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Abstract. The virial series expansions of the pressure correspond-
ing to the reduced two-parameter Redlich-Kwong, and Peng-Robinson
equations of state for real gases are represented by means of Padé ap-
proximants. The Padé representations are then employed to determine
the reduced departure functions for pure component systems described
by the two model equations.
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1. Introduction

The need for accurate information on the thermodynamic properties and the com-
pressibilities of pure gases at high pressures has traditionally been of interest mainly
in industrial processes [1]. As is well known, there are several techniques available
for obtaining information on the thermodynamic properties and compresibilities of
gases. In this article we present still another method, namely, the one employing
the analytical equations of state for the gases, the theorem of corresponding states,
and the virial series expansion for the pressure. One advantage of the present treat-
ment is that being expressible in terms of analytical functions, the thermodynamic
properties of a pure material may be calculated for a very wide range of conditions,
and is not directly dependent upon the compressibility data of the gas. The work
reported here employs the two-parameter equations of state proposed by Redlich
and Kwong [2], and Peng and Robinson [3], for the determination of the analyt-
ical expressions for the differences between real-gas and ideal-gas thermodynamic
properties.

The virial series expansions of the pressure are useful only for relatively small
values of the density. These expressions do not permit successful extrapolation,
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especially to higher densities and lower temperatures. There are, however, means of
extrapolating the low-density expansion of the pressure so as to encompass higher
densities. We have chosen to employ a Padé approximant representation for the
virial series for the pressure, which is valid beyond the radius of convergence of the
original truncated virial equation that it represents [4]. The Padé extrapolant form
of the reduced pressure will then be employed in a thermodynamically consistent
fashion to determine the reduced departure functions for pure substances described
by the Redlich-Kwong and Peng-Robinson relations.

2. The model equations

Besides the celebrated analytical equation of state for gases proposed by van der
Waals there are in the literature several other two-parameter relations in use. Among
these mention should be made of those associated with the names of Berthelot [5],
Dieterici [6], Lorentz [7], Redlich and Kwong, and Peng and Robinson. The motiva-
tion for the authors’ choice of the last two equations of this set hinges primarily on
the fact that the other relations are each less accurate and more complicated in form
than the van der Waals equation [8,9]. Furthermore, a comparison of a large number
of two-parameter equations of state for gases performed nearly two decades ago re-
ports the Redlich and Kwong relation as the most accurate [10]. Results of an earlier
examination on the performance of equations of state for gases [11] indicate that the
two-parameter Redlich-Kwong equation is “at least as good” as the five parameter
Beattie-Bridgman relation and the eight-parameter Benedict-Webb-Rubin equation.
The Redlich-Kwong relation and the more recent equation of state proposed by Peng
and Robinson have gained popularity among the chemical and process engingers in
high-pressure work. The well-known Redlich-Kwong equation of state reads

e . )
kgT ~ 1—bp  kgT%(1 + bp)

and the relationship proposed by Peng and Robinson can be written as

E e " 2
kT ~— 1—bp kT (1+ 2bp — b2p2)

In Egs. (1) and (2) P denotes the total pressure, T represents the absolute
temperature, kg is Boltzmann’s constant, and p stands for number density, p =
N/V, N being the total number of particles and V the volume of the container. The
quantities @ and b in Eqs. (1) and (2) are phenomenological positive constants and
are different for each semiempirical equation of state. In the study here reported the
parameter “a” employed in Eq. (2) is taken to be independent of both the reduced
temperature and the acentric factor; in fact, for convenience of computation it is
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assumed here that “a” is a constant equal to the value that the parameter attains
in the original Peng-Robinson relation at the critical temperature. In Egs. (1) and
(2) the covolume “b” is, to a first approximation, four times the actual volume of
the molecules, if these are assumed to be hard spheres.

Expressing the pressure, density, and temperature in reduced form

) Pr - ) T, (3)
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and employing the dimensionless parameter a = bp, permits writing Egs. (1) and
(2) as

o T, (1+a)*p}
P i\l — - 2 4
ri(pr) Zan(l —ap;) QQT'.I/'(I +ap;) v
and
o7 o e .
Ppn(pr) _ ;T _ (Q o ) Pr (5)

Zpr(l —ap)  ala®+ 3a? —3a + 3)(a?p? — 2ap, — 1)

We have employed the letter subscripts R and PR to indicate the Redlich-Kwong
and the Peng-Robinson systems, respectively.

Whereas in Eq. (1) a = 0.259921, the value to be used for @ in Eq. (5) is [1]
e = 0.253076. To keep the notation uncluttered the subscript r in the symbol for
the reduced pressure has been omitted in Eqgs. (4) and (5). Clearly, both of these
equations can be readily simplified by substituting in them the corresponding values
of a. We have chosen to leave all equations in this paper in algebraic form as this
practice would help in visualizing differences and similaritics between corresponding
functions in the two models employed. In the dimensionless representation of the
equations of state given by Eqs. (4) and (3), Zpy and Zpp denote the compress-
ibility factor of a Redlich-Kwong and a Peng-Robinson system respectively; their
numerical values are [1] Zgy = 1/3, and Zpg = 0.17149.

3. Padé approximations for the models

Straightforward expansion of Eq. (4) about p, = 0 as an infinite virial series and
extrapolation of the ensuing series to positive p, by means of a Padé approximant
renders the equation

T,
Pric(pr) = ZZ;

o0
1+ Y BER(TRF
k=1
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In Eq. (6) we must take [1] o = .259921. The quantity BRX(T;,) represents the
(k + 1)—th reduced virial coefficient of a Redlich-Kwong system, and is given by
the functional relation

! =1)*
RE (1) = o ( ki=1,2.3.4.. .. T
Bk+l( !') o 1+302T§/2 3 9 a‘-;; ) ( )

w

For a Peng-Robinson system it can be easily verified that

g4
PPR(f)r) = Z,::T

= Tep L
1 BEE(Te | = ( 22 ) |55 (or 8
+ ; @ | = (£ ) 37| 0 (8)
where the reduced virial coeflicients are given by the expression

Di(1 4+ 2a — a?)? ]
(203 +3a? + 1)(1 — )3T, )’

B,iﬁ(Tr)=a"[1+ k=1,2,3,4,... (9)

Again, in Eq. (8) a = 0.253076. Because of the way the parameter “a” has been
defined in this paper the effect of the acentric factor on BPR is not included in
Eq. (9). The Dy’s appearing in Eq. (9) are simply the coefficients in the MacLaurin
expansion of the function F(z) =(2* — 2z — 1)~!. For ready reference for calcu-
lations the first twelve values of Dy are presented here: —1,2, —5,12, —29, 70, —169,
408, —985,2378, —5741, and 13860.

4. Calculations of the reduced departure functions

The advantage of virial series expansions, such as those given by Egs. (6) and
(8), lies not so much in their capability to predict compressibility factors as in their
uscfulness in calculating thermodynamic properties. Starting with basic thermody-
namic relations given in any number of textbooks [1] it can be readily shown that
the reduced Helmholtz free encrgy departure (AA),, entropy departure (AS), and
enthalpy departure (AH), functions of a gas from the ideal-gas state arc given by:

or Py (pr, Ty) T T. p,)
= _ it £t n
(AA)r jn‘ . [ Pg Pch] Ze tn (.P[rl (0



592 G.A. Estévez, et al.

d g Pr(pr, T;) T, 1 Pr
AS)y = —— dp, — - — —
s oty ./(: f [ p? Pch] Ze " (P:o» =

and

(AH). = (AA), + T(AS), + 2(Z - 1) (12)

where p! is the reduced density of a reference state, and Z and Z, are the compress-
ibility factors at an arbitrary volume, temperature, and pressure, and at the critical
point, respectively. Substitution of either Eq. (6) or (8) into Eqs. (10) through (12)
allows immediate evaluation of the integrals. The results are

T B U0y = B LN
(AA), =) ML Tk ﬁv!n[l ¥ ZBH](T,)p’:] (13)

AC k=1 k Zc k=1

_ 1k > pi d & Tr = * k
(AS), =-— Z LZZI T (1 + T, BT ) BJ:-H(T") o Z ln[l -+ éB.H_l(Tf)pr] (14)
and

Tro= 4, Tr 0,

(All), Z_ckzﬂpr(l_Tﬁ)Bk“(Tr) (15)

Other departure functions can be readily obtained from Eq. (13). Eqgs. (13)-(15) are
useful even if only a limited number of virial coefficients is known, such as in the
case of the Epstein equation [12].

An accurate alternate approach for evaluating the simple-fluid reduced depar-
ture functions is to employ the Padé representations for each of the virial expan-
sions corresponding to the Redlich-Kwong or Peng-Robinson relations in Eqgs. (10)
through (12). This method will now be pursued. We begin by writing the Padé
representation of the reduced Redlich-Kwong pressure:

Pri(pr) =

2
Tfﬂf(1+n1pr+n2pr) (16)

Zri \1 +dipr + dap?

Numerical values of the Padé coeflicients in Eq. (16) for several values of the reduced
temperature are found in Table I. Substituting Eq. (16) in Eq. (10) and integrating
yields the following expression for the reduced Helmholtz free energy:

T; Ty prly
(84) = o [Finh |+Gl -t |+ZRKIH(PPKZRK)] (17)
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[2/2] T. =05 T, =0.75 17 = 0.9
ny —3.367369 —1.714526 —1.242091
ng 0.942809 0.513200 0.390405
dy
dy —0.067559 —0.067559 —0.067559

TaBLE 1. Numerator and denominator polynomial coefficients of the [2/2](p,) Padé approximant
based on the Redlich-Kwong virial expansion corresponding to the reduced subcritical
temperatures T, = 0.5,0.75, and0.9.

[2/3) T, =05 T, =0.75 T. =09
ny —2.468689 —1.477075 —1.146537
ny 0.688815 0.437861 0.354209
dy 0.253076 0.253076 0.253076
dy —0.192143 —-0.192143 —0.192143
d3 0.016209 0.016209 0.016209
TaBLE II. Numerator and denominator polynomial coefficients of the [2/2](p, ) Padé approximant

based on the Peng-Robinson virial expansion corresponding to the reduced subcritical
temperatures T, = 0.5,0.75, and 0.9.

where the auxiliary quantities F' and G are defined by
nipr + 1 —ny/dy nipy +1 = (n2/dy)

F= pilm—p2) ¢= p2(p2 — ;1) %

and py, and p; are the poles of Eq. (16) for dy = 0, i.e., py = p; = 3.847323.
From the defining Eq. (11) and the result given by Eq. (17) it can be deduced
that the reduced departure function for the entropy for a Redlich-Kwong system is

1 PrTr
(AS), = Fln|1~—|+G’ln|1—P—2 In( )] (19)

CdyZpi Zrk  \PprZpk

Insertions of Eqs. (17) and (19) in Eq. (12) gives at once

Iv (ZrkPrk
AH [ZRERE ] 20
(AH). = Zrx U peTy 5
or, employing the Padé representation for the pressure given by Eq. (16)
T; 114+ n1p, + ﬂ2P2
AH )= L —1 2
( ) ZRA‘[ 1 + dyp? ] i
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As usual, all other thermodynamic departure functions can be obtained from Eq. (17).

For a particular value of T, the reduced virial coeflicients are evaluated em-
ploying Eq. (7). Once these values are known the Padé [2/2](p,) for Ppr(p,), must
be formed. A formula to achieve this, obtained using the algebraic manipulation
compuler system MACSYMA [13] is given in the Appendix. The roots of the de-
nominator of Iiq. (16) are easily found as the solutions of a quadratic equation in
the reduced density, and the values of the auxiliary quantities F' and G can be
readily calculated. For a given value of the reduced density the departure function
for the Ielmhioltz free energy can be evaluated. Minicomputers and programmable
calculators are particularly helpful if a table of values of (AA), for several values
of p, at a particular value of T} is desired. The numerical evaluations of (AS), and
other departure functions are similarly casy to perform.

The above procedure can, of course, be repeated for the evaluation of the reduced
departure functions for a Peng-Robinson system. However, the algebraic details
of the solution are tedious enough to be distracting here and we will be content
presenting the final results:

Trf’r (1 + nypr +712P3)

P = 5 22
il Zpr (1 + dipy + dap} + dsp}) (5
i T )
(AA), = [BEn]l~—|+Cin|I—p—|+D1nll—£’1]
d3Zpp p2 P3
i £ prT, '
+ —1n 23
AS), = — [Blnl— '+cn.1f +Dln 1-—J
(38), = == Bt = 2[4 Claft - £+ Dinfs - &
I 2T,
———1In e o 21
ZpR (P.r’n/d’n) (24)
and
o l i S r]
(All), = ’I, [ +np +:rgp - (25)
Zpp Ll +dipe + dap} + dap;
In Eqs. (23) and (21) the auxiliary quantity B is defined by
= napy +mpp + 1 (26)

milp = p2)(p1 — p3)

The anxiliary ¢nantities ¢’ and 1) are readily obtained by simply interchanging p;
and pa, and g oand pg, in Bq. (26) respectively. Notice that B,C, and D depend
implicity on the reduced temperature through the Padé coeflicients.
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The poles of the [2/3](p) approximant given by Eq. (22) are found employing
any of the several root finder algorithms from the open literature. The results are
p1 = 3.951314, p; = —1.636713, and p3 = 9.539461. Since the procedure to ob-
tain the numerical results for the several departure functions in the present case is
identical to that outlined for the Redlich-Kwong case it will not be repeated here.

5. Discussion

Padé approximants for the reduced pressure of real gases independently de-
scribed by the two-parameter Redlich-Kwong and Peng-Robinson equations of state
have been formed. These relatively simple representations for the reduced pressure
have been consistently employed in the derivation of analytical expressions for sev-
eral reduced departure functions of interest in chemical and process engineering. For
each value of the reduced temperature a set of Padé coefficients mnust be calculated.
All reduced departure functions are then deduced from that single Padé representing
the reduced pressure, by analytical integration and differentiation thereby satisfying
the thermodynamic consistency requirement. The convenience of machine compu-
tation outweighs the preparatory work of the user in obtaining the Padé coeflicients
even in moderately frequent application.

From the prescription given by Eqgs. (7) and (9) it is seen that the reduced
virial coefficients for the Redlich-Kwong and Peng-Robinson relations are explicit
functions of the reduced temperature T,. The temperature-derivative expressions
of the reduced virial coefficients needed in Eqgs. (14) and (15) for calculating the
isothermal changes in (AS), and (AH), can then be found analytically. This sug-
gests a third possibility of computing reduced departure functions. Indeed, Padé
approximants of the same degree in both L and M could be constructed to represent
all series expansions in Egs. (13) through (15). It appears that there are no reliable a
priori rules for selecting between the approach presented in this paper for obtaining
departure functions, and the method just described. The calculations involved in
the latter method have not been pursued here, and the work is left as an open
problem for study.
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Appendix

Given the function

F(z) =1+ fiz + frz’ + faz® + faz' + -+ (A1)

the analytical expression for the Padé [2/2](z) is

_ Pz)
where
P@)=(fifs— )+ (fifs + fafs = fifa— fifi)z
+(fofa = fEfa— F} + 201 f2fs = £ (A3)
Q(z) = (fifs — ) + (fofs — fife)z + (fofs — f3)2° (A4)
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Resumen. Se representan los desarrollos en serie de virial para la
presién, correspondiente a las ecuaciones de estado para gases reales de
Redlich-Kwong y Peng-Robinson, se representa por medio de aproxi-
mantes de Padé. Las representaciones de Padé se emplean subsecuente-
mente para determinar las funciones de separacién reducidas de sistemas
de componentes puros descritos por las ecuaciones de los dos modelos.



