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Abstract. The LAKNS equation is solved exactly by using a ma-
trix operator method which is different from the method developed
by Kingston and Rogers. A series of fundamental non linear equations
and their operator representations are obtained, and from their linear
combinations other non linear equations can be constructed. It is shown
that the non linear equations in the LAKNS equation contain only the
first-order time derivative and space differential and integral operators
acting on the g and r functions.

PACS: 02.30.Jr

1. Introduction

Lax [1] and Ablowitz, Kaup, Newell and Segur [2-4] developed the application of the
inverse scattering method to solve the initial-value problem for nonlinear evolution
equations. The scattering problem is defined by the linear equation

i — _"C (Iat) i
ax‘b—(r(x,t) B, )wm&/), (1)

where ( is the eigenvalue parameter and g, r are potential functions. The time
evolution of the wave function,

av=(cEed Amed)e=sw @

is chosen in such a way that the eigenvalue parameter remains constant. This con-
dition leads to the LAKNS equation [5],
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which can be expressed in terms of the elements of R and S in the form

a

a_:tA = qC = TB,

d - J

&:—B =—-2(B—-2qA+ and

a ; d

;,EC =2i(C+2rA+ Fri (3)

The authors of Refs. [2-4] used finite expansions of A, B and C in terms of the
eigenvalue parameter ¢ to determine a broad class of non linear evolution equations
for ¢ and r, which can be solved by the inverse scattering method. Kingston and
Rogers [6] introduced the matrix operator method to delimit an extensive class of
such equations.

In this paper, the LAKNS equation is solved exactly by using a matrix operator
method, analogous in principle to that of Ref. [6], but different in its implementa-
tion and results. A series of fundamental non linear equations and their operator
representations are obtained ( Theorem 1), and from their linear combinations other
non linear cquations can be constructed ( Theorem 2). It is shown that the non linear
equations in the LAKNS equation can be expressed only in terms of the first-order
time derivative and space differential and integral operators acting on the ¢ and r
functions ( Theorem 3).

2. The LAKNS equation

The main results of this work are contained in Theorems I, 2, and 3. In order to
formulate and prove these theorems, Definitions 1, 2-4, and 5-6 are introduced,
and Lemmas [-2, 8, and /-5 are stated and proved, respectively.

Definition 1:
A o (0 0 0 -r ¢
T =1.8"1;: F=—\|gq)l=|a], P=| -2 0 0],
C ot \ , T 2r 0 0

0o 0 0 1 0 0
6=(01 o), U= 000). (4)
00 -1 00 0

Then the LAKNS equation can be written as

8 ‘
7.1 = PT~ 20T +F, (5)
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where the determinants of P, 8, and U are zeros, and U/ and 62 are projection
operators

Lemma 1:

U+6®=1, UPU =0,
POP =0, 60PO=0,

0 —r —¢
UPd=P6=(0 0 0 (6)
0 0 o0

where I'is the 3 x 3 unit matrix. The proof is direct using Eqs. (4).
Suppose that in (1) T can be expanded as a power series of ¢

T = Z T (7)

n=-—oo

An
Tn = B,
Chn

and in (2) the power series is finite. Therefore there exist two integers M and N
(M < N) such that

where

T30 MS"SNa
Tp=0 n<M or n>N. (8)

Substitution of the power series of Eq. (7) in the LAKNS Eq. (5) and comparison
of the coefficients of (¥ leads to the equations

P -
aTk = PTy — 2:0Tk_; + 6 F, (9)

where 6 is the Kronecker delta.

It is obvious that M > 0 or N < —1 will result in F = 0, and therefore q and r
are both time independent. In such cases the non linear equations will only have the
space dependence, becoming ordinary differential equations, which is not the topic
that LAKNS studied. The conclusion is that the interval [M, N] must include at
least 0 or —1. If M = N = —1, the LAKNS equation is reduced to the sine-Gordon
equation; this situation is excluded in the following.
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Lemma 2:

UETIc = UPTy. (10)
dr

The proof consists in multiplying Eq. (9) by U from the left, and recognizing from
Eqgs. (4) that

U8=0, UF=0.
Theorem 1.
Ti_y = GTi + ap_1e; — 6x0GoF,

where

o]

o= (a+f deG)
8 if 0 ’
1 .
e,:(o), (11)
0

and aj_; is an arbitrary constant, with ag = 0 for & < M because Ty = 0 when
k< M.

Proof: Multiply Eq. (9) by @ from the left to write

%1y, = é {a ('a% - P) Ty — .s,maF} :

and use the first of Eqgs. (6) to obtain

Il
(%))

G

: P
T = % {o (% - P) o skqu} 4 TR (12)

Then, use lemma 2 to write

P
3;UTeo1 = UPTey. (13)
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Substitute Eq. (12) in Eq. (13) and use the remaining Eqgs. (6) of lemma 1 to obtain

7] i a
57U Tk-1 =3 (PBET" ” 6kgP9F) ,

and after integrating

. z z
UTi_; = % (/ d.’BPG%Tk - 5130/ d.’l’:PeF) + ag_je;. (14)

Substitution of Eq. (14) in Eq. (12) completes the proof of Eq. (11).
Some consequences of Theorem 1 are the following
i)Fork=N+1 (N#-1):
Tu = aye; (15)
ii) For k = M: Since Tp—; =0 and ap—; = 0 then Eq. (11) becomes

aTM - '5MD§DF =0,

éo{(-‘z —P) Ty -5mF} =0.
oz

The result is the non linear equation

or

a
(E S P) T = bpoF. (16)

This can also be obtained directly from Eq. (9).
Definition 2:

9. Ak
fi = (55 - P) Ghey. 1)

Lemma 3: fi has only y,z components and can be expressed by the recurrence
relation of the two components

frp1 = %Us {;% -2 (g) /‘zdI(T‘ Q)}fh (18)

where o3 is the Pauli 2 x 2 matrix.
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Proof: From Eqs. (11) and (17)

a ~ a 2,
fk+1 = (a—m - P) G'H'le] = (a—x = P) Gofk,

o ~ i (00 0Ya (O ! g
(6——P)Gg:— 01 0 |——(0 2¢fdyr 29[ dyqg .
< 2 00 -1)0 0 —2rfzdyr —2r_fzdyq

It is then obvious that
Ufiyq =0.
Thus, f; can have only y, z components (k= 1,2,...). For k =0, Eq. (17) becomes
fo= (b% = P) €,
and then again
Ufy = 0.
Therefore, fi (k = 0,1,2,...) can be written in the form of a two component vector,

Eq. (18).
Definition 3:

Then it follows that
fr =65y,  fo =203 (g) : (20)

Definition 4:

Fy = 6MF. (21)
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Theorem 2: Suppose (M =0,1,2,..., N=0,1,2,...)
T, #0 - M<N,
Ti=i0 n<-M or n>N,

then the non linear equations determined by the LAKNS equation can be expressed
as the linear combinations

N
Fu= ) axfipn, (22)
k=—M
where a_yy,...,ay are arbitrary constants.

Proof: Theorem 1,
Tk—l = @Tk -+ Qfp_1€; — 6);[]@0F,
written explicitly for k=N +1,N,...,1,0,...,—M + 1 gives

Ty = ane;

Ty_i = (anG + ay_1)e;

Ty = (aNé'N -+ aN_laN_l Fonnn 028G ap)ey

T = (o:NGﬁ"’l +ayaGV 4. 4 @G+ a_1)e; — GoF
T _ e = (aNéN-'-M o (IN_I@N+M_1 + G G_M.Ha +a_p)e;
_GM1G,F. (23)
Thus the non linear equations are
GT_p =0. (24)

From the relations
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and

it is immediate to establish that

When Eq. (23) is substituted in Eq. (24) and Eq. (25) is used together with
Eqs. (20) and (21), the non linear equations take the form

N
Gy { Z oapfrem — FM} =0,

k=—M

leading to Eq. (22). This can also be obtained from the recurrence relation of Eq. (9)
by taking k = —M and using the expression for T_ ;.

Remark: The preceding relations also hold when N = —1 and M = —2,-3,....
From Eqs. (7), (8) and (23), it is possible to write

N N-K N M I
T- Y { 5 aH,cSe,}gk _ S GGt

s=0 k=i

N (N Nk M
= ) alter+ Gy { Yo > afaat* =) rk-.'C_k} . (26)

k=-M k=—M s=1 k=1

When |z| — oo the functions ¢, r and their derivatives tend to zero. Thus

N
T(jz] = 00) » Y axcter. (27)
k=—M
Then
N
Ag = 3 opd®, Bi=0,0u=0. (28)
k=-M

Definition 5: Let T be a function set, such that any function w € 7 does not depend
explicitly on z, but is only a function of ¢, r and their derivatives. If w is a matrix,
then everyone of its elements satisfies the same condition.
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Definition 6: If F, w;, wy € 7 and

a
w) =1U2+’é;F,

we say that w) ~ ws. X
Let fi be a 2 x 1 matrix and f; the transposed matrix. )
Lemma 4: lf m # n and fi (k =0,1,...,max(n,m)) € 7, then fao2fm € T and

.f;ntom = fn—ial’fn-t-l (when n > m),
fnazfm ad fn+10‘2fm_,' (when n< m). (30)

Proof: If n > m,

fmn=yos{zz=2(1) [t o} mmer,
fn=%aa{%—2(?.)/ dy(r Q)}fn—ieT,
Then

jdy(r q)fm and ]dy(r Q) fa1 €T

Then we obtain

; ifo. R
fn0'2fm — :'2‘ {a_zfu—l ~2 [/ dyfn—l (Q)] (q 7')}0'30'2fm

ad %fn—lUZUJ%fm = [/ dyfn-—l (;)] "aa;/ dz(r q)fm

'—‘-’%fn—la2aﬂb?;fm+ju—l (;)/ dz(r Q) fm

= frnr{gon [ -2 (4) [ axt 0| o}

= fn-102fm41.

The same holds for n < m.
Lemma 5: If fi (k=1,2,...max(n,m)) € 7, then

fnUme =~ 0. (31)
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Proof: By repeated application of lemma { it can be established that

% ) fsoafs when m+n=2s
fn(fzfm 4 3 .
fsy102fs when m+n=2s+1

It is obvious that j_,l’!'gf‘g = 0. Also

f.ﬂ«+la.’fs = Jrs-}—]a"ljrs = _fs‘72f.-1+1 = —f‘-s+1‘7'2f>

f:.;+]0'2f., ~ ().
Theorem 3: fr(m =0,1,2,...) € 7.

Proof: Use mathematical induction. Direct calculation indicates that fo, fi, f2, I3
€ 7 (see Apendix). Suppose that fo, fi, fa,..., fx € 7, then it has to be proved
that fi4y € 7. From Eq. (18)

] i) 2
Je41 = éa:a {g(;fk i (g) f dy(r ‘i)fi.} :

Fxamine
. 1=
(r Qfk=(q roifi=ilg r)osoafi = ;fooafi = 0.

Therefore, fr41 € T.

3. Conclusion

When M = 0 the LAKNS equation corresponds to non linear differential equations
and when M > 0 it corresponds to nonlinear integro-differential equations.
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Appendix

=19 9
f(] = 403 (T‘)
e
Tx
1 ~9

e s q9zz rq
fy 203 (rm — 2gr? )

Grzzr — O7qq;
T A\ Taep— Ggrry

B l 3 (‘hzzr — 3"(‘]2):: —2q(rq)ez + 6,-2(;3)
4= 203 2 2.3
8 Tezze — 39(r")er — 2r(qr)es + 6¢°r

f3

I

fs= L (qnuz = 10{(rqq9zz)z + q:(rq)sz — rqrqz] + 30%(?“(1)2)
‘ 16 \ rezgzz — 10 [(QTT::::): + rz(quxz == q::r:rz] + 30?;(‘1?‘)2

Fo=F = (‘?‘)
Tt

3 9.4 [T

2 Tap — ‘21‘7% [* dyrq

a
Ge 3 |
i

Fo — _l Gzet — 29(rq)i — q(rqu — qry) — 24,
b\ roee = 2r(gr)e — r(gry —rqu) — 2r;

[* dyrq + q;r J” dy(ryq — qyr)
- [ dJ1q+ratf dy(qyr — ryq)
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Resumen. La ecuacién de LAKNS se resuelve exactamente usando
un método de operadores matriciales diferente del método desarrollado
por Kingston y Rogers. Se obtienen series de ecuaciones fundamentales
no lineales y sus representaciones de operadores, y a partir de sus
combinaciones lineales se construyen otras ecuaciones no lineales. Se
muestra que las ecuaciones no lineales en la ecuacién de LAKNS
contienen solamente la derivada temporal en primer orden y operadores
espaciales diferenciales e integrales que actiian sobre las funciones ¢ y r.





