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Abstract. The theory of a free relativistic 3-dimensional extended ob-
ject, which will be called a terron, is discussed. Using Dirac’s method
of constrained Hamiltonian systems a preliminary investigation of the
quantization of the free terron is performed.
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1. Introduction

It seems that the idea of considering a relativistic extended object as a fundamental
physical system was proposed for the first time by Dirac [1]. Dirac realized that
the muon has properties so similar to the electron that it may be considered to be
merely an electron in excited state. This observation lead him to make the following
interesting remark: “If one works with a point charge model of the electron, there
is no place in the theory for the muon”.

In the context of hadrons, ideas similar to Dirac’s where proposed [2]. In partic-
ular, the idea introduced by Nambu [3] and others [4] of a 1-dimensional extended
object, called a string, has been by far the most successful in describing “elementary”
particles. It seems that at the present time superstrings [5] are the best candidates
to unify all “elementary” particles.

Nevertheless, the alternative idea of considering a relativistic 3-dimensional ex-
tended object (instead of a string) as a fundamental physical system is an interesting
possibility [6,7,8]. In fact, it has been pointed out [6,8] that a 3-dimensional extended
object, which I will call a terron [6] (also known in the literature as a jelly [9]), has
a number of interesting features. One of these features is the fact that a terron is
the natural source for a four-index antisymmetric gauge field (Auyag; p,v, 0,8 =
0,1,...,D —1) [6,8]. One should recall that the gauge field A,,,3 appears explic-
itly and is an important object in a limiting case of string theory, chiral N = 2,
10-dimensional supergravity [10].

In addition to their direct physical interest terrons offer a useful system that
gives a better understanding of some subtleties of string theory. In particular, a
terron may be used to clarify the phenomena of the so called critical dimensions.
As is known, one of the most intriguing features of string theory is the fact at the
quantum level the Lorentz group algebra does not close unless the dimension D
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of the spacetime is 26 (for the bosonic string) or D = 10 (for the spinning string
or superstring). This property of the quantized string is certainly interesting, since
it implies a connection between the dimension D of spacetime and the dimension
d = 1 of a d-dimensional extended object when Lorentz covariance is required.
From this result the question arises whether Lorentz covariance also determine a
connection between D and d when d is grater than one. (This question is related
to the problem suggested by Scherk [4]: find out which extended system can be
quantized for D = 4). Of particular interest is the determination of the critical
dimension D) of spacetime when d = 3, corresponding to a terron. One may hope
that result obtained for the terron will shed some light on the question of the critical
dimension for the string.

The main purpose of this work is to establish the first steps in the quantum
theory of the terron. The central idea is to use Dirac’s method of constrained
Hamiltonian systems to develope the quantum theory of the terron. Specifically,
the primary constraint which follow from the definition of the momenta associated
with the terron, are derived. In future research, the final goal will be to determine
the critical dimension of spacetime for the terron.

Before discussing the theory of the terron I should mention that a preliminary
investigation to determine the critical dimension for a 2-dimensional extended ob-
ject, called a membrane, has been performed by Collins and Tucker [11]. In fact,
using Dirac’s procedure for constrained Hamiltonian systems, Collins and Tucker
developed in some detail the quantum mechanics of membranes. However, due to
the fact that quantum membrane theory is extremaly complicated, they do not solve
the question of the critical dimension for the membrane. From their results for the
quantum membrane, it is reasonable to expect that the quantum theory of a free
terron will be also very complicated. Furthermore, since a terron is an extension
of the membrane concept, one may think that the quantum theory of the terron
will be more complicated than that of the membrane. There is, however, at least
one indication, pointed out in reference (6], that suggested the possibility of finding
some simplifications in the process of quantizing the terron. Such an indication will
be also discussed in this work.

Finally, I should also mention that terron theory has been considered, from a
classical point of view in a very general context by a number of authors (12,13,14].
In particular, Teitelboim [13], has explored gauge invariance for extended objects.
It is interesting that one of the examples considered by Teitelboim as interesting is
precisely the terron. In fact, Teitelboim shows from the relation:

D =2(d+2),

that the case d = 3 is interesting, since the spacetime must have dimension ) = 10,
which is the critical dimension in superstring theory. The relation D = 2(d + 2)
means that the coupling constant associated with the completely antisymmetric
gauge ficld Ay qap is a pure number (see reference [13], for more details).
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2. The free relativistic terron

Terrons are 3-dimensional, relativistic, extended objects. They provide an inter-
esting generalization of pointlike systems, strings, and membranes, corresponding to
objects of dimensionality d = 0,d = 1, and d = 2 respectively. As a free terron moves
through flat spacetime it sweeps out a 4-dimensional surface called the world-sheet
for the terron, in analogy with the world-line for a pointlike particle.

Let us introduce the four arbitrary internal coordinates to parametrize the
world-sheet of the terron:

= (78 Mp)s a=0,1,2.3. (1)

Here, 7 is a timelike evolution parameter while o, A, and p are spacelike parame-
ters used to label points within the terron. Thus, the motion of a terron through
spacetime can be described using the coordinates

X =x*£"), p=0,1,..,D-1, (2)

where D is the dimension of spacetime. Consider the induced metric on the world-
sheet for the terron

ax* oy
hay = 6—5"6—55%"’ (3)

where 7, = diag(—1,1,1,...,1) represents the flat Minkowski spacetime metric. Let
h represent the determinant of hgy:

h = dethgy. (4)

One postulates the following action for the terron

§=-p [ dev=h, (5)

where p is a constant of the motion measuring the inertia of the object analogous
to the rest mass of a point particle or the tension of a string, and has dimensions
of a [length]™"(h = ¢ = 1).

Consider now the equations of motion of the free terron. In order that the
equations of motion be suitable for quantization they should be derivable, of course,
from the action (5) using the principle of least action. Provided certain boundary
conditions are satisfied, one finds the following equations of motion from the ac-
tion (5):
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Ox* =0, (6)

where the operator (] represents the D’Alembertian in a 4-dimensional curved space
with metric (3):

a

E]Ea{a

[\/Iﬁh“”b%]. (7)

An important feature of the equations of motion (6) is that they are non-linear
differential equations for x*. In fact, from the definition of gy in (3) one learns that
the equations of motion are non-linear functionals of x*. One may understand this
observation better if one introduces the notation

ax" i Ox* 0% e SR

o = P el = sl
=G XSG X R ¥ =gy

and rewrites the equations of motion (6) in the following form:

2

X X g X @ -3 ¥ XX
i X 5 X;, (3{' )f Xfﬁ. § ){J ” A)f: L i i 'i,p_ ¥f,u7 )qu _"X-',uN L*—
orx-x X-x (. X X|y=h 9¢|X-X XX (x)” X-X|v=h
XX ¥:x x 0 ¥ X-¥ %X (0
o | 7 XX XX XX (07 XX XX XX
Blx-x () xox X g 21X ) X-x XX _
Al x X X X |V-R O |xex xox (X)) X X|V-h
x'¥ ¥'x x¥ & #* x* P x
=0 (8)

Here, |Ag| is the determinant of a matrix Agp, and the Lorentz indices in the
products a - b for any vectors a* and b* are suppressed. Note that the metric hgp
given by (3) can be written using the above notation as

(W 5x X 4R
ha=| XX OO XX XX 9
ol ex xex 7 XX W
YiX¥ ¥°X¥ 'k &
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Now, in order to use Dirac’s method [15] to quantize a classical constrained
system, one should consider the Hamiltonian formalism rather the Lagrangian for-
malism. The starting point in the Hamiltonian formalism is the definition of the

canonical momenta in terms of a Lagrangian associated with the system. According
to (5), the Lagrangian for the terron is

% so—pdh. (10)

Thus, the canonical momenta are

aL

P = 3 11
which can also be written as
P;'EP*"’:f,i, P;‘EPM:E’—L,
X aXL
(12)
P;EP"zza—L‘ P“EP“:’:aTL-
IXu 4 Xy

In terms of the canonical momenta given by (12), the equations of motion (6) or
(8) become

O puy O pu, O pu, 0 pu_
EP' - BaP" + a)‘P/\ + apP‘, = (13)

This manner of writing the equations of motion is useful to show that the total
linear momentum

P = j SEPH(ER), (14)

and the total angular momentum

me = [aemp = [@e(err-xopr) (15)

are conserved quantities:
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%P" =0, 8%1\1#"' =0, (16)

The terron is a constrained system since the action (5) is invariant under repara-
metrization

£ — £ (eh). (17)

So, in Dirac’s method for a constrained system, constraints arising from the defi-
nition of the momenta (11) are called primary constraints. Its turns out that the
computation of these constraints is very lengthly, so we will not describe it. We will
simply write the results. From the definition of the momenta P} given by (11) one
can show that the following indentities exist locally:

i 2 ( :X—-'
PPy +p° | x X =0, (18)

S RO
PiPoy+p ,\)z (—)ﬂ )2;)( =10, (19)
XX x-x (%?
Py, =0, Py =0, PiX,. =0,
)2 N XX
PYPy, +p° XX () X-x[=0, (20)
XX Xx (%?
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o BF #ot gy
Py Pou + p* X"X' XF ¥ % =0, (21)
X ¥x 15

Pru=0, PRy, =0, Phy,=0.
Note that all of these identities involve the canonical momenta P,’-‘,P;‘,Pf, and
PJ, as well as the velocities x*, x'#, x#, and X*. Strictly speaking, x'*, Y*, X" are
not velocities and Pf,Pr, and P,’;‘ are not momenta, since 7 is the evolution pa-
rameter and o, A, p are spacelike parameters. So, one should expect that among the
identities (18)-(21), the first four given in (18) will play an important role in both
classical level and quantum level. Let us label the identities (18) as follows:

¢ = P"P# + pzdet(h,}) =0, 1,7=1,2,3

¢2 = prL =0,

(22)
¢ = P¥xu =0,
¢4 = P'Y,. =0,

where, in order to simplify notation, P* = P¥. According to the Dirac formalism,

the identities (22) are primary constraints, since they follow from the definition (11)
of the momenta.

It is not difficult to sce that the canonical Hamiltonian

= fdﬁ‘g{)gﬂp,, — 1) (23)

vanishes identically. Thus, one may write the Hamiltonian for the relativistic terron
as

1 = fdﬂg{Alesl + Mada + Dady + M), (24)

where Aj, A2, A3, and A4 are Lagrange multipliers.
One may attempt a covariant quantization by replacing the canonical variables
\* and PY by operators satisfying the canonical commutations relations:
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[R4(r, 0, p), P* (7, 0", N, )] = in**é(0 — o")8(X = X)5(p — #) (25)
[R(r,0,2, p), X" (7,0", X, p)] = 0, (26)

[P#(r,0, ) p), P*(1,0' X, p)] =0 (27)

In this context, the constraints (22) are implemented by requiring that the physical
state |¢) satisfy

é1lp) =0,
$al9) = 0,
R (28)
#ali) = 0,
$alv)) = 0,

where the hat “~” in the constraints ¢, ¢2, @3, and ¢4 denotes operator. Of course,
at this stage one may ask whether there are ghost states and whether there is
a critical dimension. As in the membrane case, one should expect to encounter
many difficulties in answering these questions [11]. Therefore, one may consider an
alternative method of quantization.

One possibility is to reduce the independent degrees of freedom by prescribing
the gauge, that is, by choosing A1, A2, A3, and A4. In this case, one may consider the
terron to be a closed toroidal surface for which o, ), and p lie in the range [0, 27].
Thus, one may expand quantities in a Fourier series

oo

xﬂ 2 Z Xﬁmj(T)ean+‘mA+‘lps (29)
n,m,l
£ . ) .

P,u 2 Z P:ml(f)ema+lml+|b\, (30)
n,m,l

—o0

where x5 and P. , are considered complex and

X:ml = X:Fn—m—f
(31)
P:ml =P »

—n—m—1"
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However, one may expect to find difficulties of normal ordering as in the mem-
brane [11].

Another interesting possibility that may be used to quantize the terron is to use

the path integral formalism, as Polyakov [5] did to quantize the string. The action
used by Polyakov to quantize the string is

&=[f&,

with

T
F = _E‘ﬁ_ggﬂbaax#abx”, (32)

where T is the tension of the string.
At the classical level, the action is equivalent to the Nambu action for the string

S= -T/dz.sﬂ, (33)

where h,y is defined as in (3) and (4), but the indices a,b run from 0 to 1. An
important invariance in the action is the Weyl invariance

gab =y /\gab. (34)

The analog of the action for the membrane and the terron are

Sm=-0 / e =g(g™Pax"hx,)** (35)
&=~% dE/=9(gBux  Dux,)*. (36)

respectively. These actions are also invariant under the transformation (34), that
is to say, they are Weyl invariant. It is known that square root Lagragians such
as (35) are troublesome from the point of view of the path integral formalism. This
observation suggests to consider the terron theory as a better alternative than the
membrane to generalize the string theory.

The generalization of the action (35) and (36) for a d-dimensional extended
object is
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Sh = const. [ A= (g" ax Orx,) T . (37)

It is not difficult to show that the action S is Weyl invariant. Variation of S with
respect to g** provides the equation

Bax" Oy = (Tigfl)(g“‘ﬁcx“ﬁaxp)- (38)

From (38), gives it follows that g, = Jax*Xx,. This relation immediately gives
the equivalence between the action (37) and the Nambu action

Sj= const./dd+15v—h. (39)

It is important to mention that a number of authors [20,21,22] consider the
action

i = const. [ a16y=5 (50 Opx, + (1 - ) (10)

as a generalization of the action (32) for the string. Observe that the action Sj,
as opposed to the action S, is not Weyl invariant. Variation of the action S with

respect to ¢® provides the equation

. i 1 p L
Bax"Opxp = 59ab (g“'dcx‘ Daxa+ (1 - d))- (41)

From (41), it follows that g, = dax"Pxu- This relation gives the equivalence
between (39) and (40).

Finally, I should mention that more progress towards the construction of a
membrane theory and a terron theory were made recently by a number of au-
thors [16,17,18,19]. Rayski [16] considered membranes as alternatives of strings and
superstrings. His basic idea was to consider a closed membrane to form a compact
object: a bubble. He showed that bubbles may perform not only vibrations but also
rotations and introduce also infinite towers of particles with higher spins and masses.
Kikkawa and Yamasaki [17] demonstrated that for a simple membrane model the
masssless particle is unable to be generated in integer critical dimensions. From the
point of view of a unification model this results is, of course, a bad new for the
membrane theory. Hughes et. al.. [18] considered superterrons (which they called
supermembranes) as an example of the spontaneous breaking of D = 4, N = 2 global
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supersymmetry down to N = 1. More recently Bergshoeff et al. [19] constructed an
action for a superterron (which was also called supermembrane) propagating in
D =11 supergravity background.

[ am specially grateful to Leonel Torres for his insights.
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Resumen. Se discute la teoria de un objeto extendido relativista
libre de tres dimensiones, al cual llamaré un terrén. Se desarrolla una
investigacién preliminar de la cuantizacién de un terrén libre usando el
método de Dirac de sistemas hamiltonianos con constricciones.



