Enserianza Revista Mezicana de Fisica 34 No. {(1988) 670-676

On the states of thermodynamic equilibrium
J.A. del Rio P., F. Vazquez H. and P. Sanchez P.

Area de Fisica, Universidad Autonoma de Chapingo

(recibido el 3 de diciembre de 1986; aceptado el 19 de abril de 1988)

Abstract. A review of the existing literature shows a variety of def-
initions of equilibrium states. Although this definition determines the
systems and the processes which are feasible to be treated within the
framework of classical thermodynamics, we have found that these defi-
nitions are not equivalent; however, it is possible to reduce them to two,
and our aim here is to show that only one of these is logically acceptable.
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1. Introduction

The axiomatic form of Classical Thermodynamics requires four postulates in order
to be a complete theory [1]. The first two postulates establish the existence of
certain thermodynamics states, called equilibrium states, which are completely de-
terminated by extensive parameters (internal energy, volume, etc.), and the entropy
is postulated as an extensive parameter of the system. The third one is related with
the equilibrium states in which the entropy is an extreme. The last one characterizes
the zero entropy system [1].

Within this framework, knowledge of the fundamental function of the system
the internal energy, or the entropy is sufficient in order to describe it completely.
This function depends only on the extensive parameters, but it may be written
in terms of associated intensive parameters using Legendre transformations. In the
former case, we obtain the thermodynamics potentials whereas the Massieu func-
tions are obtained in the case of entropy. On this basis, it is possible to describe
some particular processes called reversible transformations, whose successive states
are equilibrium states. So, the assumed definitions of this kind of states determine
the processes which are to be treated by the theory. This definition has a great
importance in the subsequent application of the third postulate. An extension of
Classical Thermodynamics is the local equilibrium thermodynamics, whose prin-
cipal characteristics is to consider that the system is completely described by the
same parameters and the time; the parameters dependent of the spatial variables
(hypothesis of local equilibrium), i.e., the local equilibrium hypothesis establishes
that some processes develope forming states where the classical postulates are valid
at any time and for each point of the system.

We discuss in this work the definitions of equilibrium states which have been
found in the literature. We solve a system of one component in the presence of an
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external field of forces, assuming one definition as valid and making explicit use of
the hypothesis of local equilibrium. Finally we develop some illustrative examples.

2. Definition of equilibrium states

A review of the texts of Classical Thermodynamics commonly used at the un-
dergraduate level, shows a variety of equilibrium definitions which may be reduced
as follows:

Two authors [2,3] admit the difficulty to establish the definition of equilibrium
states. Other authors [4,5,6] do not define them. We have found that it is possible
to resume the different definitions to only two:

1. Equilibrium states are spatially homogeneous stationary states [7].

2. Equilibrium states are zero flux stationary states [8,9,10,11].

It is clear that the second definition includes the first one, for which the sta-
tionary cases with spatial dependence are not equilibrium states. In opposition to
it, the second one considers in equilibrium those states in which mass or energy
fluxes do not exist but they are not necessarily homogeneous states. Systems in the
presence of external fields may be treated, according to this definition, with methods
of the classical theory. But when one examines some of these cases the additional
hypothesis on local equilibrium appears as an extra input to the second definition.
This is not logically acceptable.

We should remark that the states where local equilibrium hypothesis can be
valid include the stationary states, time independent states, inhomogeneous systems
and so on. One example of the last case are systems immersed in an external field
of forces. It is remarkable that this system can be looked as a homogeneous system
on the equipotential surfaces.

3. Ideal ge. system in the presence of an external field of forces

Let us consider an ideal gas at constant temperature and volume acted by an
external force field. The standard procedure to find the density distribution is based
on the fact that at constant temperature and volume, the system is in equilibrium,
according to the second definition, and therefore the Helmholtz free energy must
be a minimum [12]. From the classical point of view, the solution is only obtained
if one supposes an additional condition related to local equilibrium. Let us assume
the system divided in homogeneous layers, each one in equilibrium (i.e., a spatially
homogeneous stationary state). These layers are selected according to the particular
symmetry of the system being treated. The pressure in the ith-layer is given by
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where A;_; is the area of the boundary between the ith-layer and (i —1)th-layer and
F;-1 is the “molal force” which is as yet unspecified. Using the equation of state for
the ideal gas we obtain a recurrent expression for the gas density
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pi = pi-1 + (2)

Here M is the molal mass of the gas, T is the absolute temperature and R the uni-
versal constant of gases. Eq. (2) may be used in order to find the density distribution
by making the number of layers infinite.

The term in the force in Eq. (2) may be written as

MF, :
RTA‘ _f(z)ph (3)
then the recurrent formula becomes
pi = pia(1 + f(z = 1)). (4)

Hence it follows that

n—1
o =p [J(1+ £(2)), (5)
i—1

p1 being the density at a given reference level. The convergence of Eq. (4) when
n — oo is insured if

Fixr? and Aj o™ (6)

with j < n, and r is the relevant spatial parameter. In this case, we have f(i) — 0
as n — oo, which is a necessary and sufficient condition [13] in order to find the
limit of Eq. (5):

p = prexp [ﬂlijolo > s )] (7)
i=l

Conditions (3) and (6) are satisfied by force fields such as the uniform gravita-
tional field and the centrifugal field.
We note that the condition of equilibrium of the layers and the process when
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FIGURE 1. Model of an ideal gas in a gravitational field of forces.

n — oo is equivalent to the hypothesis of local equilibrium for systems in a station-
ary state for which equipotential surfaces exist. We illustrate now the use of this
procedure with two simple examples.

(a) Uniform gravitational forces field

Let us consider an ideal gas at constant temperature and volume acted by a
uniform gravitational force field. The system is divided in thin homogeneous layers
in equilibrium as shown at Fig. 1. The width of each layer is Ah and the pressure
of each one is taken to be constant and equal to that in the highest part of it. The
force on the top of the ith-layer is

Fio1 = pi_19ARA;_,, (8)

where p;_1 is the density of the (1 — 1)th-layer and

ap =8 (9)

n

Note that in this case, the quotient F;/A; oc 1/n, therefore the density of the
nth-layer is
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or

MgAR\™!
Pn—P1(1+ RT )

It then follows that when n — oo Eq. (7) becomes:

(11)

p(h) = pyexp __M]

el

This expression is the well known exponential function for density of the air in the
atmosphere, if T is constant [14].

(b) Centrifugal force field

We consider now an ideal gas at constant temperature and volume in a container
that rotates with a constart angular velocity w. The force at a distance r; of center
of gyration is giv n by:

Fye=mgoris (12)

here m; is the mass of the ith-layer. The layers are taken to be cylindrical shells of
thick Ar (Fig. 2). The expression for the quotient Fi_;/A;_; is

wlri(r? = ri_;)rhpic1 _ wir (20 — 1)pi—1
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where r; = ir/n with r the radius of the centrifuge. From Eq. (5), it follows imme-
diately that

= Mw?(2i — 1)r?
Pr+1 =P1H [1+%— . (14)
i=1

When n — oc we obtain
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FIGURE 2. Model of an ideal gas in a centritugal tield of forces. -

n—oo 4 n
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p(r) = p1exp [ lim Z MJ )

with ¥ = Mr?w?/2RT. As it may be proved

Therefore Eq. (15) becomes

szrz]

p(r) = prexp [W

675

(15)

(17)

This result is obtained also when one assumes the second definition of equilib-

rium state and minimizes the Helmholtz free energy [12].
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4. Conclusions and remarks

The definition of a thermodynamic equilibrium state determines the set of pro-
cesses to be studied by Classical Thermodynamics (cT). We have found in the
literature two nonequivalent definitions of equilibrium: 1) those states in which the
system is in spatial homogeneous and stationary condition and 2) those states in
which fluxes in the system do not exist and this is also in a stationary condition.

The first definition is more restrictive than the second one, but it has no logical
problems. The second one accepts as equilibrium states those stationary states of the
system in presence of time-independent external force fields, but in order to allow use
of €T, recourse has to be made of an additional assumptions: the local equilibrium
hypothesis. In the examples we have dealt with, we have shown some evidence of the
necessity of including this hypothesis in the treatment of nonhomogeneous systems
in the framework of CT.

We conclude from above that only spatially homogeneous and stationary states
must be considered as equilibrium states of cT. The stated examples may be used
to illustrate the concept of local equilibrium.
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Resumen. Una revision de la literatura existente muestra una var-
iedad de definiciones de estado de equilibrio. Aunque estas definiciones
condicionan los sistemas y procesos que son susceptibles de ser tratados
con el formalismo de la termodindmica cldsica, se encontré que estas
definiciones no son equivalentes; sin embargo, es posible reducirlas a
dos, mostriandose que solamente una de ellas es légicamente aceptable.



