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Abstract. The continuous orthogonality property for some classical
polynomials of a discrete variable is studied. An application to a rela-
tivistic quasipotential model of the N-dimensional harmonic oscillator
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1. Introduction

In the paper [1] the general theory of the classical orthogonal polynomials of a
discrete variable on quadratic lattices was developed on the basis of a difference
equation of the hypergeometric type. For some other classes of non-uniform lattices
this theory was extended in Ref. [2]. The classification of polynomials arising in
these cases was carried out in Refs. [3,4], these results have been further developed
in Refs. [5-7]. As a result it became possible to generalize a simple approach to
constructing a theory of the classical orthogonal polynomials, suggested in Ref. [5],
for solutions of the corresponding hypergeometric-type difference equation on non-
uniform lattices.

For further considerations it is convenient to write the hypergeometric-type
difference equation in the self-adjoint form

A ) Vy(z) _ 5
e o101 22 + ap(a1utz) = 0 (11)
As was shown in Rel. [1] polynomial solutions y = yn(z),z = z(z) of the

equation (1.1) for lattices of the form 2(z) = cgz® + ¢1z + ¢3 do exist for definite
values of A = A, and they can be represented as the following analogue of Rodrigues’
formula:

*Visitor at Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas, Universidad
Nacional Auténoma de México-Cuernavaca.
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Here B, are constants and p(z) is a solution of the equation
m[ﬂ(Z)P(ZJ] = 7(z)p(2), (1.3)
where o(z) = 6[z(2)] — 37[z(2)]Az(z — 3), 7(2) = 7lz(z)] (5(z) and 7(z) are

polynomials in the variable x of degrees at most two and one, respectively), the
function p,(z) is defined by the equality

pn(2) = p(z +n) [] oz + K), (14)
k=1

and the symbol V(®) denotes the following difference operator:
\

v v v k
®) = Y ... = X
¥ (le) (Vmg) (V:r,,) Bt 2).

Under definite conditions (see Refs. (5, 7]) polynomial solutions ym,(z) and ya(z)
of the equation (1.1) will be orthogonal for m # n, i.e.

b-1
Z Ym(z:)yn(zi)piAr,_1 =0, (1.5)
]

zi=a

where z; = z(2;), pi = p(zi), A:ri_% = Az(z — %), Zigy =2+ 1.

Those polynomial solutions of the equation (1.1), for which the discrete ortho-
gonality relation (1.5) with a constant sign weight function p; and a monotonic
function z; holds, following to Refs. [1,6,7], we shall call the classieal orthogonal
polynomials of a discrete variable on a quadratic lattice. The consistent description
of the theory and the classification arising here of Hahn, Meizner, Kravchuk and
Charlier polynomials (lattice z(z) = z) and also Racah and dual Hahn polynomials
(lattice z(z) = z(z + 1)) are given in Refs. [1, 5, 7].

As follows from a number of works (see, for example, Refs. [8, 9]), for some of
the just mentioned polynomials the continuous orthogonality property, well-known
in the theory of differential equations, also holds. In particular, for the example
of the Meixner polynomials it was demonstrated [10] that if we represent the sum
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in (1.5) as a sum of the residues of some contour integral and subsequently open up
the contour in the complex plane, then as a result of this after analytic continuation
in the parameter we come to the continuous orthogonality relation for the Meixner-
Pollaczek polynomials [8,11,12]. The continuous orthogonality property was also
proved by direct calculation of the integral for the Hahn polynomials (linear lat-
tice) [13,10,14], for the Racah and the dual Hahn polynomials (quadratic lattice) [9]
and for some other systems of polynomials (see, for example, Refs. [15,16]).

Since all mentioned polynomials are particular solutions to the equation (1.1),
it would naturally be desirable to study the continuous orthogonality property on
a more general basis and to attempt the classification of the resulting orthogonal
families.

In the present work * the continuous orthogonality property of polynomial solu-
tions to the equation (1) is proved for the case of quadratic lattices. For the lattices
of the form z(z) = coz? + c12 + ¢ from the unified point of view the systems
of polynomials are considered, which are orthogonal in the continuous sense. In
this way it becomes possible to include some other important orthogonal families
in the simple scheme developed earlier for constructing the theory of the classical
orthogonal polynomials of a discrete variable. Some of the polynomials thus arising,
for instance, the Meixner-Pollaczek polynomials, though have been known for a long
time, but so far were considered separately.

As a simple example of the further generalization of this approach to the other
classes of non-uniform lattices [2] the system of the Askey-Wilson polynomials is
discussed.

Besides, in this work some other questions are also considered: representations
through hypergeometric functions for the Racah polynomials and the dual Hahn
polynomials are derived from Rodrigues’ formula; an application in a relativistic
quasipotential [18,19] model of the N-dimensional harmonic oscillator in the con-
figurational representation [20] is discussed.

2. Continuous orthogonality property

For polynomial solutions of the equation (1.1) the following orthogonality prop-
erty is valid. If the conditions

/(jV[p;(z);r’f(z)]dz:O (k= 0:1,2:::2); (2.1)

are satisfied then polynomial solutions of (1.2) will be orthogonal on the contour C
in the complez plane of the variable z:

*Which is the extended version of our preprint [17]
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—/;?;m['r Nyelz(2)] p(2)Vzi(2)dz =0 (m #n). (2.2)

Proof. As in the case of the discrete orthogonality relation (1.4) (see, for example,
Refs. [5,7]), the easiest way to prove (2.2) is on the basis of difference equation
similarly to the proof for the well-known property of the Sturm-Liouville problem.
Let us write the equations for the polynomials y;(2) = yi[z(2)](k = m,n) in the
self-adjoint form (1.1), multiply the equation for y,, by y, and the equation for y,
by #m and then subtract the second equation from the first one. As a result we
obtain

(Am — Am)gm(z)?}n( ) (Z)VTI( ) = A{U( (2) W Eym( ) y,.(z)H ) (2.3)

where

ﬂm(:) yﬂ(z)
v]}lrn(z) V?;‘n(z)
Vz(z) Vz(z)

Vyalz) o Vmlz)
Nz(z) B

W [ym ), ¥nlz )] Im(2)

is an analogue of the Wronskian and, as it can be shown, for the quadratic lattices
is a polynomial in z(z — %)

”"[gm(:},;l)r:(:)] = Zc'k‘-rk(z _ %)
k

Therefore the formula (2.3) for this case has the form

(Am - u)Jm[ ( }] f]"[-f'(;')],ﬂ( V’tl z (.LA[CT —': : & 3 = %}

Since

Alo(z)p(2)z*(z = 1)) = VIe(z + Dp(z + Da*(z + 1) = VIpi(2)z}(2))],

then integrating both sides of the equality (2.4) over such a contour ', for which (2.1)
is valid, we come to the relation (2.2).

Remark. Our reasoning remains valid for other classes of nonuniform lattices
considered in Rel. [2].

We have proved the orthogonality property of polynomial solutions to the equa-
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tion (1.1) on a contour in the complex plane. In some cases (see below) it becomes
possible to choose the contour in the complex plane. In some cases (see below) it
becomes possible to choose the contour €' in (2.2) in such a way as to obtain the
continuous orthogonality relation

b
f:ammUMUM=o (m # n). (25)

This arises for the real system of polynomials p,(t), obtained from the polyno-
mials y,(z) by a change of variable and appropriate choice of parameters.

It is also natural to call the polynomials p,(t) the classical orthogonal polyno-
mials of a discrete variable on the quadratic lattices.

3. Continuous orthogonality for the Hahn, Meixner, Racah and dual Hahn polynomials

On the basis of our approach we shall single out polynomial solutions of the
equation (1.1) on the quadratic lattices, which are orthogonal in the continuous
sense. It is necessary for this to find such a solutions p(z) to the equation (1.3) and
to choose such a contour C' that the following requirements are satisfied:

1) The integrals in (2.1) and (2.2) exist;

2) the conditions (2.1) holds;

3) the transition from (2.2) to the real orthogonality property (2.5) is possible.

To satisly these requirements it is convenient to make use of the following cir-
cumstances.

1° In the approach under consideration the function p(z) isdefined as a so-
lution of the equation (1.3) up to an arbitrary periodic factor (its period being
equal to unity), which does not influence the form of polynomials obtained by the
formula (1.2). This arbitrariness may be exploited when choosing a function p(z),
satislying the conditions (2.1).

The conditions (2.1) may be rewritten as

[tz = [ ez (3.1)

where f(z) = pi(z)ri(z) and C' is the contour obtained from a contour €' by the
shift z' = z—1. The validity of this equality follows from Cauchy’s theorem provided
that there arc no singularities of the function py(z) between the contours C and C'

2° When choosing a contour " in (2.2) and for a subsequent proof of the reality
of entering in (2.5) polynomials, it is convenient to make use of the symmetry rela-
tions for polynomial solutions to the equation (1.1), which follow from Rodrigues’
formula (1.2).

Taking these features into consideration, we shall treat the systems of the clas-
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sical orthogonal polynomials of a discrete variable on lattices of the form z(z) =
coz®+¢1z+ca, for which the property (2.5) is satisfied. By a linear change of variable
these lattices can always be reduced to either the linear z(2) = z or the quadratic
z(z) = z(z + 1) ones. ‘

1. Lattice z(z) = z

The real continuous orthogonality property holds for the Hahn and Meixner-
Pollaczek polynomials.

1° In the case of the Hahn polynomials hﬁf"ﬂ)(x,N) *, using the arbitrariness
in the choice of the periodical factor, we select the following solution of the equa-
tion (1.3):

p(z)=T(B+z+1)[(z=N+1)'(a+ N —2)I'(-=z). (3.2)

As a contour C we consider one which comes from infinity along the imaginary
axis separating the poles of the expressions I'(8 4+ z + 1)I'(z + =N + 1) and I'(a +
N — 2)['(—z). The choice of such contour is possible when & > —1, 8 > —1 and N
is any complex number.

The conditions (2.1) in the form (3.1) will be satisfied by virtue of Cauchy’s
theorem, since between the contours C' and C” (obtained from C by the shift by unity
to the left) there are no singularities of the integrand and, besides, p1(z)z§(z) — 0 as

|Im z| — oo. Consequently, for the Hahn polynomials hﬁ,"'ﬁ)(z, N) the orthogonality
property (2.2) with the complex weight (3.2) is valid.

We now proceed to the real orthogonality property. Since |I'(3)[2 = I'(¢{)['(¢*),
the function (3.2) will take real values in the case when the arguments of two pairs
of [-functions are complex conjugates, i.e. when

BHz+1=-2" z—N+l=a+ N*-2, (3.3)

or when

B+z+l=a+ N*-2*, z—=N+1= —z". (3.4)

1) In the case (3.3) the weight p(z) in (3.2) becomes real if as a contour C to
choose the line Rez = —f + 1/2 provided that Re N = —a + /2. Four further
consideration it is convenient to put Imz = 1/2(t + v) and ImN = v, where t is a
real variable.

Using the symmetry relation

*The Hahn polynomials with the discrete orthogonality property were introduced by P.L. Cheby-
shev in 1875 (see Ref. [21]).
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(2, N) = (=1)"W™ =B =2~ 1,~a — g~ N), (3.5)
which follows from Rodrigues’ formula (1.2), it is easy to show that the polynomi-
als [10]

Pa(t) = PPN (1,4) = i="a ) (2, V), (3.6)
where z = %(l + ) - %(,8 +1)and N =iy — %(o: + 3), are real for the real values
of the variable ¢ and the parameters o, and 4. As a result when @ > —1 and

B > =1 the orthogonality property (2.3) with the weight given in table 1. In our
normalization the estimate

™

~ T _jgja+B ~xlt]
p(t) sap U e ™,

holds as [t| — oco. Here the symbol f(t) ~ g(t) means that Nm[f(t)g=(t)] = 1 when
[t| = oo.
As v — oo the limiting relation [10, 7).

PP (qs,9) = "1 P(s) + 07,

is valid, where P,Ea‘g](s) arc the Jacobi polynomials.

2) In their turn, the conditions (3.4) are satisficd when a = B and N = N*,
Using the relation

hg;.v,d)(:‘ N) = (_l)nth:‘.n](N —z=1,N),

i a similar way one can prove the property (2.5) for the polynomials [13,10)

o (1,6) = iR (=) N,

wlere z = %l - %(a —é+1)and N =6 — a (sce table 1). The equalities

(Ir(Jn)(f*S) - P’('ﬂ.ﬁ){f‘ —15) s ,),(rn—ﬁ.n+5)(t!0) (37)

holds. We note that the polynomials qs,")(l‘ &) with
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p(t) = %[cosh xt + coswé] !,

have also been considered in Refs. [22-25] for § = 0 and in Refs. [26-31, 8] for

—1 < & < 1. We also notice that the polynomials qg.u)(t,l/Q) have the weight
function

p(t) = 27| 0(a + § +it) %

The polynomials pg,“‘m(t,w) and qf,")(t,B) are closely related to the unitary
irreducible representations of the Lorentz group SO(3,1) for the principal and com-
plementary series, respectively [10]. We used to call them the Hahn polynomials of
an imaginary arqument. *

2° The conditions (2.1) are also satisfied for the Meixner polynomials mLT”)(z)
if p(z) = (=p)*T(y+2)['(—2) and the contour C separates the poles of the functions
['(v + z) and ['(=z). The product of these I'-functions will be real if vy + z = —2*,
i.e., when Rez = —4/2 and Im~y = 0. In this connection we may choose the line
z =1t — 4/2 as a contour C. Then

(_ﬂ)z = e—:(argp:l;xh/'.’lﬂ|if-—7/2e—(argpd:x)l_

Since the first factor does not depend on t, then the real weight arises when
|ul = 1.
By the symmetry relation

~i
m!:’”)(z) - ,LI_HTTES‘T'“ )(_’Y - z),

it is not difficult to show that the polynomials

1 , N
P,;\(i,go) = ;e'-«mlﬂms‘z»‘.ﬂ)(zt _ /\), p=e 2|<»°1

*The complex orthogonality property for the Hahn polynomials was also proved by Askey [14] by
the direct evaluation of the integral (2.2) after he had become acquainted with our paper [10]. In
fact, the real form of the polynomials p,(z;a,b, c,d) treated by Askey, differs from (3.6) only by
an unessential shift of the argument

Py(eiajb.e;d)= const..P,(.zﬂ'"_l'ﬂR“_‘)(lma 4+ Imb— 2z, Imb — Ima).

The orthogonality of these polynomials for the case corresponding to the principal series of the
unitary irreducible representations of the Lorentz group is also discussed in Ref. [32].



Continuous orthogonality property for... 549

are real for the real value of ¢, A and ¢. As a result we come to the orthogonality*
for the Meizner-Pollaczek polynomials P)(t, ) (33,34,11,12,8] (see table 1).
The polynomials q,(,o}(t, 1/2) and P,Elﬂ)(t,?rﬂ) are orthogonal on the interval

(—00,00) with the weight p(t) = const.cosh™ xt. Therefore the equality

0 1/2
¢ (t3) = (PPt )
is valid [10]. The more general expression has the form [35]

(2a+n+1),

(a+1/2)
22,, Pﬂ (tv ';')

q(“)(t,%) =

2. Lattice z(z) = z(z + 1)

1° In the case of the Racah polynomials U,(.a'ﬁ)(r,a,b) the conditions (2.1) will
be satisfied for a function

p(z) =T(a+z+1)(a—z)[(z—a+ B+ 1)(B-a-2)[(z=b+1)
[(=b—z)l(b+a—2)[(b+a+z+1)sinm(2z + 1),

if the contour C separates the poles of I-functions, going out to the left and to the
right, respectively. By analogy with the Jacobi polynomials the parameters a and
3 are considered to be real, while the parameters a and b may take complex values.
The weight will be real if

at+z+1l=f-a"-2" z—b+1:b'+n-:'}
B—a+z+1=a"—-2z* bta+:41=-b"-2'
i.e. when Rez = —1/2, Rea = /2, Reb = —a/2. For further consideration it is

convenient to put Imz = s, Ima = é and Imb = ~.
Using the relation

us,o'm[.r(:).a.h] = rrg,n".”[.r(—: - 1), A—a,—a -1,

*As is known [10, 14], there exists a close relationship between the Meixner-Pollaczek poly nomials
and the Meixner polynomials, though the former satisfy a continuous orthogonality relation and
the later, a discrete one. In particular, the orthogonality for the Meixuner-Pollaczek polynomials can
be obtained by the analytic continuation of the discrete orthogonality for the Meixner polvnomials
with the aid of the Sommerfeld-Watson transformation [10].
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Pa(t) P, ) an”(t,6) . PX(t,9)
AD.WV A|8,8u A|OO._OOV A|OO._OOV
I c a . & . - 2sin ¢)2* i -
o) (T B[ RGeS iy ety
(a>-1,8>-1) (6] <@+ 1) (A>0,0< ¢ <)
an -Ha_ﬁo._..m.lef 1 m‘.lﬁiﬁm9+:+ 1)u mﬁ
2 C(atn+1)T(B+n+1)[T (232 +iv4n+1))? I (a+n-1)T(a+b+n+1)(a—b+n+1) T(2A+n)
n nlla+4+2n+1)(a+f+n+1) n!(2o+2n+1)(2a+n+1) n!
2(n+1)(a+A+n+1) (n+1)(2a+n+1) +1
Qn (a+3+2n+1)(a+5+2n+2) (2a+2n+1)(a+n+1) m...w:ue
J:wmlauwu cos ¢
,.Q: (a+B4n)(a+8+2n+2) 0 |A\/ + ﬁvm.ilﬁ_.
u?+3:w+z_7u+ i 4n)” # ()2 =57
n) -4 22+n-1
Tn @tAt2n)(aFATon+1) (o +n) 5 35h g
,rabﬁb _W;N, N), Nu__ma:o;:. |Hmu _ al.:s Aa»‘t:mn _ >v,
Z=i8Y 81, = A", 0) p=e
N =iy otd
TABLE I. Continuous orthogonality for the Hahn and Meixner polynomials.



Pa(t) PP(t,7,6) Pa(t,a,b,¢)
(a,b) (0,00) (0, 00)
olt) sl (it? — iy + =) 1 (ith 4y + o) P 7l (it +a) T (it + ) T (ith +¢) [Psinh2nt4
x|l (it% — is + f’—;—l) r (u% a6+ ﬂ’f—’) |2 sinh 27t% (@>0,b>0,c>0;
(a>—-1,8>-1) a= b, Rea >0, ¢>0)
ay ;l[(o+ﬂ+n+l),, ;1[
2
2 [(a+n+ 1)l (F+n+1) [T(ZHE 4iytib+nt1) )
d; n!(a+ﬁ+n+1[)1‘(n+ﬂ+2n+l) I lla+b+n)la+c+n)T(b+c+n)
x[D(%F2 — iy +i6+n+ 1)
(n+1)(a+B+n+1)
Qn (et A+2n+1)(a+A+2n2) n+1
7543 %(u+1)(,5'+1)+%(72+62)+T_—:(a+,{3+n+l)+ ab+ ac+ be + 202+
(8*—0®)(y*—87) : ;
HothAtIn) atB+2nET) +n(2a +2b+2c—1)
(otm) () [ (252 40) '+ (1-67)| [(“—Eﬂ+n)2+(v+aﬂ)|
Y Y Fem T o e (a+b+n+1)a+c+n—1)(b+c+n—-1)

(_1)"115{1..3}(1-,&,5), r=—f— ‘.".!

a=%+i6,b:—%+f‘y

_1
(—1)"”/,5( E)(.T,(I _ %,%—b),

prise el oL
r=—t— 3

TaBLE II. Continuous orthogonality for the Racah and dual Hahn polynomials.
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which follows from (1.2), it is not difficult to show that the polynomials

PP (t,4,68) = (~1)"ulP)(z,a,b), (3.7)

where z = —t — 1/4,z =15 —1/2,a = i6 + B/2 and b = 1y — 1/2, are real for
the real values of f,a, 3,7 and é. As a result, we come to the property (2.5) (see
table 2). The asymptotic behaviour

p(t) ~ (2m)2etBe=2mt

holds as t — oo. The parameters of the polynomials ps,a'm(t,"y, &) are chosen in (3.7)
in such a way that the relation

a 2462 2§t nppL i
PO + Ts 0,8 = (07 = (B D(s) + O =)

is valid as v — co.

The continuous orthogonality for the Racah polynomials was established earlier
by the direct evaluation of the integral [9]. Here this property is proved on the basis
of our approach. Besides, for the polynomials (3.7) a choice of the parameters is
used which emphasizes their analogy with the Jacobi polynomials. The continuous
orthogonality for the Racah polynomials was also proved by Miller [36] with the use
of symmetry techniques, which contains points of similarity with our method.

2° In the case of the dual Hahn polynomials Wic)(r,a, b) in a similar manner it
is possible to come to the continuous orthogonality for the polynomials p,(t,a, b, c)
(table 2). For the weight p(t) the estimate

p(f) ~ Dt? Rea+c73/267ﬂ”2

holds as ¢ — oo. The equality analogous to (2.5) was established by Wilson [9].
In connection with a relativistic quasipotential model of the three-dimensional har-
monic oscillator this property was also treated in Ref. [37].

In accordance with their definition the basic properties of the polynomials,
exhibited in tables 1 and 2 —the difference equation, an analogue of Rodrigues’
formula, formulas of difference differentiation and so on— can be obtained through
the properties of the classical orthogonal polynomials of a discrete variable on
linear and quadratic lattices, which have been studied earlier. (See, for example,

Refs. [38,7]).

To calculate the square of the norm
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b
&= [ P20ote) d (3.8)

we shall modify in the following way the considerations for the discrete case carried
out in Refs. [5,7]. Let in (1.1) y = ya(z) and A = A,. Under these assumptions for
the functions

_Any(2)

Uk(z) - Aﬂ:k—l(z) ’

where 79 = z(z), vo = y(z), the equation [1]

A
Azi(z — %

[g(z)pk(z)gzig] + prpr(z)vr(z) = 0

is valid. Let us multiply both sides of this equation for the function v(z) = vgn(2)
by vkn(2)Vzr41(z) and integrate over a contour C, for which the conditions (2.1)
are satisfied. Then for the quantities

&=Lﬁwmmwmma
we obtain

Voga(2)
Va(z)

ndis = —kan(Z)A [G(Z)Pk(z)

Hence, using the identity

Alf(2)9(2)] = f(2)Ag(2) + 9(z + 1)Af(z)

Vkn(z

72 (z) » We come to the relation

for the functions f(z) = v, (z) and g(z) = o'(z)pk(z)v

I‘kﬂ(f‘f‘n = Ji-!—l,n* (3‘9)

provided that the conditions
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Lﬂkmmmhmgﬁghmﬂ

are satisfied. I'rom (3.9) we successively find

72 72 -=172 72 -1
dn = d[)n = gy dln .F"(]n ”lndZn Hiowwan d H ,(.l .

Since vy, = AxB, = const. and A, = (—1)"[[;Z [ll,uk12 (see Ref. [T]), then as a
result we obtain

ﬁ:Lm[npw”>f (mmﬁL%mwwmmL

The squares of the norms (3.8), calculated on the basis of this equality, are
given in tables 1 and 2. The values of integrals are taken from Refs. [39,40,9].
For all considered polynomials tables 1 and 2 contain also the leading terms of
the expansion p,(t) = a,t" + ... and the coeflicients of the recurrence relation

t;"n(t} = Onpn.+]( ] + Hupu{ ) + YnPn—- 1( )

4. Hypergeometric representation for the Racah and dual Hahn polynomials

The Rodrigues-type formula (1.2) for the Racah polynomials was first estab-
lished in Refs. [41,42]. A representation for these polynomials in the form of the
hypergeometric function 4F3(1) was treated by Wilson [9] and then it has become
a starting point for a number of investigations. In this connection it is natural to
derive the representations for the Racah and dual Halin polynomials through the
hypergeometric functions. The corresponding results for the linear lattice are given
in Ref. [7].

With the aid of the notion of divided difference (sce, for example, Ref. [43])
Rodrigues’ formula (1.2) in the case of the quadratic lattice z(z) = z(z 4+ 1) can be
brought to the form

(=1)"Bn < (_n)k(z_% Di(2z +1 —n)yg P,;(”—N+L)]
yn[-T( )] (22 —n+2), . k(z— T)k (22 +2)k [ o(z)

(4.1)
where (a)y = ala +1) - (a+ k—1) = I'(a + k)L "' (a). Using (4.1), it is possible
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to obtain the following hypergeometric representations for the Racah U,g"'ﬂ)(:c, a,b)

and dual Hahn W,{.C)(:r,a, b) polynomials:

S n
U,ia'ﬁ)(.t,a,b)z ( ]') (B+1)alb—a—n)y(a+b+a+1),
mn.
-n, a+pf4+n+1, a—z, a+z+1
1.2
X4F3(ﬂ+l.. a—b+1l, at+bta+l ’ ) (42)
(c) _ =1
Wa'(z,a,b) = —(a+c+1)s(b—a~—n),
n!
[ -n, a—z a+z+1
xsf-z( fh ol T “_b+1’1). (4.3)

In deriving (4.2) and (1.3) from (4.1) we have used the formulas (4) on page 25
and (2) on page 28 from Biley [10] respectively, with the subsequent conventional
transition to the polynomial expressions in the arising functions 4 /4(1) and 3[5(1).

The hypergeometric representations for the classical orthogonal polynomials of
a discrete variable on the quadratic lattice are exhibited in table 3. All expansions
in this table can be represented in the unified form:

Un {](:)] = z (-"kn ['kal(“) - 37'1\’—!(:)](';)’ (4'4)

k=0

where the “generalized power™ is defined by

k1
[ri-1(a) = 2 ()™ = [][re-1(a) = zii(z = p)]
p=0
k-1 k
= H[.r(rr +p)—x(2)] = j=]}* Z S’}j’)(a);l"’(:).
p=0 p=0

5. On the Askey-Wilson polynomials

The proof of the continnons orthogonality relation (2.2), given for the case of
quadratic lattices in the section 2, is in fact of general character and remains valid
(with corresponding changes) for all classes of nonuniform lattices, considered in
Rel. 2. In this connection, in complete analogy with the case of quadratic lattice,
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Ya(z)

pFq(£)

Lattice x(z)=z

P (z, N)
m‘(m'f,#)(m)
K¥P(z,N)

Ca(z)

('_’;‘l'L"(ﬂ 4 l)n(N - n)n3F2 (ﬂ_-}-ni, i ﬁ;f; b

)

(7)HF(_n1_Ia 7a1 - 'u—l)

(—p)“CRTF(—n,—z,—N,p_]), C:'\i[ = = X

2F0(-n: -z, —F_l)

Lattice x(z) = Z(Z+1)

Us*(z,a,b)

Wi (z, a,b)

-1)" ~mn, +n+1l, e—z,a+z+1
L_nl!L(ﬂ+1)n(b—a—n),.(a+b+a+1),,4}7'3(B_*_"l’ aigbrl, aa+zb‘ff—az+1 ‘1)

—1)° i —2,(]+ +].
g_u.')_(a‘|":+1)"(1’_']_71)"3&<a+cﬂ+1, ’ a—b+zl ’1)

TABLE II1. Hypergeometric representations for some clasical polynomials of a discrete variable.
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studied above in detail, it is possible to give a simple derivation of the continuous
orthogonality property also for other systems of classical orthogonal polynomials.
In particular, this can be done for the polynomials py,(t,a, b, ¢, d, |g), introduced by
Askey and Wilson [13]. In this case we have z(z) = coshwz = e +q %), g=e,

o(2) = ¢7%(¢* — a)(¢" — b)(¢* — ¢)(¢* — d), (5.1)

p(z) = plz,a,b,c,d) = Afg(z) [] oz v), (5:2)
v=a,b,c,d

pi(z) = (—=1)kg~*k-2)/2, (z + %, aq"/? bg*/? gk 12, a'q"/z) (5.3)

Here f;1(2) = I'y(22)T,(-22)(¢* — q77),T'y(w) is the g—gamma function (see,
for example, Refs. [44,45],

o0 [o.<]
g7 (z0) = [T~ vg"**)(1 — vg*=%) = T][1 - v(g” + 4~%)* +v%¢™), Jgl <1,
k=0 k=0

and A is a constant. In deriving (5.2) and (5.3) from (1.3) and (1.4), respectively,
the following relations were used:

folz+1) _ q—4z-—2 g(z + lvv) = q2:+1 g —v
fo(2) ' 9(z,v) gt =’

Pz 4+ 1) = =g fi(z 4+ 1), (1—vg " Ng(z+1,0) = g(z + 1.vg'/?).

We also note the useful equalities

Jo(—=2) = = f,4(2), g(—z,v) = g(z,v), g(z % 2milog™? 4,v) = g(z,v).

Since

o(2)p(2) = pr(= - 1) = —q¥p(z — 1/2,aq"/?, bg! /2, cql/2, dg1/?),
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a [J(S)P(:)M] =i [m(: = 1)M]

Va(z) Sx(z—1/2)
5 9 ] 6 _1 2
= —¢'’A [ﬂ(z - %1aqil’,bq"‘,cq”z,dq'/“)ﬁ——zt - 1%]

=—q'*§ [p (:,aql/z,bq’/Q,cq"g,dq"z) aytz;]

where 8 f(2) = Af(=—1/2), then the equation (1.1) for the case of the Askey-Wilson
polynomials takes the form [16]

0 ) _1/2
5 plz.aq' 2, bg"? cq'*, dq'? )58] A~ p(z,a,b e, d)y(2). (5.4)

Correspondingly, since

6f’n(: = %)
dr(=+ %)

_ pln-2) é Spn(z — 3) 2
Sr(z+ "32) dx(z + "—_;')—2

vy ()] = VD [

then the Rodrigues-type formula (1.2) for the Askey-Wilson polynomials can be
rewritten as [16]

(_ l)nq—n(n—Z)/!B"
yu(z) =
p(z,a,b,¢,d)

5 \" | -
= nf2 ponfl n/2 n/2 s s
(61{3)) [Pn(-,ﬂq .bq ,Cq .dq ) ] (3_3)

We shall also briefly discuss series expansions for the Askey-Wilson polynomials.
For the lattice z(z) = %(qz + ¢~%) an analogue of formula (4.1) has the form

(_l)nnﬂznqnz—n(n-—il)/fl
=lz(2)] =
alz(z)] (1-q)"(q* "+ q)n

Ln 1q ( o %-H)Q)k(_qz_%+]1Q)k(qzzynvq)l‘ [pn(: =i ;‘)jl
X 5.6
Z (q q 9~ "/21 (I)k("qz_nlzs ‘I)k (qu-H'uQ)k P(Z) ,( )
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where (a,q)o = 1, (a,q)x = (1 — a)(1 — aq)---(1 — ag*~'). With the aid of a
Pearson-type equation it is not difficult to derive that in the case of the Askey-
Wilson polynomials,

Pn(z L L) — q‘an—ﬂ(n—l)

(ag™%,q)n(bg™%, q)n(cq™ %, @)n(dq ™, q)n
plz)

= 2y k
(aq*, ¢)k(bq*, q)k(cq*, q)k(dg”, q)i g
(a=lgl=n+2, q)i(bTql=m+2, q)p(c™ 1! =42, q)i(d =" "+, q)i \ abed

(5.7)

Substituting (5.7) into (5.6) and first using Watson’s transformation [40] fol-

lowed by Sears’ transformation [13], we come to the standard representation for the
Askey-Wilson polynomials in terms of the basis hypergeometric function 4¢3:

o) = 2B (e ghn(ad
Ynlr(2)] = ——————(ab,q)nlac, q)nlad, q)n
y T q q q
(T abedg™', aq*, aq™*
= 473 ab, ac, ad

q,q)- (5.8)

We note that for these polynomials the representation (4.4) also holds.

The continuous orthogonality relation for the Askey-Wilson polynomials was
proved by direct evaluation of the integral [16], for simplifications of the proof see
Refs. [46-48]. It is not hard to derive this relation with the use of the approach
under consideration. In fact, the solution (5.2) of the equation (1.3) is a periodic
function of period 27ilog™! ¢. The contour C we define in the following way: z =
is,—7log™'q < s < rlog™! . The conditions (2.1) hold owing to Cauchy’s theorem
and periodicity of the function pl(z).rf(z). As a result we come to the continuous
orthogonality relation (2.5), where a = =1, b= 1, t = z and the weight function is
equal to N

MTrzoll = 2(2¢% — 1)¢* + ¢%¥)

plt) = (1=#3)~1/2 : o,
[Tozapca [Tizo(l — vigh + v2g2k)

provided that max(|al, |8, |c],|d]) < 1 and =1 < ¢ < 1.

The discussion of various particular and limiting cases of the polynomials de-
noted P, (t,a,b,c,d|q) can be found in Ref. [16]. The values of squared norms may
be evaluated by direct analogy with the cases, considered in section 3. For another
way of the evaluation of squared norms see Ref. [36]. Some other examples of the
continuous orthogonality relations for classical polynomials of a discrete variable
are given in Rel. [19].
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6. A model of the harmonic oscillator in the relativistic configurational ry-space

As an example of the utilization of the polynomials of a discrete variable we
discuss an O(N)-symmetric model in the configurational ry-space [20,50], which is
a simple extension of the relativistic three-dimensional harmonic oscillator, studied
in detail in Refs. [51,37), to the N-dimensional case. Firstly, we note that in view
of the O(N) symmetry the dependence of the wave function (A =m =c=1)

D Tk Gt
U nne(r01,...,00-1) = Can{T(T)} ANne (Y5 (1. .., 0n_1), (6.1)

on the angles 8y, ...,0y_ is described by the spherical harmonics Y;fr((h, ceyOn_1)
(indices, corresponding to the azimuthal quantum numbers, are omitted because
they are irrelevant for further consideration). Since in the requirement that wave-
functions be square-integrable in the ry-space, enters the measure (for details see

Ref. [50])

Ny
pn(r)d z = pn(r)r¥ldrdQy_; = rfﬁrl)l o —— (6.2)

then the extraction of the factor

= =1 = ==
{,»\ %—‘)} = (i) T YL — i) = T (—in) 5L,
i I

in (6.1) reduces an N-dimensional problem to finding the eigenfunctions of the radial
part of a hamiltonian, i.e.

H(r)XNne(r) = EnneXnne(r), (6.3)

where n = 0,1,2, ... is the radial quantum number. A model of the oscillator under
consideration is specified by the differential-difference operator H(ry), the radial
part of which has the form

H(r) = % {exp (»—id%) + 1 +w¥®) [1 + L’:(;—Q] exp (id%)} . (6.4)

where L =1+ (N —3).

We represent, the eigenfunction of H(r) as
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Xyne(r) = (1) M, (r)P(r), (6.5)

having thus extracted the functions (#)(+1 and M,(r) = [v(v — 1)]7*"/?
My +ir), 2v=1+(1+ 4w=2)1/2 which determine the asymptotic behaviour
of X'nne(r) at the points r = 0 and r = oo, respectively. Then for its polynomial
part P(r) we obtain the following difference equation (cf. with Ref. [37])

(v +ir)(L+ 1+ ir)e"F = (v —ir)(L +1 = ir)e'® | P(r) = 2;’%@@).
(6.6)
The solutions of (6.6) corresponding to the eigenvalues Eypp = w(v+2n+L+1)
are the dual Hahn polynomials

Prbr?) =W (—r = L L+ i —v) = ()P (PB L+ L,n ). (67)

The normalization constant Cyp¢ entering in (6.1) is equal to

Cnt = [3(n + DossT(n+ L+ T (n+ v+ 1)] 72, (6.8)

and the orthogonality of the wavefunctions (6.1) is the consequence of the continuous

orthogonality relation for the dual Hahn polynomials Wéc)(z,a,b) (see § 3, section
2). Thus formulas (6.1), (6.5), (6.7) and (6.8) completely define the explicit forms
of the wavefunctions W yn(r,01,...,0xy_1) for the present relativistic model of the
oscillator. In the nonrelativistic limit (i.e. when the velocity of light ¢ tends to
infinity) they coincide with the wavefunctions of the nonrelativistic N-dimensional
harmonic oscillator in the coordinate representation.

In complete analogy to the three-dimensional case [37] it is easy to construct by
the Infeld-Hull factorization method both the spectrum-generating algebra SU(1,1)
and the radial n and orbital 1 quantum numbers raising and lowering operators. It
suffices for this to replace 1 by L =1 + %(N — 3).in the corresponding formulas of
the paper just mentioned.
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Resumen. Se estudian las propiedades de ortogonalidad en el continuo
de ciertos polinomios bdsicos de variable discreta. Se discute una
aplicacion al modelo de cuasipotencial relativista del oscilador arménico
en N dimensiones.



