
obtained will contain undetermined coefficicnts, like in all macroscopic formalisms,
which are to be extracted from experimento Ncvertheless forms of such memory
functions which many years ago were adopted ad hoc to describe the experimental
results have been derived for the transverse and longitudinal velocity correlation
function [85,86], for the diffusion in all ioert binar)' mixture (65]. for viscoelastic
f1uids [73) for the structure factor of f1uids with internal degrccs of frcedoro (87-88)
dieleclric relaxation in complex material s [89] and so 011.

There are a number of other intcresting situations to which EIT has becn applied
with encouraging results such as the thcory of fluctuations 171,77-81), the constitu.
tive equations of non.Newlonian f1uids [73,73a, 7u), therrnoelectric phenornena 189]
the f10wof fluids in porolls media [u7}suspensions of neutral brownian particles ¡70]
resonance phenorncna in solids [90Jand the properlics of fluids driven onto far from
equilibrium stationary states by external gradients [50-53). 'fhere is no space here
to even superficially cover each one of these topies so thal we refer the interested
reader to the original sources.

6. Microscopic bas¡s for EIT

Qne of the stumbling blocks that has hampered the study of non.equilibrium
processes either micro 01" macrascopically is that contrary to what occurs in equi.
librium where the concept of equilihriulll statc is unique. a great deal of laxitude
exists as to how to characlerizc a non t'quilibrium state. Except for the case of the
local equilibrium state concept basic to LIT, a thcory which is weHrooled fram the
microscopic point of view, we know very little as to how to go about in defining a
non.equilibriurn statc alld even less as lo how to provide for a macroscopic basis for
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the phenornenological equations expeded to describe its behaviour. EIT is not an
exceptioIl to this situation. There are rnany conceivable ways of extending the local
equilibrium state by adding extra variables 160,91,92].

In mostly aH the work that we have referred to here, the £luxes have becn raised
to the status of independcnt variables and the rcason for it comes from the work of
H. Grad in 1949 [591. The revival of his ideas lo illuslsrale lh.l his work conl.ins
the essencc of an extended thermodynarnics were published four ycars ago [93J, so
we shall ¡¡mit ourselves here to a hrief discussion of them,

In his study of the possibility of finding general solutions to the fuU non linear
Boltzmann equatioIl, Grad designed the rnethod now referred to as the moment
method for solving that equation. The method is based essentially in expanding
the single partiele distribution function in terms oC a complete 'set of orthoflormal
functions nameIy, n-dimensional Hermite tensor polynomials, around a local or a
true equilibrium state. The coefficients in this expansion are taken to depend both
on space coordinates and time. Tltey thereCore play the role of local macroscopic
variables and inelude the conserved densities: number density, momentum and en-
ergy. Their time evolution is given through an infinite set oC coupled differential
equations whose solutioll requircs sorne arbitrary way oC truncating the system.
This trullcatioll happens to be direct Cor thc case oC hlaxwellian molecules and it
is such tllat if one kceps tile first tilirteen rnOTIlcntsof the distribution function as
indcpclldent variables, one raises tite hcat flux and the syrnrnetric traceless part of
the stress tensor to independent variables. This truncation is entirely arbitrary and,
in principie, one may kcep as many terms as desired. Furthermore the local equi4
librium assumption is not involved nor the Boltzmann equation a priori linearized
as it occurs in tile Chapman4Enskog rnethod for its solution [97]. Thcrefore, the
broadening of the space oí slatc variables is a cOllsequence of the method itself.

One faces still two questions, the existence of an IJ -theorern which justiCies
the identification of the r¡ function oC EIT with an entropy, and the possibility oí
constructing an entropy balance equation. We recal! the reader that the 11 Cunction
for the Boltzmann equation satisfying the well known inequality dIl/dt :S O is a
global, general property oC Boltzrnann equation requiring only the existence oC a
solution for sorne arbitrary initial conditions and the convergence of sorne integrals
in phase space. But the JI fundion is proportional to the thermodynamic entropy
S only and only if the distribution Cuudion is taken to be a Maxwellian, local
or equilibrium [60,94-97]. Tilerefore ií we substitute ¡nto the definition oí H an
arbitrarilly trunca.ted Corroof the exact solulion of the Boltzmann equation we
should not expect to have the II throrem satisfied nor the resulting form for H
identifyable with a thermodynamic entropy. \Vhen the ca1culations are performed
with the thirtcen moment form for the solutioll one finds that [93J

1 • • 4 1
T d~ = T ds - pRT,7 : d7 - 5 (pRT),J •. dJ•• (21)
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where T d3 stands for the local equilibriuffi entropy density of an ideal gas. This is
precisely of the form of equation (13) had we included there t in the space of state
variables. Notice howcver that in cquation (21) the coefficients of the differentials
of the fast variables are given as functions of the local cquilibrium variables p, the
pressure, p the density and T the tcmperature.

Qne can also show that the TI~balancecquation is satisfied and that

J, 4 1 •J ;----J .7
" T 5pRT' (22)

which corroborates the form for Jfj given in equation (17) lO the case of a rigid
conductor; and that

(23)

where the coefficients JlIO and JlO! are given in terms of complicatcd collision inte-
grals tbat we shall not write down here. Also, the general proof that O'fj ~ O is not
available, hut tbis is a property not required by BIT although sorne of the adepts
to tbis tboory do insist in including this condition [58,98].

It remains only to discuss the equations of motion for the slale variables, in
particular those associated to the heat flux Jq and the stress tensor T. Their full
form is too complicated to he reproduccd here [60] but in the simplest approximation
they are oí the form of the Max:well.Caltanco-Vernolte equation as exemplified by
equation (10) although they providc explicit exprcssiones for the corresponding
re¡axation times 7, and 7,. Indeed, one finds that {60,931

where fI ; (3~/2)(2/rnJ()1/2A2(5), ami J( is the constant of the law of force, rn
the mass of a molecule and A2(5) an integral whose numerical value is given in
the literature [97J. For chlorine, whosc properlies are well predictcd by Maxwellian
spheres at room lemperature, and taking the experimental viscosily (TI = 1218 x
107gm scc-1cm-1) to evaluatc 2m/{-1 one [iuds thal thcse rclaxation times are,
as expected, of the order of magnitudc of 10-10 secowhich coincides with a mean
free time.

Nevertheless, Grad's method provide:sa solid hasis for EIT. In a similar fashion,
fluids with interna1 dcgrccs of freedom may be deall with macroscopically, using the
methods of EIT [87] to derive the equations of motion of the appropriate macro-
scopic variables, which in turn may be obtaincd by applying Grad's method to
solve the Wang Chang.de Boer-Uhlenbeck's equation [99]' the generalization of the
Boltzmann equation to polyatomic gases.

Once more, the comparison too rnuch involved to be surnrnarized here, shows
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that the postulates of EIT are fully contained in thc framcwork of the kinelic the-
ory of gases. Thus, just as the Chapman-Enskog method to solve the Boltzmann
equation to first order in the gradicnts allows one to derive the basic postulates oC
LIT [2), the moment method of Grad yicJds a kinetic foundation for the basic pos-
tulates of EIT. This last statemcnt has been recently reinforccd w¡th the derivation
of the generalized hydrodynamic equations with explicit forms for the transport
coefficients as outlincd in section 5, using Grad's rnomcnt method oC solution of the
Boltzmann equation [IDO].

One can also wonder how is EIT related to the hasic principies of statistical
mechanics, as for instance LIT roay be derived either from the ideas of linear re--
sponse theory [101) or from the Onsagerian approach to the thcory of spontaneous
fldctuations [7,102, 103J. Although a fuI! answer to this question is stil! pending, a
partia1 answer ma)' be sought if one examines the microscopic formulation-of the
theory of irreversible processes set forth by Mori IIOIJ, and Zwanzig [105,107] over
twenty years ago. The gist of this mcthod consists in selecting amongst the 2f N
independent variables of a system composed of N particles, each with f degrees of
freedom, those whose relaxation times are the longcst in comparison, Cor instance
with the time duration oC a prototypc mcasuremcnt in the laboratory oC a set of
macroscopic properties. This means oC course that amongst the chosen set, the
constants and quasiconstants oC thc motion must be included. In c1assical statistical
mechanics, each oC thesc dynamical variables win dcpcnd on the coordinatcs r in
phase space, and on time. We shal! denote the set by {A,(r)) and emphasize on
the Cact that their time evolution is dictated by the laws oC classical mechanics.
But the quantities the observer is interested in are not the A¡(rys themselves but
their numerical values a¡, which are those obtained through experiment. However,
these quantities are not subject to the ordinary laws of mechanics. Thus one is
Corced to seek the time evolution of their distribution Cundion Cor given initial
conditions [107-110, 110a]. The diCCerential equations obtained for such distribu-
tions are known as exact kinetic equations because they still contain the totality oC
information related to the N.body system. The ncxt step is to learn how to device a
method whereby we can extract the pcrtinent information which is directly related
to the macroscopic observable propcrties oC the systern. Surprisingly enough, it tu ros
out that such information rnay be shovc1C(iinto a set of variables which are, for a
large dass of in¡tial conditions [103,111,112] identical lo the so caBed regression
variables introduced by Onsager in 1931 [5,7]. 1I0wever, the differential equations
obeyed by these variables are CarCrom being linear and moreover, they are non-local
in time.

At this stage oC the procedure one has to invoke sorne type oC scheme in order to
extract fram such complicated equations, other simpler ones that may be compared
with available rnacroscopic thcorics. One of such schemes, certainly not unique,
is based on the existence oC a slowlless parameter in the system which governs
the time rate of change of the dy"amic A,(r) variables [104-110,113). When this
parameter 8 is known to he less than one [A¡(r,t) '" fJ < 1), a systematic expansion
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may Le performed in a powcr series in h which allows one to transforrn the exact
time evolution cquations for the regrcssioll variables iuto one which rcscmhles de
Kramf'rs~Moyal expansion for the "'master cquation' [115, 116, 114].At this stage one
is ah le to introduce several approximations, the most drastic one beillg removing
the non local. eharacter of the equations as well as negleeting the non-linear terms
in the a~.One winds up with linear equations for sueh variables which express the
linear rcgression assumption introduce by Onsager also in 1931, and thus recovers
the Onsagerian form of what is now referred to as the linear thoory for spontaneous
fluctuations 12,5,7]. The remarkable faet about this theory is that the nature of
the {a} variables is not forcefully specified so that one may ehose amoug them
non.conserved variables. In fact, in the strict Onsagerian form of the formulation of
this theory (71the conserved quantities, whieh are those whose relaxation times are
the longest and thercfore survive to beeome the equilibrium macroscopic variables,
serve as a basis to describe the reference statc, taken to be the equilihriurn state
around which the espsontaneous f1uctuations take place. Que may then easily prove
that aH those spontaneous f1uctuations which occur arnong non-conserved variables
and whose time evolution equations are linear regression equations, bclong to a
class of processes that are macroscopically included in EIT and characterized by
!\.taxwell.Vcrnotte-Cattanco type cquations of the same structure as cquation (10)
without the inhomogencous termo Typical among these are homogeneous chemical
reactions oCllrring very close to equilibrium so that the macroscopic fillctuations
may be charactrerized by the degree of advancernent of the reaction, which is well
known to obey a linear law [2,6,9]. Thc cheroical transport coefficient may then
be eomputed from the microscopic equations of rnotion and shown to be given by
a time correlation function of the ehemical flux. This rclationship was first derived
by Yamamoto [177] in 1960 using linear response theory. Other relaxation processes
rnay be shown to belong in the sarne category (118]. Thus a class of phenomena
naturally beloging to the EIT framework ca.n be extracted in a systematie way froro
first principie ealculations. The macroscopic analogous of non linear and non-local
fegfession lype equalions [103,112-119J afe slill a subjecl 01 sludy.

Finally we shall also mention that the full form of the generalizecl Maxwell.
Cattaneo~ Vernotte relaxation type equations for fast or non.conservcd quantities
seem to follow froro first principies calculations based in the projection operator
method [81-llOa] and on Zubarev's method known as the Non-equilibrium 5ta-
tistical Operator Method [120]. Exhaustive studies on this latter approach which
look very prornising have ben recently carried out by several workers [12l} and the
connection witlt EIT SCCIllS lo be on its way [122}. If this progralll is succesfully
accornplished one will have also solved the perennial question concerning the sta.
tistical mechanical justification of EIT.

7. Summary and outlook

A close examination of tile material prescnted in this paper clcary reflects the
status of a thcoretical framework that h,l.s h(,cll set forth to orovide for an extension
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oC LIT. Sllch ao extension is further supported by a nurnber of phenomena occurring
in nature which are beyond tile scope of the linear theory. The theory is based on
,wo rather simple assumptions which describe the properties of a certain function,
taken to be the extension of the local entrapy density of LIT, which is defined in a
space of state variables forrned by the union of two subsets of variables, one givcn
by the locally conserved densitics and the othcr one by a set of fast or non conserved
. variables. \Vith those assumptions one may derive a complet.e set of time c\'olution
equations for the \\'hole set of state variables. The formalism is developed in such
a way that if the subset of the fast or non-conservcd variables is the void set then
the results reduce themsclves to those of LIT. In general, the ful! content of the
time evolution equations is difficult to analyze since they are highly nonlinear in
the slate variables and contain unknown coefficients which are also DOl constants.
Thercfore, in most of the work performed so far a number of approximatioI}s have
been introduced, namely:

a) The coefficients are assumed to be expandable in power seri<."Sof the non.
conserved variables. In most of the systems dealt with so far only the first
coefficient has been retained.

b) Vnder the appraximation stated in (a), the coefficients appearing in the time
cvolution equations which now become linear couplcd equations among the state
variables, are still space and time dcpendent through the locally conserved quan.
tities. Yet in praeticc they have becn taken as eonstants.

c) The two approximatiolls dcseribed in (a) and (b) lead to time relaxation equa-
tions of the :vIaxwcll-Cattanco- Vernotte type. That they are indced relaxation
equations which yield timc deeaying functions with positivc rclaxation times is
borne oul by kinelic t1wory [931.

In this eontext the theory ineorporates into the time relaxation spectra, those
times associated with tite underlying fast variables. Emphasis should be laid on the
facl that this fcatme result.s from the approximations (a) to (e). Nevertheless, it is
prcciscly in this context in which tIJe tbeory has been able to yield the successful
explanation of al! the systcllls that werc diseussed in the texto Furthcrmore, it is also
in this eontcxt where it lIlay be convincingly justificd by the methods of the kinetic
theory oí gascs and oC non-equiliul'ium statistical mcchanics. This is rewarding bul
far from being fully satisfaetory. Some oí the open questions that remain to be
aswcred to enhance the power of the formalisffi, are:

i) A sludy oí al Jeasl a clas, oí non-linear lime evoJulion equalion, reJevanl lo
known phenolllcna is dcsirahlc. Lad..:oí experimental rcsults makes this task
rather diffieult.

ii) The analytical behaviour oí the eoefficients appearing in the time evolution
equations is doubtful !lcar points of instability, eritical points, ete. Thus the
validity of assumptioll (a) in thcse cases, is qucstionable.
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¡ii) The relalionship betwecn EIT and the laws of microscopic physics heyond the
realxation type equations salisfied by rasl variables clase lo equilibrium is ool
yet known.

iv) The nalure oí the Cast variables to he included as state variables has been a
long debated issue. No definite agreement exists yet 00 the physical criteria arre
rnust use lo seled thero.

v) The physical significance oí the 1]-function is lacking, in spite oí the f3d thal for
sorne very particular cases it exhibits aHthe properlics oC the cnlropy fundian.

vi) The behaviour oí lruly complcx systems 5uch as glasses, supercooled liquids,
polymer solutions, melts, etc. is stilll outsidc the reach oC EIT.

vii) Its extension lo inelude non local effccts in space and time is not available.

Other aspects such as the uniqueness of the theory, its eomparison with othcr
versionsof extended thcrmodynamics, the mathematieal propcrties of the spaec of
slale variables, elc. may slill be added lo this list and when regarded altogether are
clearly indieative of the cnormous task that still remains for the future.
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Resumen. Desde hace veinte años se realizan esfuerzos por tener una
visión más amplia de los procesos termodinámicos no lineales irre-
versibles. Dichos esfuerzos han surgido del hecho que existan fenómenos
en estados que no están en equilibrio y que se encuentran fuera del
caso lineal. Se presenta un resumen de un método cuyos conceptos des-
cansan sobre principios físicos estrechamente relacionados con los pro-
cesos termodinámicos lineales irreversibles. Se tratan exhaustivamente
el conjunto de ideas detrás del método, así como su comparación con
el experimento y su derivación de la física mesoscópica y microscópica.
Finalmente, se ofrecen problemas que no han sido resueltos.


