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Abstract. A thermal radiation cavity is used as a probe to test for a
possible deviation of space from exact tri-dimensionality. We consider a
D-dimensional cavity assuming that such derivation would be reflected
in the observed discrepancy hetween the standard theoretical prediction
and experimental values of the radiance and the spectral distribution.
Corrections to the Stefan-Boltzmann radiance and the Planck spectrum
are calculated, which turn out to be proportional to (D-3), as expected.
For a small cavity there are further corrections to these formulas, coming
from its size and shape. Considering then cosmic background radiation,
i.e., the largest possible cavity, we get from the reported experimental
errors for the radiance and the spectrum, a bound |D — 3| £ 1073, This
value is considerably larger then the bounds recently obtained using
other precisely measured phenomena as probes.

PACS: 98.70.Vc

1. Introduction

In recent years the possibility of space-time having a dimension different from 4 has
frequently been considered. This conjecture was originally advanced in Kaluza’s
famous paper [1] of 1921, which proposed a space-time dimensionality of 5 to unify
classical gravitation and electromagnetism, giving rise to the Kaluza-Klein theories,
dormant for several decades until their revival in the late 1960’s in a quantum field
theoretical version that evolved into the modern supersymmetric theories trying
to unify gravity with the other interactions [2]. This theoretical road to higher
dimensionalities converged with a rather distant one at first, namely, that opened
up by the dual models of strong interactions [3], which led first to the string theory
of strong interactions and then to the grand unified “string theories of everything” of
our days, all of them mathematically consistent only in a space-time with dimension
larger than 4.

Other theoretical schemes dealing with space dimensionalities different from 3
even at low energies have arised in the study of critical phenomena [4], and of fractal
structures [5]. In fact, even the possibility of a non-continuous space-time has been
considered, whose discreteness would become apparent at high energy [6].

At some point the question of space-time dimensionality must be addressed
experimentally, looking for residual effects of abnormal dimensions detectable at
presently available energies, much lower than the Planck energy 10!? Gev. These
residual effects would appear as irreducible deviations of experimental results from
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predictions of the standard three- or four-dimensional theories. This criterion was
first used by Zeilinger and Svozil in a 1985 paper [7]. Expecting deviations from four-
dimensionality to be quite small at low energies, they defined fractional dimensions
in terms of the Hausdorff measure of regions of space-time. Choosing the anomalous
magnetic moment g of the electron as a probe, and performing the QED perturbative
loop integrations through the Hausdorfl measure, instead of the usual Riemann-
Stieltjes one, they obtained to first order in the fine structure constant a

gDy ~2+ (2%) r(D12=2)p (375) (1)

with D the space-time dimension, defined through its Hausdorff measure. Identifying
the diference Ag between the standard theoretical prediction (using 4-dimensional

QED) and the experimental result for g, with the quantity (Ag)iheor. = g(D) —g(41),

they obtain
~ 2m 2
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where C' = Euler’s constant. From the best available Ag they get the deviation from
4-dimensionality
\

D—4~—(53+£25)x107". (3)

Working along this line of thought, Miiller and Schéfer [8] chose two very pre-
cisely measured phenomena: the advance of Mercury’s perihelion and the Lamb
shift of the 2p,/, and 2sy; states in hydrogen. In each case, instead of introducing
fractional dimensions through the Hausdorff measure of sets, they followed a some-
what more delicate procedure: they generalized the theory of the phenomenon under
consideration to a space with one time and ) space dimensions, with D) an integer.
Solving the differential equations of the extended theory, they analytically continued
the final result to arbitrary values of D. Identifying again the difference between
the standard (D = 3) result and the experimental value, with a deviation from the
standard prediction caused by de assumed dimensionality D, they arrived at bounds
to the quantity D (or (D — 3)). In the case of the advance of Mercury’s perihelion,
they wrote down Einstein’s equations for general relativity in an arbitrary number
of dimensions, considered the sun-planet problem and got for the perihelion shift
per revolution

2
6rm=
"

Ay 72 +x(D—3)=A¢s +x(D —3), (4)

where m is the sun mass, L the system’s angular momentum, A¢z = 6rm?/L? the
standard result form (3 + 1)-dimensional general relativity, and #(D — 3) repre-
sents the effect of the assumed deviation of space from tri-dimensionality. Using the
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experimental result fort A¢ they obtained the bound
|D -3 £107°. (5)

For the Lamb shift problem they wrote down the Schrodinger equation with
relativistic and spin-orbit terms in D spatial dimensions, and calculated the effect
(AFE)s on the lamb shift,

2

(AE)Ls = Epapy, = Epaeyy = (0 —3) 220 ©
where Z is the nuclear charge, m the electron mass and o the fine structure constant.
This term is present even in the non-relativistic limit because the SO(4) symmetry
of the normal quantum mechanical Kepler problem is broken for D # 3. Equating
(AFE)ps with the difference between the standard (D = 3) QED prediction for the
Lamb shift and its experimental value, they get

|D—3|$36x 1071, (7

this being the most stringent bound to date on possible deviations from tridimen-
sionality at low energies.

Following the same line of argument, we propose using thermal radiation in a
cavity as a probe to test for possible deviations from tridimensionality. Measurement
of the radiance and the spectrum are reasonably accurate [9], and discrepancies
with respect to the Stefan-Boltzmann law and the Planck frequency distribution,
respectively, should provide bounds for the quantity (D — 3).

Blakbody radiation has been employed in the past to get bounds on a possible
photon mass [10], assuming that the disagreement found between experimental val-
ues and theoretical predictions conld be associated with the effect of a tiny mass for
light, and using Proca’s instead of Maxwell’s equations to describe electromagnetic
radiation. In this article we will take a strictly zero photon mass, and assume that
the observed differences come exclusively from a dimensional effect.

2. A D-dimensional radiation cavity

For a tridimensional cavity the partition function Z is given by

InZ = -2 Z In (1 —e*ﬂf) o —2]00 dv(...)In(1 — e=Phv) (8)
0

normal 4
modes

where 3 = }—IT, € = hv (neglecting as usual the zero-point energy); the factor 2 is
the number of photon polarizations, and (...) is a function of the frequency v of
geometrical origin, whose exact value is not written down to focus attention on the
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quantities of interest. The nature of the approximation involved when going from
the sum to the integral will be considered latter.
This formula generalizes in D dimensions to

InZp = -Ap Z In (1 - e"g’“’) £ —AD/ dv(...)In(1 — e~ P)  (9)

normal
modes

where Ap is the number of photon polarizations in D dimensions and the new factor
(...) in the integral now comes from adding over all normal modes in a D-cube. This
equation is valid assuming e, = nhy, i.e. the same spectrum as in three dimensions
(the zero point energy is simply neglected from the beginning, because, being a
constant, it affects neither the radiance nor the spectrum, just as in the ordinary
case).

The value of Ap and these energy eigenvalues are readily obtained from a gen-
eralization of the Maxwell free Lagrangian to D-dimensional space [11]:

Gy = —% /d%m*"ﬂ,,, (10)

with F# = g AF—aHAY  (p,v = 0,1,..., D). Writing down for A* an expansion in
normal modes analogous to that in (341) space-time, the Hamiltonian from Eq. (10)
immediately gives the spectrum e, = (n + %)hy — nhv if the zero-point energy is
neglected. Just as in the ordinary case, the longitudinal photon is eliminated through
the equations of motion, i.e., the Maxwell equations generalized to D-space; the
time-like photon is absent due to gauge invariance. Hence the remaining number of
independent A* components, or photon polarizations, is Ap = D — L.

Using spherical coordinates in D-space the partition function becomes (see Ap-
pendix)

_\PRDr
i8.5p =~ DI/);J /de‘ln e=Bhy, (11)

with L the linear size of the cavity (assumed a D-cube), and I' the gamma function.
All the thermodynamics of the system is obtained from this expression in the usual

way: the internal energy density up = —é (3—13{-‘1)1/, with V = L? the cavity

volume, is given by

(12)

- 2(D — 1)xP22r(D 4+ 1)¢(D 4 1)kPH! 7D+
N(2)hPcD '

where ¢ is Riemann’s z-function. This expression reduces to the usual one in 3
dimensions when D) = 3, as it must. To write down the radiance Rp, the geo-
metrical argument leading to R = (§)u in threc dimensions must be extended
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to D-space (see Appendix):

o5

wp. 13
V(D - )F(%)} ! "

This formula reduces to R = %u for D =3.

The spectral radiance Pp(v,T') is obtained from Rp = [;° dvPp(v,T). Using
Eq. (11)

—

Rp =

or(D-1)/2 hv? 14
cD-1p(L21) efhv — 77 )

';DD(I/, T) —
which reduces to the Planck density Pp = %E%%T when D = 3.

3. Bounds for the dimension of space

To extract bounds for D) from Eqgs. (12-14), we must first analytically continue
these formulas, proved for integer D, to arbitrary values of D. Then we must define

quantities Rp and Pp with the same units as Rgp and Pp, the corresponding
Stefan-Boltzmann radiance and Planck spectrum in three dimensions

Rp = LIP3 Ry, (15)
5]) = LD_'LPD. (16)

To first order in (D — 3) one then gets from Eqs. (12-14),

Rp = Rsp [1+01(D——3}1n (L;CT)] (17)
Pp="Pp [1 + a(D —3)In (%”)] ) (18)

with ) and oy constants of order unity, whose exact values will not be required,
as the final result for the bound on (D — 3) will show. The terms proportional
to (D —3) in Egs. (17) and (18) then represent the first order corrections to the
Stefan-Boltzmann radiance and the Planck spectrum when one assumes a space
dimensionality different from 3.

To get a bound for D we then compare the term proportional to (D —3) in either
of the above two equations with the corresponding experimental error: identifying
the central value in each case with Rgp(T) or Pp(v,T), (D — 3) must be small
enough for the dimensional correction to be compatible with the reported error.
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To carry out this procedure one must choose the appropriate cavity size L,
temperature T' and frequency v. The choice is determined by the fact that the
(D — 3) correction term in Eqs. (17) and (18) has to compete with another theo-
retical correction, which depends on the form and size of the cavity. Even in three
dimensions, the Stefan-Boltzmann value for the radiance, and the Planck spectrum,
are rigorously valid only for infinitely large cavities. For finite ones we must change
these expressions in the following way [9]:

5A he\?
= Lo ———— [ —
Rys RSB[ 1673V (kT) } (19
A cy\?2
Cpr= e [1 57 (5) } ‘ (20)

where A is of the form aL, with L a typical length of the cavity, and @ a number of
order unity (for example, A = 3L for a cube, A = L1 + Lo + L3 for a parallelepiped,
A ~ 6R for a sphere, etc.). This geometrical correction was calculated summing
over the first 10% normal modes in Eq. (8), instead of approximating the sum by
an integral as indicated there. The corrections due to cavity size and shape in D
dimensions must have the same form as those in Eqs. (19) and (20), with perhaps
a different numerical factor in A, and most probably and exponent (D — 1) instead
of 2. All we need is that such extra terms vanish too in the limit of very large
cavities, and this general feature of the thermodynamic limit cannot be changed by
going to dimensionalities different from 3.

Then, to avoid the complication of geometrical corrections competing with di-
mensional ones we must consider the largest possible cavity, that is, cosmic back-
ground radiation (CBR), and this implies L ~ 10*®cm (the size of the observed
universe), T' ~ 3 K and v ~ 10'! Hz, to stay close to the maximum in the spectrum.

The experimental errors for both the radiance and the spectrum in ¢BR mea-
surements are of order ten percent [12], so from Eqgs. (17) and (18) the same bound
results:

|D -3| 21079, (21)

This is to be compared with the bounds mentioned in the Introduction, coming from
the anomalous magnetic moment of the electron (|D —3| < 1077), from the advance
of Mercury’s perihelion (|D—3| < 107%), and from the Lamb shift (|D —3| £ 10~'1).
Thus we are led to the conclusion that thermal radiation methods cannot improve on
existing low energy bounds for the dimension of space: this would imply measuring
the cosmic background radiation with a precision greater than 107, totally beyond
present capabilities.
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Appendix

The necesary formulas to go from cartesian to spherical coordinates in D) dimensions
will be included here, as they turned out to be difficult to find or prove. Let the
cartesian coordinates of a D-vector be (z1,22,...,zp), and its spherical coordinates
be (r,01,02,...,0p_2,¢), with the ranges 0 < 8; <7, 0 < ¢ < 27 for the angles;
they are connected through

z1 =rsinbysinfy...sinfp_gsing

z9 =rsinfysinfy...sinfp_scos ¢

(A-1)
r;=rsinfy...sinfp_jcosfp_j4, (7>2)
rp=rcost,
so the metric is
gi; = diag (1, r?,r?sin® 0y, r sin® 0, sin®0,,...,r?sin 0, . . . sin? 95_2) , (A=2)
and the Jacobian becomes
= /g =P (sin 6,)°P~(sin 6,)P~ .. .sinOp_,. (A-— 3)

To calculate the geometrical factor (...) in the radiance, Rp = (...)up, the
usual construct of a semi-infinite cavity with a little hole at the origin gives the
correct result, being careful about the fact that a little hole in D dimensions is
(D—1)- d:mensmnal
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®N

Resumen. Se utiliza una cavidad de radiacién térmica para explo-
rar la posibilidad de una desviacién del espacio respecto a la tri-
dimensionalidad que se le asigna. Analizamos una cavidad de radiacién
D-dimensional, suponiendo que la desviacién seria reflejada en la dis-
crepancia observada entre los valores tedricos y experimentales para la
radiancia y la distribucién espectral, y calculamos las correspondientes
correcciones a la radiancia de Stefan-Boltzman y la distribucién espec-
tral de Planck, las cuales resultan proporcionales a (D — 3), como era
de esperarse. En el caso de una cavidad pequeiia existen correcciones
adicionales a estas expresiones, provenientes de su forma y tamaifo.
Considerando entonces la radiacién césmica de 3 K, es decir la cavidad
méxima posible, obtenemos, a partir de los errores experimentales re-
portados para la radiancia y el espectro, la cota |D — 3| £ 1072, Este
limite es considerablemente mayor que los obtenidos recientemente a
partir de otros fenémenos medidos con alta precision.





