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Abstract. Following the pro('edure customarily used to define the four-
spin, we define clectric and magnetic ficld four-\'ectors and use them to
write Maxwell equations in a manifestly Lorentz covariant formo \Ve
prove that these equations are physically equivalent to the standard co-
variant formulation oC Maxwel1 <,quations. \Ve th('n 5how how to develop
covariant electrodynamics from our set of equations.

PACS: 03.S0.De

1. Introduction

Why it is not possihlc to formulatc the el}lIations of c1l>clromagnctism in manifestly
covariant CorrIl using c1ectric and magnelic .1-veetors? A possible answer to this
qucstion comes immediately to mind: the eleetric and magnctic fields are not the
spatial compollents of any 4-vectors. It is only a very particular arrangement of their
componcnts which form a fully covariant objccl, the c1ectromagnetic field tensor
FIlV. Only using this tensor the maniCestly covariant form of l\laxwell equations can
be achieved.

lIowe\'er. tbink oC the covariant generalization of the equation of motion of a
particle with spin in external elcctromagnctic fields. lIere, it is oot apparent that
the spin of the particle s should be tbe spatial part oC any 4-vector. But this does
not pre\'ent liS from defining a spin 4-\'cctor S'l whose spatial part reduces to s in the
proper frame of the particle and so subjcct to the constraint sJ.luJ.l = 0, with uJ.I the
4-vc1ocity of it. The '1-spin so defined can be used to obtain a covariant expression
Corthe equation oC rnotion of the partide [l-3J.

At this point one ma)' wonder again. \Vhy il is nol possible to defi1le 4-\'ectors
EJ.I and ¡JI' exactly as we have defincd the 4-spin, and use them to cast ~taxwell
equations in a rnanifcstly Lorentz covariant Corm? The purpose oC this paper is to
show that this is indccd possible and that by using them a perfectly consistent
description of electromagnetic interactions can be achieved.

We must point out that 4-vectors EJ.I and nll have been Ilsed previously foc
describing c1cctromagnetic interactions in charged fiuids [1J, ami employed as "in.
teresting secondary objects" in lhe study of tlle algebraic properties oC the e1ectro-
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magnclic ficld {5]. Hul in bolh cases lhey are inlroduced on1y as a convenient way of
splitt.ing the c1ectromagnclic field tensor in its e1ectric and magnctic "componenls"
froln the poinl of view of an observer in a certain cornoving ffarne.

In this work we shall consider EIJ and BIJ as primary objecls, defined in order to
put !vlaxwell equat.ions in an cxplicilly covariant form; in olher wards \\'e shall use
them as a starting point for an allernative inlroduction lo covarianl electrodynam-
ics. The plan of lhe paper is as follows: In seclion 2 we define the 4-vectors EIJ and
BI1and obtain lhe covarianl equalions of mol ion lhey salisfy. In section 3 we show
the equivalencc bctwccn lhose e{luatiolls ami Maxwell's; we recover sorne standard
results of classical electrodynamics, and we discllss the covariant descriplion of the
clcctrodynamics of conlinuolIs media. Scclion 4 conlains our conclusions and sorne
addilional COITImcnts.

2. Defining El' and J)IJ

1'0 define lhe 4-vectors EIl and BIJ, wc musl selecl a parlicular -hul otherwise
arhitrary- inertial refercnce frame R., to which we shall sometimes refer as lhe
frame of OUT fiducial obscr\'er, and sd:

E" = (O,E) and B" = (O, E) (1 )

where E is the c1eclric and B is lhe magnetic ficld in lhal frarne. In aU other frames
F;J' and D"are oblained by Lorcnlz lransformalions of Eq. (1). Obviollsly, EIJ and
BlJmust satisfy

(2)

and

(3)

where ulJ is a lirne-like unil 4-\'cclor, the 4.ve10city of our fiducial observer. To be
precise, EII is a 4-vector but nlJ must be called a pseudo 4.vector.

Until this point aH appears to be rompletely analogolls to the definition 01
thc 4-spin. However, there exist an important difference, sP is defined as we have
said only in the case of massive particlesj and, as we represent the spin degrees of
frccdom as a three-veclor in the resl frame of lhe particle, this becomes the only
frame in which we can define slJ. There is no similar way of selecting a frame(6) for
the definilion of EII and 81" every frame can be sclected and therefore there are
many unequivalent ways of defining lhem.

Let liS displa.y lhe explicit connection betwecn the components of EP and ElJin
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a frame n' with those in frame 'R. Ir EIJ1

= (t:~,(/) and frame 'R' is moving with
a velocity v as seen from 'R, we must have (e = 1):

E~ = -,v' E, (4 )

(5)

where, = (1 - v2)-1/2, and analogous cxpressions for the components of BIJ'.
As cquation (5) shows £1 is a thrce-vector which has tittle to do with the electric
field in frame n'. Therefore EIJ and flIJcannot be considercd as merely "oovariant
gcneralizations" of the usual notians of eledric and magnetic fields. The fields EIJ
and BIJmust be regarded as "new" fields with similar but not the same physical
inlerpretation as E and B. In spite of this, we will cal! them the electric and the
magnetic field 4-vectors, since they become essentially the E and B vectors in
frame 'R.

Let liS procccd now to obtain the equations of motian for EIJ and BIJ. Apart
from fields, chargcs and currcnts tiJe cquations may also indude the 4.vector uIJ,

and they must reduce to the standard !\.1axwellequations in frame 'R. The simplest
set of cquations that satisfy thesc requircments (in Gaussian units and with e = 1)
15:

o,

(6a)

(6b)

(6e)

(6d)

where Pe is the density of proper charge, J: the concluction current 4-vector (i.e. the
charge and current densitics as measured by the fiducial observer), éa1h = U>.é>.a¡J..,
with e>.a/J.., the four dimensional Levi-Civita symbol (e0123 = 1), and at ( = u>.a..\)
stands for the invariant dircctional derivative in the "time direction". The relation-
ships J..\ = J;+u..\ Pe and Pe = J..\u"\ are the links betwccn Je..\and Pe with the usual
current 4-vector J>'. We can also express the force (Lorentz force density) exerted
on charges Pe and currents J~in terms of EIJ and BIJas:
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Eqtlations (6) and (7) are explicitly covariant and descrihe completely the dynamics
of the electric and magnetic 4-ficlds. Notice the dependen ce on the unit 4-vector u~1
this dependence refiects tltc arbitrariness in the scledion of frame 'R and at the
same time makes the form of equations (6) and (7) indepcndent of that choice.

3. Covariant electrodynamics

3.1 Covariant Max1l'cll eqtJations

AHstandard results of c1assicaleledrodynamics can be obtaincd from equations
(6) and (7), to show this we wil! exhibit the complete equivalence between these and
the standard form oC ~Iaxwell equations. First, we nced to uncouple the equations
Cor E~ and B~ 1 to this end we must take the "curll! (¡.e. ñ.pply the operator f:0~'"a",)
lo cqualions (6e) and (6d) and simplify lhe results with the hclp of equations (6a)
and (6b). \Ve end with lhe pair of equations

{)I'{)I' En :;;;4,.. J0tJu{J

{)/~D"Ir = -4,.. jotJU¡J,
(8 )

to wrile thcse equations wc have defined the antisymmctric tensor J0tJ = a8 JO _
{f' JtJ and its dual j otJ= ~£o¡J¡JlI )"".

The form oC thcse cqualions strongly suggests that both of thern can be ",Titten
as a single equation if instca(1 oC E'! and B"we use an antisyrnmetric tensor F°¡J
w!tich, accordingly, must be ddincd through the conditions

and (9 )

It is casy to invert thcse eqllations to exprcss F°¡J and its dual in terms oC E~ and
/JI!:

( 10)

(11 )
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il is obvious now th~t FQ{J must be identific<1 with the electromagnetic field tensor;
using it Eqs. (8) take the form

(12)

or, equivalently,

(13)

The first-order equations that F°{J satisfy follow at once if we take the divergence
of Eqs. (lO) and (11) and use Eqs. (6):

Dp t"P = O.

(14 )

(15 )

This result shows the equivalence belwecn our equations (6) and lhe standard co-
variant lorm of Maxwell cquations.

Notice that we can solve Eq. (12) to get

( 16)

wherc G(x-x') is a D'Alambert Grecn's fundion. This equalion shows very clearly
lhe role of "superpotenlial"[7] playcd by FQ{J in classical e1cdrodynamics.

3.2 Energy-Momentum conservation

An imporlanl result of Maxwcll equations is lhc lhcorcm oC cncrgy-momentum
conseevation. We are going lo show how this rcsull follows from oue equations. Ir in
Eq. (7) we use Eqs. (6a) and (6b) to ciiminate p, and Jt in favor of E" and B",
and using the idenlity

( 17)

(1]P¡1 = diag(+l,-l/-l,-l) is the f\.1inkowsky mclric), wc can rewritel8) equalion
(7) in the form
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where we have defined the 4.tensor TQO as

( 19)

This is the syrnmetrical cnergy-mornentum tensor of the electromagnetic field and
Eq. (18) is the balance cquation for the energy-momentum flow into a system of
ficlds and chargcs on interaction. Using this tensor we can introduce vacious useful
"secondary objects", for example:

u = T.pu"uP = -..!.-(EpE" + BpB") (invariant energy density), (20)8,,-

S. = Tp"(~"P ~ u"uP)u" = ~<.P1EPBl (Poynting 4-vector). (21)4.-

Thcse objects appear in the study of the algebraic properties oC the electromagnetic
field [5).

3.3 Eleclrodynamics o/ continuous media

Our approach is appropriate for the covariant description of electromagnetic
phenornena in continuous media. In this case the arbitrariness in the choice of
a feame for rnaking the basic definitions is removed, Lhe natural choice becomes
the rest rrarne oC the medium. For describing the electromagnetic response oC the
rnediurn we only nced lo introduce, in an analogous way to what we used in section
2 ror defining EP and BP, the space-like induclion field 4-veclors DP and HP.
That is, they must reduce to the macroscopic vectors D and H measuFed by our
fiducial observer in the rncdiurn's proper frame. The macroscopic electromagnetic
properties oC the rnedium are included in two tensors lQO and Jlc4JJ 4-dimensional
gencralizations oC the permitivity and permeability tensors, respectively. The con~
stitutive cqualions can be written in the form

(22)
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In a conducting mcdium we must llave also

(23)

with (Tnl1 the 4-tensor of elcctrical conductivity, this is a covariant exprcssion for
Ohm's law. Thc pcrmitivity, pcrmeahilit.y and conductivity 4-tensors are symmetric
ami must fulfill (oPUp = O, J,;Ju" = O and (TnPUP = O; uP can be interpreted now
as the 4-vclocity of the rncdium.

In the rncdium, the macroscopic Maxwell equations are

(24a)

(24 b)

(24c)

(24d)

wherc Pe and Jt¡ now stan<1 for the macroscopic proper charge and con<!uetion
current dcnsities.

It is convenient [10], in analo~ w¡th Eq. (10), to introduce the macroscopic
indudion field tensor llaP = DOu - D8t/~ + é.rrB,1P. The relationship between
llnPand FP"can bp written as lr~1J = XolJ,,,,F1l"; llsing Eqs. (10) and (24), it is easy
to scc that the material tensor XofJ P" can he wr¡tten as

(25)

The formulas givell in this scction can he IIscd as the starting point for a covariant
description of the clcctrodynamics of moving me•.lia [10,12].

Intcrestingiy, as can be secn from the ahoye cquations, in an isotropic, non.
magnetic (JI = 1) and non-dispersivc mcdium the clcctromagnctic effects of mattcr
can he thought of as a changc in thc spacc-time metric:

(26)

with ( the dielectric constant of the mcdium. This rnctric is similar to that used
by Syngc for describing ligth propagation in transparent media in general relativity
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[ni amI with a recenlly proposC'd melric for descrihing gcoflcsically the path of a
chargcd particle in c1ectromagnctic fidds [11J.

4. Conclusions

In this work we have shown how wc can formulate the basic equations oC das-
sical c1ectrodynamics using propcrly deflncd e¡edrie and magnctic 4-vectors. This
formulation is physically cquivalent to the standard one, although its basic objeels
have differcnt meanings. Our description of electromagnetism can be useCul Cor for-
rnulating eovariantly the c1eclrodynamics of moving matter, a point that we hardly
begin to touch in this work.

Tlle '1-ficlds we llave intro<!u('cd do not have the satTle physieal interpretation as
the standard c1ectrie ami magnctic fields, exeepl in lhe fiducial ohscrvcr frame R,
but \•...e have proved that all c1ectrolllagnetie phcnomcnu can be described correelly
Ilsing whalever sel oC fields. This, we lhink, is an evidence oC the somewhat arbitrary
dlaracler of the throrelical <,onstrllcts we must invent for Jescribing physical reality.
This is an imporlant point, sincc manj' times such conslrucls are prcsented as I4real
objcets" as if lhey werc illlpose(1 011 liS by the physi<,al world.

011 the other hand~ it should be c!car that, following the method used in this pa-
per for dcfining E'1 and lJll and lo gelleralize ~laxwell equalions lo four dimcnsions,
cvery sel of cqualions al our disposal <,an he put in a lllanif('Stly Lorentz covariant
forlll. lIowevcr, this is not ~\IfIicicnt lo guaranlcc that they lI1t1slgive a corrcel
clescription of lhe phenomella ill a ff,lat.ivistic fralTlcwork. 111our ("a~c we found a
<,orrecl dcscriplion onl)' h('("alls(: ~laxwC'1Icquat.ions were rovariant (although not
rnanifeslly so) froln lhc slarL But tllis is an experimcntal fael. Covariance alonc
<'atmot guarantce the ('Offectncss of any mathcmatical formul<t ;lS a physicallaw !I2]
as somctimcs may be impli('d frolTl ('('rtain prcs('ntalions.

\Vhat wc ha\'e said musl 110t he inlerprctcJ as dellH'riling lhc hcuristic value
of covariancc in the scarch of IH'W laws, bul lhis should nol he confused with a
fool-proof method of in\'cnt ing thclIl.
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Resumen. Introducimos cuadriv(lctores de campo eléctrico y magné-
tico definiéndolos según el procedimiento acostumbrado para definir el
cuadriespín y los empleamos para expresar las ecuaciones de Maxwell
en forma covariante. Probamos que las ecuaciones así obtenidas son
físicamente equivalentes a la forma covariante usual de las ecuaciones
de Maxwell. También mostramos cómo puede desarrollarse la elec-
trodinámica covariante a partir de nuestras ecuaciones.


