Congreso Revisión

# High energy physics at Fermilab and in the USA\*

#### Roy Rubinstein

Fermi National Accelerator Laboratory, Batavia, Illinois 60510 USA (recibido el 19 de enero de 1988; aceptado el 25 de febrero de 1988)

> **Abstract.** This article will cover the following topics: A very brief review of the current state of high energy physics. A discussion of USA accelerators and their program, with particular emphasis on Fermilab. A listing of some of the unanswered questions in the field. An introduction to the Superconducting Super Collider (SSC).

#### PACS: 12.10.-g

#### 1. The current status of high energy physics

The object of high energy physics is to identify the ultimate constituents of matter, and to understand the forces which bind these constituents to form our world. There has been a tremendous increase in our knowledge by the experimental results from particle accelerators constructed over the past 30 years. The progress in assembling the data into a coherent theoretical structure has also been dramatic, with a major synthesis being the Standard Model. In addition, there is now an important connection between the two fields of cosmology and particle physics. The young universe was hot enough to reduce matter to its smallest components; as a consequence, the properties of basic particles and forces are fundamental to an understanding of the subsequent history of the universe. Some relations between cosmology and high energy physics are shown in Fermilab's "Big Bang" illustration (Fig. 1); the Fermilab Collider is currently exploring phenomena that took place  $\sim 10^{-12}$  seconds after the Big Bang, while the proposed SSC will be able to study down to  $\sim 10^{-15}$ 

The Standard Model says that all matter is made up of leptons (which do not experience the strong force) and quarks, and that the interactions between particles are mediated by gauge particles. There are four interactions: strong, weak, electromagnetic and gravity. It is now known that there is a strong similarity in the mathematical descriptions of the first three, and some progress is being made on incorporating gravity. Already there is a successfull synthesis of the weak and electromagnetic forces (the "electroweak force"); inclusion of the strong force makes the Standard Model. Some of the properties of the four forces are given in table I.

Some common processes illustrating the carriers of the different forces are:

<sup>\*</sup>Based on a talk given at the XXX Congreso Nacional de Física in Mérida, Yucatán, October 30, 1987.



FIGURE 1. Some relations between cosmology and high energy physics.

| Type            | Relative<br>strenght | Range         | Carrier  |
|-----------------|----------------------|---------------|----------|
| Gravity         | 10-39                | infinite      | graviton |
| Weak            | $3 \times 10^{-2}$   | $10^{-17}$ cm | W+W-70   |
| Electromagnetic | $10^{-2}$            | infinite      | photon   |
| Strong          | 0.2                  | $10^{-13}$ cm | gluon    |

TABLE I. Properties of the four types of interactions between particles that make up matter.

- a) The electromagnetic interaction between an electron and a proton is mediated by a photon.
- b)  $\beta$ -decay is mediated by a weak vector boson.
- c) Quarks in a proton are held together by the strong interaction mediated by gluons.

The 6 quarks and 6 leptons known (or predicted) at the present time are shown in table II, grouped in related families, and with mass increasing from left to right.

All of the particles in the table have spin 1/2; they all have antiparticles and in addition the quarks have another property, they can come in any one of three "colors". The top row of quarks have charge 2/3, and the bottom row -1/3. Using

|    | Quarks      |              |
|----|-------------|--------------|
| u  | с           | t            |
| d  | 8           | b            |
|    | Leptons     |              |
| е  | μ           | τ            |
| Ve | $\nu_{\mu}$ | $\nu_{\tau}$ |

TABLE II. Quarks and leptons at the present time.

the quarks as building blocks we can build up the known particles. For example, the proton is uud + gluons; the neutron is udd + gluons; the  $\Lambda$  hyperon is uds + gluons. The experimental evidence for quarks is very strong. We give three examples:

- 1. All of the known hadrons (Fig. 2) can be formed from combinations of the quarks, either three quarks for a baryon or quark-antiquark for a meson. In addition, the properties of allowed combinations of quarks have been used to predict the existence of new hadrons which were subsequently discovered.
- 2. Quarks cannot be observed as free particles, but they do manifest themselves in high energy collisions as "jets" of many particles clustered together coming from an interaction. The simple process of a high energy  $e^+e^-$  collision producing a virtual photon which in turn produces a quark-antiquark pair is observed experimentally as 2 "jets". An example of this is given in figure 3.
- 3. The ratio of  $e^+e^-$  collisions producing hadrons to that of the simple quantum electrodynamic process of producing muon pairs should have increasing steps as the  $e^+e^-$  energy increases past the threshold for production of new, increasingly heavy quarks. This is indeed observed.

The existence of gluons can be inferred from experiment as shown in figure 4 where the gluon emitted in a bremstrahlung-like process materializes as a third "jet" in the detector.

#### 2. USA accelerators and their programs

The experimental activities in high energy physics center around large particle accelerators; we shall discuss only USA activities, but there are equally important frontier accelerators at CERN (Switzerland), and in China, West Germany, Japan and the USSR. In addition, information pertinent to this field can also be obtained from studies of cosmic rays, low energy physics phenomena, and from proton decay searches, etc. We will not discuss such work here.

Accelerators produce the beams of particles which are used to collide with targets or other particles; detectors then observe the particles emerging from the collisions. Figure 5, (the "Livingston Plot") shows how the maximum available

## Baryon Summary Table

#### April 1986

The first, short table gives the name, the quantum numbers (where known), and the status of every entry in the Baryon Full Listings. Only the baryons with 3- or 4-star status are included in the main Baryon Summary Table. Due to instufficient data or uncertain interpretation, the other entries in the short table are not established as baryons.

|      | 2(1232) 133                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ZA1780) POL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2/11911 P11                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                      |
|------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
|      | 2(1550) 1'31                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.41865) 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VII 3851 P13                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2(1318) / 11                                         |                                                      |
|      | J(1600) P 33                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Z.(1775) P11                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2(1363) 713                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =(1530) /*13                                         |                                                      |
|      | J(1620) 531                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7 (1900) 211                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T(1560)                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -(1630)                                              | •                                                    |
| •    | J(1700) D 33                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.(2150)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T(1580) (011)                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =(1680)                                              |                                                      |
|      | 3(1900) \$31                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.03900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5(14) (06(1)-                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2(1820) 13                                           |                                                      |
|      | 2(1905) F35                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | francest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | X(1640) 311                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =(1940)                                              |                                                      |
| **** | JU19101 P31                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V1116 POL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2(1000) FIT                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =(2030) 1                                            | •••                                                  |
|      | 2(1920) /33                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1(1405) 501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5(16/0) 1/13                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =(2120)                                              | •                                                    |
|      | J(1930) D35                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1(1520) (001                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X(13(0) 511                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =(2250)                                              |                                                      |
|      | A(1940) () 13                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V(1600) P01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2(1730) 311                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =(2370)                                              |                                                      |
| •    | 3(1950) E17                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/16201 501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S(1770) F11                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =(2500)                                              | •                                                    |
|      | 2(2000) F35                           | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1(1690) 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -(1/15) D15                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01672) POL                                           |                                                      |
| **   | 3(2150) 531                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/1800 501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2(1840) 713                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                      |
|      | 3(2200) G 12                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V18001 POL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2(1880) F11                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A_(2281)                                             |                                                      |
|      | A(2300) // 19                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V(1820) FOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S(1913) F13                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 (2450)                                             |                                                      |
|      | A(2350) (235                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1(1810) 005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2(1940) 013                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E (2460)                                             | •                                                    |
|      | M2 1901 F 17                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MIESON POL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2(2000) 511                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ω_(2740)                                             |                                                      |
|      | 3(2400) G19                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1(7000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2(2030) F17                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                      |
|      | 3(2420) // 311                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1(2020) 607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2(20/0) F13                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J (3500)                                             | •                                                    |
|      | 3(2750) / 113                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1(2100) (:07                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2(2080) 713                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dibanana                                             |                                                      |
|      | A(2950) A'115                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 101100 605                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2(2100) 617                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L'ACAT JOINS                                         |                                                      |
| ••   | -3(- 3000)                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/21/211 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5(2250)                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NN (2170) 1D                                         | 2                                                    |
|      | Contraction of the second             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/23501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -(2433)                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NN(2250) 3F                                          |                                                      |
|      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1175851                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2(2020)                                              | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mm(:)                                                | 100                                                  |
|      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2(3000)                                              | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AN(2130) 351                                         |                                                      |
|      | · · · · · · · · · · · · · · · · · · · | А(123) (#3)   А(1530) (#3)   Δ(1600) (#3)   Δ(1900) (#3) | AI(32) [7]3   AI(32) [7]3   AI(32) [7]3   AI(400) [7]3   AI(200) [7]3 | M(23) P(3) Z(1780) P(0)   M(230) P(1) Z(1850) P(0)   M(260) P(1) Z(1850) P(0)   M(460) P(1) Z(1730) P(1)   M(460) P(1) Z(1730) P(1)   M(460) P(1) Z(1800) P(1)   M(190) D(1) Z(1800) P(1)   M(190) D(1) X(1160) P(1)   M(190) P(1) X(1160) P(1)   M(190) P(1) X(1160) P(1)   M(200) F(1) X(1160) P(1)   M(230) P(1) X(110) P(1)   M(230) P(1) X(110) P(2)   M(230) P(1) X(110) P(2)   M(2300) P(1) X(110) P(2) <td< td=""><td><math display="block">\begin{array}{cccccccccccccccccccccccccccccccccccc</math></td><td>M(123) P(3) Zq(1780) P(0) Zq(1780) P(0) Zq(1780) P(0)   M(130) P(1) Zq(1780) P(0) Z(1835) P(0) Z(1835) P(0) Z(1835) P(0)   M(160) P(1) Zq(1700) P(1) Z(1800) P(1) Z(1800) P(1) Z(1800) P(1)   M(160) P(1) Zq(1200) Z(1800) P(1) Z(1600) P(1) Z(1600) P(1)   M(190) P(1) Zq(1200) Z(1600) P(1) Z(1600) P(1) Z(1600) P(1)   M(190) P(1) M(1160) P(1) Z(1600) P(1) Z(1600) P(1) Z(1600) P(1)   M(190) P(1) M(1160) P(1) Z(1700) P(1) Z(1700) P(1) Z(1700) P(1)   M(190) P(1) M(1600) P(0) Z(1700) P(1) Z(1700) P(1) Z(1700) P(1)   M(190) P(1) M(1600) P(0) Z(1800) P(1) Z(1800) P(1) Z(1800) P(1)   M(200) P(1) M(1800) P(0) Z(1800) P(1) Z(1900) P(1) Z(1900) P(1)   M(2300) P(1) M(2000) F(1) M(1800) P(0) Z(2000) P(1) Z(2000) P(1)   M(2300) P(1) M(2000) F(1) M(200) P(1) Z(2000) P(1) Z(2000) P(1)   M(2400) P(1) M(200) P</td><td><math display="block">\begin{array}{cccccccccccccccccccccccccccccccccccc</math></td><td><math display="block">\begin{array}{cccccccccccccccccccccccccccccccccccc</math></td></td<> | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | M(123) P(3) Zq(1780) P(0) Zq(1780) P(0) Zq(1780) P(0)   M(130) P(1) Zq(1780) P(0) Z(1835) P(0) Z(1835) P(0) Z(1835) P(0)   M(160) P(1) Zq(1700) P(1) Z(1800) P(1) Z(1800) P(1) Z(1800) P(1)   M(160) P(1) Zq(1200) Z(1800) P(1) Z(1600) P(1) Z(1600) P(1)   M(190) P(1) Zq(1200) Z(1600) P(1) Z(1600) P(1) Z(1600) P(1)   M(190) P(1) M(1160) P(1) Z(1600) P(1) Z(1600) P(1) Z(1600) P(1)   M(190) P(1) M(1160) P(1) Z(1700) P(1) Z(1700) P(1) Z(1700) P(1)   M(190) P(1) M(1600) P(0) Z(1700) P(1) Z(1700) P(1) Z(1700) P(1)   M(190) P(1) M(1600) P(0) Z(1800) P(1) Z(1800) P(1) Z(1800) P(1)   M(200) P(1) M(1800) P(0) Z(1800) P(1) Z(1900) P(1) Z(1900) P(1)   M(2300) P(1) M(2000) F(1) M(1800) P(0) Z(2000) P(1) Z(2000) P(1)   M(2300) P(1) M(2000) F(1) M(200) P(1) Z(2000) P(1) Z(2000) P(1)   M(2400) P(1) M(200) P | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

....

#### Meson Summary Table

|              |           | Nonstrange  | 15 - 0. C.B | - 0)               |         | Strange (  S   - | 1: C.8 -1 |
|--------------|-----------|-------------|-------------|--------------------|---------|------------------|-----------|
| enuy         | IGUK      | CALLY       | IGUR 1.     | · cnury            | riure's | entry            | 101       |
|              | 1-(0 *)   | • , (1600)  | 1.0.0       | e*e* (1100 - 2200) | 01      |                  | 10000     |
| • •          | 0.(0)     | , (1670)    | 0.0.1       | RN (1200-3600)     |         |                  | 1001-1    |
| • • (770)    | 1-(1)     | (1680)      | 1-(2-*)     | X (1900 3600)      |         | (1280)           | LONI'S    |
| (783)        | 0-(1)     | - + (1680)  | 0-(1)       | • • (2960)         | 0'10)   | - # (1350        | 1/20.1    |
| • • (958)    | 0.(0 .)   | , (1690)    | 1.(1)       | · //# (3097)       | 0.(1)   |                  | 1/20 1    |
| · fo (975)   | 0'(0'')   | X (1700)    | •           | • xo (3415)        | 0'(0'') | K* (1410)        | 1/21-1    |
| (980)        | 1.(0)     | · /2 (1720) | 0'(2'')     | • x1 (3510)        | 0.0     | - 47 (1410)      | 1/22.1    |
| (1020)       | 0-(1)     | fo (1730)   | 0.(0)       | • 1) (3555)        | 0'(2'') | K (140)          | 1/307-1   |
| · . (1190)   | 0'(1'-)   | * (1770)    | 1" (0" ')   | 9, (3590)          | 1 3     | K. (1500)        | 1/201     |
| · . (1235)   | 1.(1,)    | 1, (1810)   | 0" (2"")    | • 4 (3683)         | 0.11-1  | - K. (1730)      | 1/211     |
| /a (1240)    | 0'(0'')   | , (1850)    | 0           | • # (3770)         | (1)     |                  | 1/22.2    |
| # (1250)     | 1.(1)     | X (1935)    |             | . 4 (4030)         | (1)     | A* (1790)        | 1/201     |
| 1 (1270)     | 0.(5)     | + /. (2030) | 0'(4'')     | - + (4160)         | (1)     | A 114 Ma         | LOND-1    |
| , (1230)     | 1.0.1     | 4. (2040)   | 1 (4"")     | + + (4415)         | 0-3     | - 4" ()0101      | 1/20 )    |
| • (1275)     | 0-(0)     | a) (2050)   | 1.0.1       | • T (9440)         |         | K . (2250)       | 1000      |
| . / 1 (1285) | 0.(1)     | *, (2100)   | 1-(2-*)     | · X+0 (9860)       | 1 1     | K. (2120)        | 1000      |
| · / a (1300) | 0.(0,.)   | . (2130)    | 1'(1)       | * XA. (9895)       | ( ** )  | A () WWW         | 1/203 3   |
| * (1300)     | 1'(0'')   | /1 (2150)   | 0' (2'')    | · XAT (9915)       | 1.00    | Charmed III      | 1744 1    |
| e 113209     | 1.(5, .)  | 4 (2220)    | 0 ( )       | + T (10023)        | (1)     | - D              | 1.000     |
| 12 (1410)    | 0'(2'')   | 1 (2240)    | 0'(2'')     | Ran (10235)        | 1       | - 01 (2010)      | 1/200 5   |
| /1 (1420)    | 0"(1 ***) | *) (2250)   | 1'0-1       | * EAL (10255)      | 1       | 0- 124300        | 100       |
| 4 (1440)     | 0"(0"")   | 1. (2300)   | 0" (4"")    | + XA1 (10270)      | 1       | - 11             | 0.00      |
| 11 (1323)    | 0'(2'')   | es (2350)   | 1" (5)      | • T (10355)        | 01      | 0" (200          | 0 10 1    |
| 1, (1330)    | 0.(1,.)   | #4 (2450)   | 1- (6**)    | a T (10575)        | (1)     | Bournerila       |           |
| 10 (1590)    | 0.101     | 1. (2510)   | 0' (6' ')   | . T (10660)        | (1-)    |                  | - 11      |
|              |           |             |             | + T (11020)        | (1)     | #* (5325)        |           |
|              |           |             |             |                    | 1       | Exotes           |           |

#### Table of Contents of Meson Full Listings

ry Table above. We do a

FIGURE 2. Known baryons and mesons as reported in the "Review of particle properties", Phys. Lett. 170B.

Good, clear, and unmistatable. Good, but in need of clarification or not absolutely certain. Not established; needs confirmation. Exidence weak, likely to disappear. 



FIGURE 3. Evidence of quarks. Two narrow jets of particles emerge from the collision and mutual annihilation of an electron and an antielectron, or positron. The annihilation releases energy, which gives rise to matter. the detected particles have a variety of masses and spins; some are neutral (broken lines) and some electrically charged (solid lines). If the particles arose directly from the annihilation, they would be expected to follow widely divergent paths. The focused character of the jets suggests instead that each jet developed from a single precursor: a quark or an antiquark. They are the immediate products of the photon of electomagnetic energy released in the collision, which is diagrammed at the left using arrows to represent the relative motion of the particles. The even shown was recorded in the JADE detector of the PETRA accelerator at the Deutsches Elektronen-Synchrotron (DESY) in Hamburg. The paths of the particles were reconstructed by computer from ionization tracks and from the pattern of energy (color) deposited as the particles struck the inner layer of the 2.4-meter-long cylindrical detector.

energy of accelerators has increased by around ten orders of magnitude in about six decades due to the successive invention of new types of accelerators. Detectors have also grown over the same period; an example illustrating the size and complexity of a modern detector is shown in figure 6.

While the energy of accelerators has been increasing so has their cost, although fortunately at a much smaller rate. The consequence has been that the number of



FIGURE 4. Three-jet event, recorded in the JADE detector, confirms the existence of the gluon, the mediating particle of the color force. An electron and a positron collided at high energy, creating a quark and an antiquark, as in the event shown somewhere else. In this case one of the quarks radiated a gluon (above). The quarks and the gluon diverged; each promptly gave rise to a shower of particles, which preserved the trajectory of the original entity (left). The event reveals the asymptotic freedom of quarks and gluons: their ability to move independently within a very small region in spite of the enormous strength of the color force across larger distances.

frontier accelerators has decreased over the years; this is illustrated in table III with a list of such accelerators in the USA around 1960 an at present.

Although the number of accelerators has decreased over the ~ 25 years, energies have increased substantially. The maximum fixed target energy has gone from 30 GeV to 800 GeV, while Fermilab now collides 900 GeV protons and antiprotons, which provides a center-of-mass energy equivalent to that of a fixed-target accelerator of  $1.6 \times 10^6$  GeV.

Support for high energy physics in the USA come from two government agencies. The Department of Energy supports 120 experimental groups from 60 universities and laboratories, 60 theory groups, and the Brookhaven, Fermilab and SLAC laboratories. The National Science Foundation funds 90 experimental groups from 50 universities and laboratories, 50 theory groups and the Cornell accelerator.

Although funded by the USA government, accelerator facilities in the USA are open not just to USA physicists, but to physicists of all countries.

The major current experimental activity in high energy physics is tests of the Standard Model. This includes measuring the parameters which appear in the



FIGURE 5. Livingston Plot.



FIGURE 6. Tagged photon spectrometer E769.

## High energy physics at Fermilab and in the USA

| Year        | Proton accelerators | Electron accelerator. |  |  |
|-------------|---------------------|-----------------------|--|--|
| ~ 1960      | Argonne             | Caltech               |  |  |
|             | Berkeley (2)        | Cambridge             |  |  |
|             | Brookhven (2)       | Cornell               |  |  |
|             | Carnegie            | Stanford              |  |  |
|             | Chicago             |                       |  |  |
|             | Columbia            |                       |  |  |
|             | Harvard             |                       |  |  |
|             | Princeton           |                       |  |  |
|             | Rochester           |                       |  |  |
| $\sim 1987$ | Brookhaven (F)      | Cornell (C)           |  |  |
|             | Fermilab (F, C)     | SLAC (C)              |  |  |

TABLE III. Comparison of frontier accelerators in the USA.

model; verification of predictions of the model, such as searches for particles or decay modes forbidden by the model, and searches for the predicted t quark and  $\nu_{\tau}$  lepton (which have not yet been experimentally observed).

We will give very brief descriptions of the experimental programs at Cornell, Brookhaven and SLAC, before concentrating on the program at Fermilab.

## 2.1. Cornell

High energy physics research is carried out at an electron-positron collider, CESR, which generally operates at a beam energy of around 5 GeV; this energy is optimum for the study of particles containing b-quarks. There are 2 detectors in operation.

## 2.2. Brookhaven

The Brookhaven AGS is a synchrotron producing 30 GeV protons; it is also used for an active heavy-ion program with ions of about 15 GeV per nucleon. The major current high energy research activity is the search for decays of K mesons forbidden by the Standard Model. There are also important programs in neutrino physics and in the use of polarized proton beams.

### 2.3. SLAC

Properties of charmed mesons are studied using the  $3 \times 3$  GeV  $e^+e^-$  storage ring SPEAR; PEP, a  $14.5 \times 14.5e^+e^-$  collider has been actively used for research on the  $\tau$  lepton, particles containing b quarks and general properties of high energy  $e^+e^$ reactions. A major new facility is SLC, a  $50 \times 50$  GeV  $e^+e^-$  collider which is being

499



FIGURE 7. General layout of the SLAC Linear Collider (SLC): the injection system (electron gun and boosters), storage (damping) rings which serve to reduce the size and energy spread of the electron and positron bunches by radiation damping, the existing Linac which accelerates bunches of electrons and positrons to 50 GeV, and the transport and final focusing systems which bring micron-sized bunches of electrons and positrons into head-on collisions. The positron target and booster use electron bunches to produce positrons for injection into the front end of the Linac.

added to the existing 3.2 Km linear accelerator (Fig. 7). This should be in operation in early 1988; a major research activity will be the study of properties of the  $Z^0$ , and, if its mass is appropriate, the study of particles containing the t quark.

#### 2.4. Fermilab

Aerial views of the overall site, and of the Central Laboratory/Booster/Antiproton Source area are shown in figures 8 and 9. A schematic of the accelerators is shown in figure 10. Protons are accelerated, in sequence, in a 750 KeV Cockcroft Walton accelerator, a 200 MeV Linac, and 8 GeV Booster Synchrotron, a 150 GeV Main Ring and the Tevatron currently operating at 900 GeV; the Main Ring was Fermilab's primary accelerator, operating up to 500 GeV, until the Tevatron with its superconducting magnets became operational. The Tevatron is located under the Main Ring in the same 1 Km radius tunnel, as seen in figure 11. The magnets of the Tevatron operate at over 4 Tesla; in addition to allowing energies twice those of the old Main Ring, the electric power usage has been reduced to 1/3 of the original amount due to this use of superconductivity.

The Tevatron can be operated for fixed target physics, or as a  $\overline{p}p$  colliding beams storage ring. We will consider here the comparison between these two modes

500



## FIGURE 8. Fermilab aerial view.



FIGURE 9. Fermilab central building and linac.





FIGURE 10. TeV I accelerator complex showing locations of experiments E-741 (CDF), E-735, and E-740 (D0) and beta values.

of operation, with a maximum accelerator energy of 900 GeV. For pp or  $\overline{p}p$  collisions, the available center-of-mass energy is 1800 GeV for the collider, to be compared to only 42 GeV for fixed-target operation, where most of the available energy goes into longitudinal motion of the produced particles. However, the price to pay for this improvement in physics capability is in luminosity, the rate at which the physics occurs.

In the Tevatron collider, a goal is to have 3 bunches of protons and antiprotons, each with  $10^{11}$  particles, and a beam-transverse size of ~ 1 mm; this gives a luminosity (the approximate collider equivalent of fixed target beam intensity) of ~  $10^{30}$  cm<sup>-2</sup> sec<sup>-1</sup>, and for some processess with an assumed cross-section of  $10^{-36}$  cm<sup>2</sup>, there will be 30 events per year. We can contrast this with a fixed-target experiment using  $10^{12}$  protons every 60 seconds on a 1 metre liquid hydrogen target, which for the same cross-section gives 1 event every 10 seconds. Thus the collider mode can reach to much higher energies, and therefore study new phenomena not observable in the fixed-target mode, but the rate at which most interesting interactions occur is relatively low.

The fixed-target beam lines available at Fermilab are shown in figure 12; there are currently 15 beams (including test beams) operating simultaneously, with 16 experiments active. The collider program is shown in figure 13. The antiproton source needed for the collider mode uses antiprotons produced by 120 GeV protons from the Main Ring incident on a target;  $10^{12}$  protons are targeted every 3 seconds.





FIGURE 11. Magnets of the Tevatron are located under the Main Ring.



FIGURE 12. Layout of Fermilab fixed-target beams.

From the particles produced in the collision, a beam line selects those of -8 GeV and transfers them to a complex of 2 storage rings. All of the short-lived particles decay, leaving only the antiprotons which are stored and stochastically colled; cooling involves reducing the phase space of the antiproton beam using a feedback system.



FIGURE 13. Locations in the Tevatron of the approved  $\overline{p}p$  Collider experiments, and of the gas jet experiment in the Accumulator.

Typically  $\sim 10^{10}$  antiprotons per hour are stored, and after several hours, a total of  $\sim 10^{11}$  antiprotons is reached, with momentum spread and angular divergence small enough, due to cooling, that they can be injected back into the Main Ring and the Tevatron for collision with counter-rotating protons. Figure 14 shows CDF, the Collider Detector at Fermilab, which is at present the major detector in the Collider program. In addition to the USA, teams from Japan and Italy were involved in building and operating this major facility.

The currently approved Fermilab program is given in figure 15; it involves some 90 physicists and graduate students from USA institutions and some 40 from outside the USA. These latter come from 60 institutions in 17 countries, including groups from Mexico and Brazil. Many physicists and engineers from Latin America are active at Fermilab; a listing is shown in figure 16.

## 3. Where is high energy physics today?

There are many open questions in the field at present, among them being the following:

- 1. There need to be more detailed tests of predictions of the Standard Model. As an example, studies of properties of the  $Z^0$  and the  $W^{\pm}$  are as yet in an early stage.
- 2. Where do the masses of the quarks and leptons come from? Why do quarks and leptons group into families? We know that these questions are related to symmetry breaking, and to the existence of new particles such as the (as yet undiscovered) Higgs boson.

## High energy physics at Fermilab and in the USA 505



FIGURE 14. Collider Detector at Fermilab.

- 3. Why are there so many unknown parameters in the Standard Model? In addition to the coupling strengths of the four interactions, there are: 18 quarks, 6 leptons, 8 gluons, 3 intermediate bosons, the Higgs sector: 1 photon and 1 graviton. This number of "elementary" particles seems excessive and unaesthetic.
- 4. Are quarks and leptons elementary?
- 5. Can the gauge forces be unified?

Existing (or about to be) accelerators, such as the Tevatron, SLC, LEP, and SPS, can test the Standard Model to a mass scale of order 0.3 TeV. (In hadron-hadron collisions, the relevant interaction is of course that of the constituent quarks. Thus with the Tevatron operating at  $0.9 \times 0.9$  TeV, phenomena can only be studied up to  $\sim 0.3$  TeV). However, there are already strong arguments that new phenomena may be expected at a mass scale no higher than 1 TeV. At present, only a few tests can be done even now at that level, such as searches for proton decay, and studies of certain forbidden particle decay processes.

Because of the open questions listed above, and the hints that an appropriate energy scale for a new accelerator to reach is  $\sim 1 \text{ TeV}$ , physicists in the USA are designing a 20 × 20 TeV proton-proton collider, called the Superconducting Super Collider (SSC). This should be capable of exploring mass scales up to  $\sim 1.6 \text{ TeV}$ (depending on the exact process to be studied). A schematic of the 84 Km circumference SSC is shown in figure 17, superimposed on a map of New York City to illustrate its size. Figure 18 shows a cross-section of the SSC tunnel (3 metres

|                | L In             | Fixed-target                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ELECTH         | ROWEAK           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| E 629          | (Morrison/       | wide hand neutrines in the 15 FT hubble shamper (16/94)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| E-032          | (Mentrement)     | wide band neutrinos in the 15 F1 bubble chamber $(10/84)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| E-000          | (Montgomery)     | muon scattering with hadron detection $(13/19)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| E-113          | (Brock)          | neutrino interactions with quad tripled beam $(4/20)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| E-745          | (Kitagaki)       | neutrino physics with quadtriplet beam $(10/43)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| E-770          | (Smith)          | neutrino physics with quad triplet beam $(4/28)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| E-782          | (Kitagaki)       | muon scattering with tohoku bubble chamber (1/33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DECAYS         | (Bosen)          | CP violation $(8/44)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| F-721          | (Winctoin)       | $\frac{1}{\sqrt{10}} \frac{1}{\sqrt{10}} \frac{1}$ |
| E-751          | (I mk)           | $\Omega^{-}$ magnetic moment (4/16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| E-750          | (Luk)            | 52 magnetic moment $(4/10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| E-701          | (Collin)         | hyperon radiative decay $(0/10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| E-113          | (Gomm)           | phase difference between $\eta_{00}$ and $\eta_{+-}(4/12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| L-114<br>UDAVV | (Crisier)        | electron beam dump particle search (4/1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| E 652          | (Door)           | hadronic production of sharm and $P(10/70)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| E-033          | (Rutler)         | nationic production of charm and $\mathbf{D}(19/19)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| E-007          | (Knapp)          | hadronic production of charm and $B_{(5/36)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| E-090          | (Cor)            | sharmontum and direct photon production $(8/47)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| E-760          | (Cox)            | charmonium and direct photon production $(0/47)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| E-760          | (Cester)         | charmonium states $(7/59)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| E-709          | (Appel)          | pion and kaon production of charm $(0/25)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| L-III<br>HARD  | COLLISIONS AND O | CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| E-672          | (Zieminski)      | high $P_{\pi}$ jets and high mass dimuons (7/28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| E-683          | (Corcoran)       | ngh $_{1}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| E-704          | (Vokosawa)       | experiments with a polarized hear (16/50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| E-706          | (Slattery)       | direct photon production (0/75)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| E-711          | (Levinthal)      | constituent scattering $(3/23)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| E-772          | (Mose)           | nuclear antiquarks structure functions $(9/26)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Collu          | (HOSS)           | nuclear antiquarks structure functions (3/20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| COLLI          | (Orear/          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| E-710          | Rubinstein)      | total cross-section $(6/18)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| E-713          | (Price)          | highly ionizing particles $(2/3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| E-735          | (Gutay)          | search for quark gluon phase $(7/52)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| E-740          | (Grannis)        | do detector $(20/124)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| E-741/         | (Schwitters/     | G 11:1 1 1 1 1 1 1 1 (20 /247)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| E-115          | 1ollestrup)      | Collider detector at Fermilab (20/247)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| E-466          | (Porile)         | nuclear fragments (3/7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| E-754          | (Sun)            | channeling tests (4/8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| L IOI          | (Majka/          | chainening tests (4) 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| E-755          | Slaughter)       | streamer chamber tests $(2/10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| E-776          | (Baker)          | nuclear calibration cross-section $(3/7)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| E-777          | (Mc Caslin)      | neutron flux measurements in the tevatron tunnel $(3/9)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| E-778          | (Edwards)        | study of SSC magnet aperture criterion $(5/15)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| E-790          | (Sciulli)        | zeus calorimeter module test $(7/?)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

FIGURE 15. Currently approved Fermilab experiments. E = experiment; T = test. Numbers in parenthesis denote total number of institutions and physicists, respectively.

| High energy | physics | at | Fermilab | and | in | the | USA |
|-------------|---------|----|----------|-----|----|-----|-----|
|-------------|---------|----|----------|-----|----|-----|-----|

| Carlos Alcalde                                                                                                 | Perú        | Visiting the still have the    |
|----------------------------------------------------------------------------------------------------------------|-------------|--------------------------------|
| Gilvan Alves                                                                                                   | Brasil      | Visiting theoretical physicist |
| Joao Anjoa                                                                                                     | Brasil      | Visiting physicist             |
| Clicerio Avilez                                                                                                | México      | Visiting physicist             |
| Miguel Awschalom                                                                                               | Argentina   | Visiting physicist             |
| Carla Barros                                                                                                   | Brasil      | Resident physicist             |
| Edgar Black                                                                                                    | Ecuador     | visiting ingineer              |
| Juan Bonfill                                                                                                   | Venezuela   | Resident engineer              |
| Oscar Calvo                                                                                                    | Argontina   | Resident physicist             |
| Milciades Contreras                                                                                            | Chile       | Visiting engineer              |
| Walter Correa                                                                                                  | Márias      | Visiting physicist             |
| Carlos Escobar                                                                                                 | Progil      | Visiting engineer              |
| Graciela Gelmini                                                                                               | Argontina   | Visiting physicist             |
| Francisco Gerson                                                                                               | Argentina   | Visiting theoretical physicist |
| Marcelo Gleiser                                                                                                | Drasil      | Visiting theoretical physicist |
| Bicardo Gómez                                                                                                  | Drasii      | Visiting theoretical physicist |
| Héctor González                                                                                                | Colombia    | Visiting physicist             |
| Bodolfo Gonzáloz                                                                                               | Puerto Rico | Resident engineer              |
| Jesse Guerra                                                                                                   | Colombia    | Resident technician            |
| Philippe Gouffon                                                                                               | Readil      | Resident technician            |
| Gastón Gutiérrez                                                                                               | Argentine   | Visiting physicist             |
| Enrique Henestroza                                                                                             | Argentina   | Resident physicist             |
| Bruce Hoeneisen                                                                                                | Chile       | Visiting theoretical physicist |
| Carlos Hoiva                                                                                                   | Chile       | Visiting physicist             |
| Juan León                                                                                                      | Argentina   | Resident physicist             |
| Angel Long                                                                                                     | Spain       | Visiting theoretical physicist |
| Sirley Margues                                                                                                 | Puerto Rico | Visiting physicist             |
| Manuel Martin                                                                                                  | Brasil      | Visiting theoretical physicist |
| Hoston Martin                                                                                                  | Spain       | Resident engineer              |
| Aptonio Mandez                                                                                                 | Chile       | Visiting physicist             |
| Connol Morelos                                                                                                 | México      | Visiting physicist             |
| Gerardo Moreno                                                                                                 | México      | Visiting physicist             |
| Holio Motto                                                                                                    | México      | Resident physicist             |
| hello Motta                                                                                                    | Brazil      | Visiting physicist             |
| Juan Pablo Negret                                                                                              | Colombia    | Visiting physicist             |
| Rene Padilla                                                                                                   | Puerto Rico | Resident technician            |
| Sustavo Perez                                                                                                  | Honduras    | Visiting theoretical physicist |
| Nelson Pinto                                                                                                   | Brazil      | Visiting theoretical physicist |
| Jose Poces                                                                                                     | Spain       | Resident engineer              |
| Joao Pulido                                                                                                    | Portugal    | Visiting theoretical physicist |
| Alejandro Salvarani                                                                                            | Chile       | Visiting physicist             |
| Alberto Santoro                                                                                                | Perú        | Visiting physicist             |
| Miguel Sarmiento                                                                                               | Perú        | Visiting physicst              |
| Bruno Schuize                                                                                                  | Brazil      | Visiting physicst              |
| Moacyr Souza                                                                                                   | Brazil      | Visiting physicat              |
| Jaime Stein-Schabes                                                                                            | México      | Visiting theoretical physicat  |
| Leticia Stein                                                                                                  | México      | Visiting mathematician         |
| Sergio Torres                                                                                                  | Colombia    | Visiting physicat              |
| Jorge Uribe                                                                                                    | Colombia    | Visiting physicst              |
| Eugenio Valdés                                                                                                 | Cuba        | Resident engineer              |
| Roberto Vignoni                                                                                                | Argentina   | Visiting on si                 |
| Carlos Yosef                                                                                                   | Colombia    | Visiting engineer              |
| Manuel Zanabria                                                                                                | Perú        | Visiting physicst              |
| the second s |             | visiting physicst              |

FIGURE 16. Latin Americans and Iberians associated or in collaborations with Fermilab in July of 1987.

507



FIGURE 17. Schematic view of the SSC superimposed on a New York map.

maximum width), and a cross-section of a magnet; the magnets will operate up to 6.6 Tesla. The current status of SSC is as follows.

| Approval by President                                | Yes                        |
|------------------------------------------------------|----------------------------|
| Approval by Congress<br>Site proposals received      | September 1987             |
| $(\sim 40 \text{ sites in } \sim 30 \text{ states})$ |                            |
| National Academy of Sciences                         | Generalisted December 1987 |
| Choice of preferred site                             | July 1988                  |
| Final site choice                                    |                            |
| (after environmental review)                         | January 1989               |
| Completion                                           | 1996                       |

We list here a few of the frontiers of particle physics that will be impacted by the SSC.

Origin of mass. Symmetry breakin of the electoweak theory.



## High energy physics at Fermilab and in the USA 509

FIGURE 18. Main tunnel proposed for the SSC is shown in cross-section. The two beam pipes for the counterrotating beams of protons are at the right. The tunnel is about 10 feet across (above). Detail of magnet assembly to be mounted in the tunnel of the SSC is shown in schematic cross-section. One of the proton beams passes through an evacuated beam pipe in the central, upper part of the assembly. The pipeline is surrounded by coils of superconducting wire; current passing without resistance through the wire creates the enormous magnetic field needed for bending the proton beam. The rest of the system enclosing the beam pipe serves to keep the magnet at the low temperatures necessary to maintain the superconductivity of the coils. The first layer of piping surrounding the magnet carries liquid helium refrigerant held at 4.35 degrees Kelvin; this layer is surrounded by piping that carries liquid nitrogen at 80 degrees Kelvin. Layers of insulating material surround the piping (below).

Are there more than three generations? Why do quark and lepton masses increase with generation? Are quarks always bound? Are quarks and leptons related – if so, how? Why do weak interactions show a handedness? Are quarks and leptons composite?

## 4. Summary

The current state of USA high energy physics is one of very high activity; it is exciting to be in the field with the successes of the Standard Model and with so much activity on the unification of the forces. The USA has two new, frontier accelerators in the Tevatron Collider and SLC in order to pursue this work, and there is the exciting future possibility of the SSC.

> **Resumen.** Se hace un resumen del estado actual de la física de altas energías y se describen los programas de los aceleradores existentes en los Estados Unidos de América, en particular el de Fermilab. Asimismo, se da una lista de algunas preguntas sin respuesta en esta área de la física y se introducen algunas características de un nuevo proyecto que involucra la construcción de un acelerador superconductor (Superconducting Super Collider).