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Abstract. We propose the possibility to obtain the wave function for
a bounded particle in some physical region using the uncertainty prin-
ciple. The problem of the F Center in solids is developed as an example
where the method works out acceptably.
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1. Introduction and Theory

The uncertainty principle is one of the fundamental principles of Quantum Mechan-
ics. It is usually expressed as:

AgAp > h. (1)

Here Aq and Ap are the uncertainties in position and conjugated momentum
respectively and 7 is the Planck’s constant h divided by 27. As it is well known this
relation comes out when we observe a given physical region Aq with a Heisenberg
microscope [1,2]. It has been used to make valuable energy estimations for some
systems like the Hydrogen atom, where the energy for the ground state is known [3].
In the case of particles bounded by complicated potentials in some physical region,
like electrons in solids, it is necessary to use approximate methods like variational
methods to obtain the required solutions. Under these situations it is difficult to
assume that the uncertainty principle could be of any help in getting reasonable
estimation for some physical quantities. However, in this work we propose a method
where the use of the uncertainty principle gives some useful information even in a
fairly complicated physical situation.

Basically, the proposed method consists in considering for some given particle, a
wave function with an estimative parameter in analogy with the variational method.

 However, the parameter would be estimated here using the uncertainty principle.



84 R. Rodriguez-Mijangos and A. Rodriguez-Soria

Thus, for a particle in a state n in a certain bounded region, we can say that the
wave function will depend on a parameter a : iu(g;,a), where gj are the linear
position coordinates. The kinetic energy is expressed by

h?

Ek = _% 1,‘4’n(qj»“)v:’rf’n(qjv“)dT = Fn(a)v (2)

where m is the mass of the particle. Now using the uncertainty principle [1] as an
approximation in the bounded region, it can be found that the following expression
can be considered valid

piq; = h, (3)

where we have just replaced the uncertainties in position and momentum by q; and
py respectively.
The kinetic energy now takes the form

-, hy=h forall j.

Il there are some symmetry and the estimated bounded region for state n is
ay = qj; using [2] it can be concluded

1 3
Ei = 5— Y b} = Fy(a). (4)
7

2mas

Therefore, if Fy(a) is a well behaved function that depends of a good choice of
Y(g;, @) the parameter that will depend on known physical quantities could be
obtained. The success of the method requires a good choice of the wave function
and the bounded region. To illustrate the method, we applied it to the F Center
problem, which is a basic topic in defect theory of solid state physics. It mainly
consists of a bounded electron in a limited crystalline region of an ionic solid.

2. The F Center problem

As is well known in solid state physics, the I' Center is a crystalline defect that
appears in ionic crystals after irradiation. It consists in a trapped electron in an
anion vacancy. Thus, in a typical alkali halide crystal, such as NaCl, the electron
occupies the place of a CI™ ion. A simple theoretical model for an F Center considers
a trapped electron in square infinite potential well [4], for which the energy is an
analytical function. The expression for the transition energy between the ground
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I'IGure 1. The F Center point-ion potential, in reduced units. (From Fowler [4]).

state and first excited state, named I band, is

Inh? o

E="—a, (5)

2m

where /i is the Planck constant divided by 27 ;m is the electron mass and a the half
length of the well, equivalent to the interionic distance of the crystalline lattice.

This model gives results close to experimental values and follows the empirical
Mollows-Ivey-Law for the I band, which is [1]

E = 117a"1%, (6)

a is the interionic distance in Angstroms and E the energy in eV,

More accurate methods have been developed by several authors to obtain the
energy for the F Center in alkali halide crystals, like the point-ion models and
semicontinuum models [4]. In the point-ion models the discrete character of the
lattice is taken in consideration to obtain the potential on the electron after adding
the interaction with each ion of the lattice. It is found that the electron is in a
potential well with a half-length of the order of the vacancy radius. Qutside this
region the electron oscillates around a Coulomb type potential. In general, this
problem is solved using variational methods [1] Fig (1).

In the semicontinuum models the crystal is considered as a continuum with a
cavity which contains an electron. Thus, it is possible to obtain the F Center energy
values and wave functions through a spherical well with penetrable walls resolved
in two regions: a cavity region where the well effect acts and a polarizable dielectric
region where a coulombian effect acts. The polarization is taken into account con-
sidering that the electron charge confined in the vacancy polarizes the medium [5,6]
Fig. (2).

Therefore, it is necessary to know the charge density inside the vacancy and
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FIGURE 2. Potential used in calculating the energies of the F Center electron in the semicontinuum
approach (Simpson [5]).

then the probability density which is obtained with the wave function. A solution
to the problem is obtained with a variational method, which involves variational
parameters in the wave function. The ground state energy and others are obtained
in a self-consistent manner. Thus, in general, in the calculation, the energy term
related to the potential part is too laborious to handle.

A typical method is the Simpson’s classical semicontinuum method [5], which
considers two contributions for obtain the well size: Madelung energy and a polar-
ization contribution due to the cavity charge. The total contribution is Vj and the
Hamiltonian for the r < R region, where R is the cavity radius, is

2
H:—zh—v2+% r<R. (7)

m

For r > R, a potential is constructed with the contribution for the polarizability
of the medium due to electron fraction charge inside the cavity, given by

R
g=c¢ (l - /(; |1/;|247rr2dr) : (8)

where e is the electron charge, R the cavity radius and 1 the electron wave function
with a variational parameter. Thus, the need for a self-consistent method is clear.
The details involving this potential are in Simpson’s work [5] and are not considered
here. A more illustrative method is due to Fowler [6], it involves the following
Hamiltonian for the region outside the cavity

2 2
L ) (9)

H=-35 Kor
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with coulombian type contribution for the potential and where m* is the electron
effective mass and K the optic dielectric constant. Inside the cavity the Hamiltonian
is equivalent to that of the Simpson method [5].

In the semicontinuum models, variational hydrogenic type functions are pro-
posed. The ground state wave function is given by

Y1s = A(1 4 ar)e™, (10)

where a is a variational parameter and the normalization constant is

A= \/g (11)

To obtain the variational parameter, the energy Wy, is minimized in such a way
that % = 0, where Wy = [yoHidr, dr = 4xr’dr. In semicontinuum and ion
point models the solution is finally searched by computer numerical methods.

3. Method with the uncertainty principle

In order to make an estimation of the variational type parameters we set up the
following arguments:

1) It is considered that for the electron inside the cavity (F Center), the approxi-
mation given by (3) is valid. :
ii) Similarly to the simple model of the box [3,4], is considered that the electron is
confined in a cubic cavity of equal sides of a magnitude equivalent to vacancy

diameter d; thus the following relationship will be valid

o= %k, Pyd =+h, P.d =~h (12)

with v > 1, factor ad hoc to make both sides equivalent due to the uncertainty
expressions (3). The cavity radius is in general smaller than the vacancy ra-
dius [5,6,7]. When an anion is out of the crystal, the jons around this place move
to the cavity center. The evaluation of ion displacements is made by the balance
force methods and the cavity radius, it could be shortened up to 70% of lattice
constant [7]. There are several contributions to the forces that displace the ions,
such as electrostatic forces and repulsive Born-Mayer Type forces, principally.
Therefore, it can be assumed

d = ka 1% ka2 2 (13)

with a as the interionic distance. In a reasonable manner we can make y=K
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Crystal a(auw.)! ol (a.u)! n(:.'(a,u.)‘l
NaBr 0.469 0.491

KBr 0.425

RbBr 0.407 0.441

Nal 0.397

Rbl 0.546

NaCl 0.497 0.511 0.560
KCI 0.445 0.471

RbCl 0.426

LiF 0.696

NaF 0.605

KF 0.525

RbF 0.498

TABLE 1. Values of a calculated with Eq. (16) and compared to variational parameters obtained
using Simpson and Fowler methods (a) From Ref. (8], (b) From Ref. [5].

and the expression for the kinetic energy is

2
Ey = 5— = Fo(a), (14)

which follows from (4).
On the other hand

h? 00 5
Fo(a) = 5~ fn oV 1podrridr

_ 3h%a?
T l4m

(15)

with the wave function (10) for txq.
Finally, using (14) and (15), the value can be estimated for the parameter o

azﬁ. (16)

a

It can be noted that it depends on the interionic distance a and permits a quickly
estimation of the wave function.

4. Conclusions

In Table I are shown the values obtained using (16) for the parameter o compared
to the values obtained using the laborious semicontinuum methods [5,8].
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From the same Table, we observe that values obtained using the uncertainty
principle are of the order of the normal variational parameters.

Even though, the proposition stated here can be utilized in this case, for a quick
solution of the parameter o making use of the equation (16), but cannot replace
variational methods already used in an extensive study of the I band.

Energy transition of the ground state to the first excited state in determined
by the shape of the potential, as can be observe in the works of Simpson and
Fowler [5,6]. The energy values of the levels calculated with theses methods are
sensible to coulombian tails of the potential (Fig. 2.).

With the use of the uncertainty principle this kind of information is not taken
into account and it is only suggested that the particle is in a potential well, so its
use will be very limited.

In such cases, in relation with the semicontinuum methods, the parameter a
obtained using the uncertainty principle gives a useful approximation, which can be
observe in Table L

Using expression (16) we were able to obtain some information for F Center
with the estimated parameters on the wave function for all alkali halides according
to the lattice constant 2a, and we are able to obtain an empirical ground state wave
function for the I' Center. Therefore, we can estimate any dynamical quantity of
interest. Particularly, an estimation of the clectron position can be done, that is

(r) :/(; Porodmridr. (17)

Solving the integral we finally obtained

15
{r) == (18)

After substitution of « it gives (r) = 0.80a. It means that K = 1.6 for a box
with length sides equivalent to the electron average position. This is in agreement
with the proposed arguments. Thus, the method gave rough information of the F
Center problem and could also be good for estimative calculations for other defects
in solids, such as excitons, and very possible could be useful for some problem in
other fields of physics apart of solid state.
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Resumen. Se propone la posibilidad de obtener la funcion de onda
de una particula confinada en una regién fisica usando el principio de
incertidumbre. El problema del Centro F en sélidos se desarrolla como
un ejemplo donde el método trabaja aceptablemente.





