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Abstract. The theory of a free relativistic 3-dimensional extended oh.
jcct, which will be called a tenon, is discusscd. Using Dirac's method
of constrained lIamiltonian systems a prcliminary invcstigation of the
quantization of the free terron is performed.

PACS: 11.17.+y

1. Introduction

It St"CInS that the idea of consioering a rc1ativistic extended object as ~ Cundamental
physical system was proposed for the first time by Dirac (1). Dirac realized that
lhe muon has propcrlics so similar lo the e1ectron that it may be considered to be
rncrc1y ao electron in cxcilcd stalc. This observalion lead him to make the following
inlcresling remark: "If one works wilh a point charge model of the electron, there
is no place io the theory for thc muan".

In tlle context of hadrons, ideas similar to Dirac's whcre proposed [2). In partic.
ular, the idea introduced by Nambu 13]and others [4J of a ¡.dimensional extended
objcct, called a string, has bccn by far the most successful in dcscribing l.lelementary'"
particles. It sccms that at the present time superstrings {51 are the best candidates
to uuify aH 14elementary" particlcs.

Neverthelcss, the altcrnativc i<leaof considering a relativistic 3.dimensional ex.
tended objcct (instead of a string) as a fundamental physical system 1san interesting
possibility [6,7,8). In faet, it has been pointed out [6,8] that a 3.dimensional extended
objed, which 1 wiH caH a terron (6) (also known in the liteeatore as a jeHy [9]), has
a number oC interesting fcatures. One of these features is thc fact that a terroo is
the natural source for a fOllr.index antisymmetric gauge field (Ap.vo{JijJ,II,a,{3 =
O, 1, ... , D - 1) [6,8]. One should recaH tbat lhe gauge field A" •• ~ appears explic-
itly aud is an important objccl in a limiting case of string thcory, chiral N = 2,
10.dimensional supergravity [lO].

In addition lo their dircct physical interest terrons offer a useful system that
gi\'e:; a belter understanding of sorne subtleties o~ string thcory. In particular, a
terroll may be used to c1arify the phenomena of the so caBed critical dimensions.
As is known, one of the most intriguing features of string thcory is the fact at the
quantum level the Lorcntz grotlp algcbra does not close unless the dimension D
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of tlle spacctime is 26 (for the bosonic string) or D = 10 (for the spinning string
or supcrstring). This propcrty of thc quantiZf,d string is certainly intcrcsting, since
it implics a conneetion betwccn thc (limensioTl f) of spacctime and thc dimcnsion
ti = I of a d.dimcnsion<'ll ('xtendc(! ohj('ct when Lorentz covariancc is re<¡lIired.
Frolll this reslllt tIJe question arisf>Swhcthcr Lorctltz covariance also determine a
cOllneetion hctwecn D ilnd d w!len d is grater lhan one. (This qucstion is re!ated
lo lhe pl'Ohl(,1Ilsllggested by Scilerk f'tl: find out which extended systern can 1)('

qllilllti7.ed for n = 4). Of pilrticular intnesl is the determination of tile critical
dimensioll [) of spacdime when d = :1, corrcsponding to aterran. One may hope
lh<'lt r(,slllt obtained for tile lcrroll will shed somc light on the question of tiJe critica!
(Iilllensiotl for lile string.

The rnain purpose of this work is to cslablish the first steps in the quantum
tileory of the lerroll. The central idea is lo use Dirac's method of cOlIstr<'lincJ
lIamiltonian systcrns to dcve!opc thc quantum theory of the terron. SIH'cifical1y,
the prilllilry constraint wilich follow from tlle dcfinitioll of tite momenta associated
with lhe tCl"I'on,arc dcriv('(1. In future rescarch, tbe final goal win be to deterIllint~
tlw critical dilTlcnsion of spacctiTlH' for tile terron.

Before disctlssing the throry of the terron 1 shollld mention that a preliminary
illvcstigatioll to determine the critical diltlension for a 2-dimellsional ext.ended ob.
jf'd, cal1ed a Illelllbrane, has b(,(,1llH'rfornH'd hy Collins ilnd Tucker [11}. In fad,
IIl'ing Dirac'l' proce<1ure for cOlIstr<'lined lIallli!tonian systcms, Collins alld Tllcker
dcveloped in ¡';OIllCdetail the qllantulIl ltIt'chanicl' of tTIcmhrancs. lIow('vcr, due 1.0
t.he fact that <¡uilntum rncmbrane lh('üry is extremaly comp!icated, they do nol solv('
lhe (IUeslioll of thc critica! dilllcnsion for tll(' ITIembranc. From thcir reslllts for tlle
qU<'llltUITlmembranc, it is rea.sonablc lo cxped lhat lhe quantum theory of a free
t('rron will be also vcr)' complicated. FllI'lhermon', since a terroll is an extcnsion
of the ITIembrane conccpt, afie ma)' think that tile qllantlltn theory of tll(' tcrron
\\'ill he more complicated tiJan that of tlu' membrane. There ¡s, however, at least
olle indication, pointed out in rcfef('llce [6J, that suggested the possibility of finding
somc simplifications in the proc<..-'Ssof (luanli7.ing the tt'rron. SuciJ an indication will
he also disclIsscd in this work.

Finally, 1 should also mcntion that ter ron lil('ory has bccn considcfcd, frorn a
c1assical point of view in a vcry general contcxt bya numbcr of authors [12,¡:3,U].
In particular, Teitclboim [l31, has cxplort'd gaugc illvariance for cXlended objccts.
It is inlcresting that OIle of lhe eX<llllplescOllsi<icrcd by Tcitclboim as intcresting is
prcciscly thc terroll. In fild, Tcitclhoim shows froln the relation:

f) = 2(" + 2),

that the case d = 3.is inlcr('stinR, silln' ti", spacctimc musl have dimension f) = lO,
which is the critical dirn('llsion in slIpcrstring tll<'ory. The rclation f) = 2(d + 1)
means that tIJe coupling (:onstant assoc:iateci with lhe complctcly antisymn}('tric
g<'lllgefield J1'lV •..•,a is a pnrr llulllhcr (st'c refercncc [i:lj. for more details).
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2. The free relativistic terroo

Terrous are 3-dimensional, re1ativistic, extended objccts. They providc an intcr-
esting generalizatioll of pointlike systems. strings. and membrancs, corrcsponding to
objccts of dimcnsionality ti = O. d = 1, and d = 2 respcctive1y, As a free terron moves
through flat spacetirne it sweeps out a 4-dirnensional surfac:e called the world-sheet
for the t('rroll, in analogy \,,'ith the world-Iine for a pointlike particle.

Let liS inlroduce lhc four arbitrary intefllal coordina les lo paramctrize lhe
worId-shect of lhe terron:

e = (T,a,'\,p), a = O, 1,2,3. (1 )

Here. T is a tilllclike evolulion parameter while a,)., and pare spacelikc param<.."
lcrs lIsed to labe! points within lhe terron. Thus, lhe motioll of a terron through
spacctimc call he descrihcd using lhe coordinates

," = ,"«('), l' = O, 1, ... , D - 1, (2)

where D is lhe dimension of spacelime. Consider the induced mctric on the world.
she<'l for t he lerron

(3)

where '1¡JV = diag( -1, 1, 1, ...• 1) represcnts lhe flat Minkowski spacetirne lTletric. Let
h represent the determinant of hab:

h = deth".

Qne postulates the following action for the tcrron

s = -p J ¿'(N,

(4 )

(5)

where p is a const.ant of the motion mcasuring the inertia of the object analogous
lo the rest mass of a point partide or the tension of a string, and has dimensions
of a [leogthr'(f¡ = e = 1).

COllsider !lO\\' lhe cquations of motioo of the free terroll. In order that the
equatiolls of lIlo1ioll be suitablc for quantization they should be derivable, of course,
from the action (5) t1sing the principIe of Icast action. Provided certain boundary
conditions an~ sat.isfic1:l,olle finds the following equations of motioo from the ac-
tion (5):
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(6 )

wherc theoperator O rcpresents the D'Alembcrtian in a 4-dimensional curved space
with metric (3):

(7)

An important featurc of thc equations of motion (6) is that they are non-linear
differcntial equations for X'I. In fact, from the definition of hab in (3) one learns that
the cquations of motion are non-linear functionals of xp. Dne may understand this
observation betler if one introduces tile notation

'p _ 8XlJ X'II = EJX/l _" _ °X" _" _ OX"
X = 8r' - 8a' X = o~ ' X = op

and rewrites the equations of motion (6) in the following form:

\

X" X'" X" X" (xl' X' x' x'X X'X
o . , (X')' x' . X I - 1 o ,yP X'" -" xP 1X'X X 'X X
OT X'X X'.X (5:)' X'X --+- .\'X X"X (5:)' X'X ,FJ/A oa

x'. X X'X (X)' I - X'X (X)'x'x x'x X 'x

(Xl' . I X'X X'X (x)' X. X' x.x X'Xx'xo . I (X')' x'. X ' - 1 o x. X' (X')' I - X'.X 1

o~
X'X X 'X --+- X 'x

Ax" X'" X" X" A op X'X I - (X)' X'XX 'x
X'X x'.x X'X (X)' x" X'" X" X"

=0 (8)

Here, IAab I is the determinant of a matrix Aab, and the Lorentz índices in the
products a . b for any vcctors aP and bP' are suppressed. Note that the metric hab
given by (3) can be writlen using the aboye notation as

( (Xl', X. X' X'X x.X)(X')' X'.X I -

~ab = X'X X 'X (9)
X'X I - (X)' X'XX 'X
X'X X'.X X'X (X)'
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Now, in order lo use Dirac's rnethod (15] to <¡uantize a classical constraincd
system, oue should consider the Hamiltonian formalism rather the Lagrangian for-
malism. The starting point in tite lIamiltonian formalism is the definition of the
canonical momenta in lerros of a Lagrangian associatcd with the system. According
to (5), the Lagrangian for the terron is

Thus, the canonical morncnta are

which can also be wrillen as

L=-p..c¡;. ( JO)

(Il )

P" = P"' = aL
n - ax~1

P" = 1'"3 _ aL" - - ax"'
(12)

In tcrms oC the canonical momenta givcn by (12), the equations oC motion (6) or
(8) become

~P" ~J'" ~J'" ~P" - OaT ,+ aa • + a>. ~ + ap p - •
(13)

This manner oC writing the cquations of motion is useful to show that the total
linear momcntum

(14)

and the total angular momentum

(15)

are conservcd. quantities:



602 J.A. Nieto

~PI'=O
8T ' ~AI." = O8T . (16)

The terron is a c:onstraincd systcm sincc thc adion (5) is invariant under rcpara4
metrization

( 17)

So, in Dirac's method roc a constraincd syst.em, constraints arising [rom the dcfi-
nition oC thc momenta (11) are ('alled primar)' const.raints. lts turns out that the
computation oC thcsc constrainLs is very lcngthly, so we \••..iIl nol describe ¡t. \Ve will
simply write the results. From the dellnition oC Lhe momcnta P; given by (11) Dne
can show that the following indcntities exist locally:

(x')' , - , -
p/lp + 2

X .X X .X
r TI! P X' . ~\' (X)' X.X =: O,, - X.X (X)'X .X

(18)

P¡J I -O
rX¡J = ,

Lr)' X.X y.x
IJlt P + p2 X.X (Xl' X.X =: O, (19)
" ". X.X X.X (X)'

P!:Xp == O, P::Xp == O,

Lr)'
Pt P),1t + p2 X' X'

X.X

x. X'
(X')'
X. X'

X.X
X'. X =:0,
(X)'

(20)

P• , - O
)"XII = , Pfxp == O,
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Cd . ,
.X' Xy.y

PII!, ") . , (y'f ' - '" O,P PII + l'w y.y y .y
X'X .\. Xl (xl'

(21 )

Pp.f - O
p xp = ,

Note that aH of tilesc idcntities involve the canonical ll10menta l'f, P:, Pi', and
p~J,as well as lhe vclocities :\11, x'P, xP, and xp. Strictly spcaking, x'P, ,X'I, ,\p are
not vclocitics and p~J,pf, and r: are not momenta, since T is tile evolution pa-
rametcr and a, ,\,p are spacclike parameters. So, one should eX)led tilat aITlong the
idelltitics (18)-(21), tile first four given in (18) will play aH ímportant role in both
classicallevel alld quantulll leve!. Let us labcl thc identities (18) as fo\lows:

.< - P"' - O.,...2 = xp = ,
(22)

where, in arder to simplify notation, pIJ :; Pf. According to lhe Dirac formalism,
the identities (22) are primary constraints, since they follow from the definitíon (11)
of the momenta.

It is not difficult to sec that the canonical lIamiltonian

l/o'" J d.1({X"P,. - L) (23)

vanisiJes id('ntically. Thus, one may write the lIamiltonian for the rclativistie terron
as

(24 )

whefe -\), -\2, -\3. ami '\1 are Lagrangc multiplicrs.
QIIC Illil)" attcIIlpt a covariant quantization by rcplacing the canonical variables

\,. and P'" by opnators satisfying the ('ananieal comlllutations rclations:
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Ix" (T, er, .\, p), P" (T, er', .\' .p')J = i~""8(er - er')8(.\ - .\')8(p - p') (25)

[X(T,er,.\,p),X"(T,er',.\',p')] = O, (26)

IP"(T, er,.\, p), P"( T, er', .\', P')) = O (27)

In this conlext, the constrainls (22) are implemcnted by rcquiring that thc physical
state i"'} satisfy

¡ti"'} = O,

¡21"') = O,
¡31"'} = O,
¡,I"') = O,

(28)

where thc hat «--" in lIJe constrainls <PI, q;l, 1>3,and 4>4denotes opcrator. Oí course,
al this slage one may ;:¡skwhethcr there are ghost states and whether thcre is
a critica1 dimensiono As in thc rncmbrane case, Olle 5hol11d exped lo encounter
many difficulties in answcring thesc qucstions [Il). Therefore, OIle may consider an
alternative method oí quantizalion.

Dne possibility is lo reduce thc indcpendcnt degrees oí freedom by prcscribing
thc gauge, that ¡s, by choosing A., >'2, .\3, and )+ In this case, one may consider thc
terroo lo be a c10sed toroidal surface foc which (J, A, and p lie in the range (0,2nl
Thus, one may expand quantities in a Fourier series

(29)
n,m,1
-00

=
p" (T)einD"+imA+iU
nml '

(30)
n,m,I

where X~ml and P:ml are considered complex ano

IJ _ *p
Xnml - X-n-m-l

pJl _ p.1J
nml - -n-m-l'

(31)
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However, one may expect to find difficulties of normal orJering as in the mem.
brane [11).

Another interesting possibility that may be used to quantizc the terron is to use
the path integral formali,m, as Polyakov 151 did to quantizc the ,tring. The action
used by Polyakov to quantize the string is

with

L - T r-: aba I'a '- -IV -99 aX bX/Jt (32)

where T is the tensioll of lhe string.
At the c1assicallevcl, the aelion is equivalent to thc Nambu aelion for the string

wherc hab is dcfinNI as in (3) and (4), but the indiccs a,b
important invariancc in the aelion is the \Veyl invariance

gab \ ab
---. /19 •

(33)

run from O to 1. An

(34 )

The analog oC the aelioll for thc memhrane and the terron are

Sm '" -O J d'~F9(gabaaX"abXI,)3/2
S, = _J!... J d'~F9(gabaaX"<JbX,,)2.

16

(35)

(36)

respeclivcly. Thcse actions aTe also invariant under tlle transformation (34), that
is to say, the)' are \Ve)'1 invariant. It is known tllat squarc root Lagragians such
a.."l(35) are troublesome from the point of view oC the path integral formalismo This
obscrvation suggests to consider thc tcrron theory a..<;a bettcr altcrnative than the
mcmbranc lo gcncralizc tIJe string tIJeory.

Thc gcncl'alization of the action (35) and (36) Cor a d-dimcnsional extended
objcel is
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(37)

II is 001 difficull lo show lha.t lhe act.ion S~is \Veyl invarianl. Varialion oí S~ \,,'ith
respecl to gab provides lhe eqllation

01' o . _ 9ab ('<1 opa . )
0,\ "n,. - (d+ 1) 9 0,\ <lXp.

From (38), gives it follo\\'s thal gab = iJa>...118bXjJ' This rclalioll
the equivalencc bet.wecll thc action (:37) and the Nambu action

(38)

immediat.dy gil/es

(39)

It is imporlant 1.0menlion that a number of allthors [20,21,22] consider the
action

(40)

as a generalization oí t.he action (32) íor t.he string. Observe that the action S:;,
as opposed to t.he action S~, is not \Veyl invariant. Variation of the action S:; with
respccl to gab provides t.hc cquatíon

(41 )

From (41), it f01l0wsthat gab = 8aX'IabXw This rdalion givcs the equivalcnee
bctween (39) amI (40).

Finally, I should mention that more progrcss towards the eonstruclion oí a
memhrane thcory and a terron thcory were made recently by a number oí au-
thors [16,17,18,19]. Rayski [16]considcred membrancs as a1ternatives oí strings aod
superstrings. Bis basie idca was 1.0consider a closed membranc to form a eompad
object: a bubblc. He showed ihat bubhles may perform not ooly vihrations but also
rotations and introduce also infinite towers oí particles with higher spins and masses.
Kikkawa and Yamasaki [17] demonstrated lhat for a simple membrane modcl the
masssless parlicle is unable to be gencraled in intcger critieal dimcnsions. From the
point of vicw oí a unification modd lhis rcsults is, oí eourse, abad new for the
membrane theory. Hughes el. al.. [18] considercd supertcrrons (whieh they caBed
supermcmbraocs) as ao example oí lhe spontancous breaking of D = 4, N = 2 global
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supersYIllITlctry clown t.o N = l. ~Ior(' reccntiy Oergshodf d al. 11 ~}] cOlIstrucí('d an
aclion for a supcrtcrron (which was also calicel supcrmeTllhrane) propagating in
D = 11 supcrgravity background.

1 am specially gratdlll lo Lf'onc1 Torres for his insights.
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Resumen. Se discute la teoría ele un ohjeto extelldido rplati ••.ista
lillr(' de trf.'S dimensiones, al cual llamaré un terrón. SI' desarrolla tina
investigación preliminar de la cuantización de 1111 terr<>n lihre 1Isando el
método de Dirac de sistemas hamiltonianos con constricciones.


