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Abstract. Following the procedure customarily used to define the four-
spin, we define electric and magnetic field four-vectors and use them to
write Maxwell equations in a manifestly Lorentz covariant form. We
prove that these equations are physically equivalent to the standard co-
variant formulation of Maxwell equations. We then show how to develop
covariant electrodynamics from our set of equations.

PACS: 03.50.De

1. Introduction

Why it is not possible to formulate the equations of electromagnetism in manifestly
covariant form using electric and magnetic 4-vectors? A possible answer to this
question comes immediately to mind: the electric and magnetic fields are not the
spatial components of any 4-vectors. It is only a very particular arrangement of their
components which form a fully covariant object, the electromagnetic field tensor
F#_Only using this tensor the manifestly covariant form of Maxwell equations can
be achieved.

However, think of the covariant generalization of the equation of motion of a
particle with spin in external electromagnetic fields. Here, it is not apparent that
the spin of the particle s should be the spatial part of any 4-vector. But this does
not prevent us from defining a spin 4-vector s* whose spatial part reduces to s in the
proper frame of the particle and so subject to the constraint s#u, = 0, with uy the
4-velocity of it. The 4-spin so defined can be used to obtain a covariant expression
for the equation of motion of the particle [1-3].

At this point one may wonder again. Why it is not possible to define 4-vectors
E* and B* exactly as we have defined the 4-spin, and use them to cast Maxwell
equations in a manifestly Lorentz covariant form? The purpose of this paper is to
show that this is indeed possible and that by using them a perfectly consistent
description of electromagnetic interactions can be achieved.

We must point out that 4-vectors E* and B* have been used previously for
describing electromagnetic interactions in charged fluids [4], and employed as “in-
teresting secondary objects” in the study of the algebraic properties of the electro-
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magnetic field [5]. But in both cases they are introduced only as a convenient way of
splitting the electromagnetic field tensor in its electric and magnetic “components”
from the point of view of an observer in a certain comoving frame.

In this work we shall consider E# and B¥ as primary objects, defined in order to
put Maxwell equations in an explicitly covariant form; in other words we shall use
them as a starting point for an alternative introduction to covariant electrodynam-
ics. The plan of the paper is as follows: In section 2 we define the 4-vectors E* and
B*and obtain the covariant equations of motion they satisfy. In section 3 we show
the equivalence between those equations and Maxwell’s; we recover some standard
results of classical electrodynamics, and we discuss the covariant description of the
electrodynamics of continuous media. Section 4 contains our conclusions and some
additional comments.

2. Defining E* and B*

To define the 4-vectors E* and B*, we must select a particular —but otherwise
arbitrary— inertial reference frame R, to which we shall sometimes refer as the
frame of our fiducial observer, and set:

E* = (0,E) and B* = (0,B) (1)

where E is the electric and B is the magnetic field in that frame. In all other frames
E* and B*are obtained by Lorentz transformations of Eq. (1). Obviously, E* and
B*must satisfy

E"E, = —|E, B“B, = —|B[* (2)

and

Efu, = B'u, =0, (3)

where u, is a time-like unit 4-vector, the 4-velocity of our fiducial observer. To be
precise, E* is a 4-vector but B* must be called a pseudo 4-vector.

Until this point all appears to be completely analogous to the definition of
the 4-spin. However, there exist an important difference, s” is defined as we have
said only in the case of massive particles; and, as we represent the spin degrees of
freedom as a three-vector in the rest frame of the particle, this becomes the only
frame in which we can define s*. There is no similar way of selecting a frame[6] for
the definition of E* and B*, every frame can be selected and therefore there are
many unequivalent ways of defining them.

Let us display the explicit connection between the components of E* and B*in
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a frame R with those in frame R. If E¥ = (€4, €") and frame R’ is moving with
a velocity v as seen from R, we must have (¢ = 1):

0= —7v-E, (4)
A N
£ =E nyr1( E)v, (5)

where ¥ = (1 — v?)™1/2, and analogous expressions for the components of B*.
As equation (5) shows &' is a three-vector which has little to do with the electric
field in frame R'. Therefore E* and B*cannot be considered as merely “covariant
generalizations” of the usual notions of electric and magnetic fields. The fields E#
and B*must be regarded as “new” fields with similar but not the same physical
interpretation as E and B. In spite of this, we will call them the electric and the
magnetic field 4-vectors, since they become essentially the E and B vectors in
frame R.

Let us proceed now to obtain the equations of motion for E¥* and B*. Apart
from fields, charges and currents the equations may also include the 4-vector u”,
and they must reduce to the standard Maxwell equations in frame R. The simplest
set of equations that satisfy these requirements (in Gaussian units and with ¢ = 1)
is:

3, E* = 4xp,, (6a)

8, B* =0, (65)
e*P1,Es + 8,B° = 0, (6c)
e*P19.Bs — BE* = 4n J2, (6d)

where p, is the density of proper charge, J? the conduction current 4-vector (i.e. the
charge and current densities as measured by the fiducial observer), e*#7 = uy gl
with e**#7 the four dimensional Levi-Civita symbol (%128 =1),and &; ( = u*8))
stands for the mva.rlant directional derivative in the “time direction”. The relation-
ships J* = J2 4ut pc and p, = Jyu? are the links between J2 and p. with the usual
current 4-vector J, We can also express the force (Lorentz force density) exerted
on charges p. and currents J2 in terms of E* and BFas:
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f* =0 B* 4 6% JTB* = 6% J) By, (7)

Equations (6) and (7) are explicitly covariant and describe completely the dynamics
of the electric and magnetic 4-fields. Notice the dependence on the unit 4-vector u®,
this dependence reflects the arbitrariness in the selection of frame R and at the
same time makes the form of equations (6) and (7) independent of that choice.

3. Covariant electrodynamics

3.1 Covariant Mazwell equations

All standard results of classical electrodynamics can be obtained from equations
(6) and (7), to show this we will exhibit the complete equivalence between these and
the standard form of Maxwell equations. First, we need to uncouple the equations
for E* and B*, to this end we must take the “curl” (i.e. apply the operator £2#*9,)
to equations (6c) and (6d) and simplify the results with the help of equations (6a)
and (6b). We end with the pair of equations

88, E* = 4x J*Pugy
; (8)
"0, B = —4x JoPu,,

to write these equations we have defined the antisymmetric tensor J*# = g% J> —
3*J? and its dual Jo# = %EaﬁquW_
The form of these equations strongly suggests that both of them can be written

as a single equation if instead of E* and BPwe use an antisymmetric tensor Fo?
which, accordingly, must be defined through the conditions

E® = F*Puy and B® = —Faby,, (9)
It is easy to invert these equations to express F®# and its dual in terms of E* and

B#:

Fo8 = E*uf — EPy® + ¢*%.B, (10)

Fold = gy — BP _ 8 1, (11)
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it is obvious now that F*# must be identified with the electromagnetic field tensor;
using it Eqs. (8) take the form

89, F*P = an J°P, (12)

or, equivalently,

"0, F*P = 4arn joP. (13
i

The first-order equations that F®? satisfy follow at once if we take the divergence
of Egs. (10) and (11) and use Eqgs. (6):

dg F*P = —4x J°, (14)

8g F*F = 0. (15)

This result shows the equivalence between our equations (6) and the standard co-
variant form of Maxwell equations.
Notice that we can solve Eq. (12) to get

FPe = / d*z' G(z —x')(a‘*.fﬂ(z') —85.]“(33')), (16)

where G(z —z') is a D’Alambert Green’s function. This equation shows very clearly
the role of “superpotential”[7] played by F# in classical electrodynamics.

3.2 Energy-Momentum conservation

An important result of Maxwell equations is the theorem of energy-momentum
conservation. We are going to show how this result follows from our equations. If in
Eq. (7) we use Eqgs. (6a) and (6b) to eliminate p, and J¥ in favor of E* and B*,
and using the identity

EappEus” = (MavNgy — NauNpy) + (Mprtiatty — Ngutiaty) + (7)

(Mau uguy, — Navtgtiy),

(Muw = diag(+1,—1,'~1,—1) is the Minkowsky metric), we can rewrite[8] equation
(7) in the form
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Fo+ 85T =0, - (18)

where we have defined the 4-tensor 77 as

1

w

T8 = (Eaﬁf’ + B°BP — (P 4 w2 PAT)E. By +
(19)

1
(uuf — 57)""8)(E,\E" + B)‘B'\)).

This is the symmetrical energy-momentum tensor of the electromagnetic field and
Eq. (18) is the balance equation for the energy-momentum flow into a system of
fields and charges on interaction. Using this tensor we can introduce various useful
“secondary objects”, for example:

1
U = Typuuf = —5-(EuB" + ByB")  (invariant energy density), ~ (20)

1
S = T (™ = u®u* ¥ = z;a“ﬁ.,,E‘?B" (Poynting 4-vector). (21)

These objects appear in the study of the algebraic properties of the electromagnetic
field [5].

3.3 Electrodynamics of continuous media

Our approach is appropriate for the covariant description of electromagnetic
phenomena in continuous media. In this case the arbitrariness in the choice of
a frame for making the basic definitions is remqved, the natural choice becomes
the rest frame of the medium. For describing the electromagnetic response of the
medium we only need to introduce, in an analogous way to what we used in section
2 for defining E* and B*, the space-like induction field 4-vectors D* and H¥.
That is, they must reduce to the macroscopic vectors D and H measured by our
fiducial observer in the medium’s proper frame. The macroscopic electromagnetic
properties of the medium are included in two tensors €55 and pog, 4-dimensional
generalizations of the permitivity and permeability tensors, respectively. The con-
stitutive equations can be written in the form

Dy = eqpEP, = jigsBP (22)
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In a conducting medium we must have also

J2 =" By, (23)

with ¢®# the 4-tensor of electrical conductivity, this is a covariant expression for
Ohm's law. The permitivity, permeability and conductivity 4-tensors are symmetric
and must fulfill eaguﬁ =10 p;éu’g =0 and aaguﬁ = 0; u? can be interpreted now
as the 4-velocity of the medium.

In the medium, the macroscopic Maxwell equations are

0, D" = 4xp,, (24a)

duB" =0, (248)
e*?19,Eq + é. B* =0, (24¢)
e*Po,Hy — 8D = 4xJ2, (24d)

where p. and J& now stand for the macroscopic proper charge and conduction
current densities.

It is convenient [10], in analogg/ with Eq. (103, to introduce the macroscopic
induction field tensor H*® = D*u? — DPu® 4 P  HY. The relationship between
H*and F"can be written as H*? = X% ., F*¥; using Egs. (10) and (24), it is easy
to see that the material tensor x"ﬁw can be written as

af =

N i (u“u,,ef - uﬁu,,ef,' - u“uyeﬂ + uBu.,cf,' - E“ﬁ7p;§£A#,). (25)

1
2
The formulas given in this section can be used as the starting point for a covariant
description of the electrodynamics of moving media [10,12].

Interestingly, as can be seen from the above equations, in an isotropic, non-
magnetic (¢ = 1) and non-dispersive medium the electromagnetic effects of matter
can be thought of as a change in the space-time metric:

7 = g =" — (e - Nutu?, (26)
with € the dielectric constant of the medium. This metric is similar to that used
by Synge for describing ligth propagation in transparent media in general relativity
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[9] and with a recently proposed metric for describing geodesically the path of a
charged particle in electromagnetic fields [11].

4. Conclusions

In this work we have shown how we can formulate the basic equations of clas-
sical electrodynamics using properly defined electric and magnetic 4-vectors. This
formulation is physically equivalent to the standard one, although its basic objects
have different meanings. Our description of electromagnetism can be useful for for-
mulating covariantly the electrodynamics of moving matter, a point that we hardly
begin to touch in this work.

The 4-fields we have introduced do not have the same physical interpretation as
the standard electric and magnetic ficlds, except in the fiducial observer frame R,
but we have proved that all electromagnetic phenomena can be described correctly
using whatever set of fields. This, we think, is an evidence of the somewhat arbitrary
character of the theoretical constructs we must invent for describing physical reality.
This is an important point, since many times such constructs are presented as “real
objects” as if they were imposed on us by the physical world.

On the other hand, it should be clear that, following the method used in this pa-
per for defining E* and B"and to generalize Maxwell equations to four dimensions,
every set of equations at our disposal can be put in a manifestly Lorentz covariant
form. However, this is not sufficient to guarantce that they must give a correct
description of the phenomena in a relativistic framework. In our case we found a
correct description only because Maxwell equations were covariant (although not
manifestly so) from the start. But this is an experimental fact. Covariance alone
cannot guarantee the correctness of any mathematical formula as a physical law [12]
as sometimes may be implied from certain presentations.

What we have said must not be interpreted as demeriting the heuristic value
of covariance in the search of new laws, but this should not be confused with a
fool-proof method of inventing them.
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Addenda

We have found two recent papers which discuss ideas akin to the ideas presented in
this paper: M.T. Teli, Pramana, 24, (1985), 485; and J. Stachel, in J.C. Mazwell,
the Sesquicentennial Symposium edited by M.S. Berger, Elsevier Scientific B.V. Am-
sterdam, 1984.
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Resumen. Introducimos cuadrivectores de campo eléctrico y magné-
tico definiéndolos segiin el procedimiento acostumbrado para definir el
cuadriespin y los empleamos para expresar las ecuaciones de Maxwell
en forma covariante. Probamos que las ecuaciones asi obtenidas son
fisicamente equivalentes a la forma covariante usual de las ecuaciones
de Maxwell. También mostramos cémo puede desarrollarse la elec-
trodindmica covariante a partir de nuestras ecuaciones.



