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Abstract. '1'0 construct constants of the motion for a rnf"chanical sys.
tf'1JI is in general a £limenlt l<lsk: howev{'r, for e1ellH:'ntary prohlcllls it is
possihlc to get somc of tl¡{'m hy din'et ('\illlinatioll of ti\(' ti"H' vari<lhlc
fmm thc solll\.ion. AI\.hollgh lhe Illclhoc! is of limiled \'aluc hccause il
is hased 011 a previous knowlcdge of \.h" sollll.ioll aud 011 the possihil-
ity of getting rid of the time varibl<" it l('"lis 1.0 explicit expn.'ssions
for consta.nts of the motion ('\"('11 in sorne untlslIaJ situations, sud as
problems with timc~dcp('ndcnt forces, and \.lIus, it ma)' he of interest
for introductory courses. A c1assificalion of these constants is made
according to whether the)' depcnd only 011 OIH' gl'lH'ric point of pllase
space or they are also functions of the initiaJ conditions; in the first
case, the)' can be tr1le integrals of motion and thus serve lo eliminatc
degrees of frecdom from the description.

PACS,03.20.+i

1. Introduction

Consider a c10sed or autonomous mechanical systcm having N degres of frecdom.
Associatcd to it there exist at most 2.N-I signil1catin' C'OlIstants of the TIlotin!l.
i.e, functions of the generalized coordinatcs and \"cIocities or TIlom('nla lhal do
not depend cxplicilly 011 timc and lbat c\'aluale lo a constallt alollg tlw lTlotiOll
(In arder to simplify the discussion wc shall use indistillcliy tite sels of variables
(q¡, q¡) or (q¡, P¡), according to convenience) [I j. The complete set of tltese cOllstants
determincs tite lrajedory of the systcm in 2N.dimcnsiollill plta,se space,

An altcrnative definition of a conslant of the motioll for a lIallliltonian syslclll
can he given in tcrms of Poisson brackels. Even if acccssory lo lhe disCllssioll that
follows, it seems cOllvenicnt to include it. hCl"c for rdf'n'n,c. Consil!f'r a dynamical
system dcscrilwd by the lIamilton equations of Illotioll

. aH
{j¡::::; --o

f)P¡

. a11
Pi ::::;- f)ql ' ( 1 )

where the lIamiltonian JJ is a function of tbe coordinates q¡ alld the correspondo
ing mOlllcnta Pi. The lotal lime deri\"at.ivc of tite dynalllical variable G(q.,Pi; t)
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is lhen givcn by

or

dG = oG IG JI]
di DI + , ,

\\'here lhe Poissoll brackcl of G alld 1/ is defincd by

[G, JI] = L (oG oJl _ oC OJl) .
. 8q, 8Pi 8p, f)q¡•

(2)

Ec¡, (2) shows lhal G is a cOll5lalll of lhe molion if a} it docs nol depend explicitly
011lime and b) its Poisson brackcl with l11e IJamiltonian is zero. This is probably
the m05l usual ddinilioo of a conslanl of lhe motion; il is eveo lranslaled into
quantuIII IIll"chanics, where b} aLo\'e is Stlstitulcd by b"}: if its comrnutator wilh lhe
lIamiltonian is zero (as follow5 from lhe general corresponden ce of Poisson brackets
wilh cOllllllutalors). Nolice that lile rule applies to aH IJamillonian systems, bul it
serves only to check whelher a dynamical variable i5 a coostant of tite motion, ~ot
to construct it.

The definition givcn above excludes constants of molion lhat depcnd cxplicitly
on time; lhu5 for instance, a simple procroure as tite mere rewriting of an t..'quation
p = p(q, t; qO,po) in the forrn Po = po(q,p, t; qo), does not yicld in general a conslanl
of lhe motion in lile above sense. \Ve should rcmark lhal more general definitions
that allow the explicit time dcpendeoce of lhe conslants of motion, are also frcqucnt
in thc literalure aJl(1may be uscful for ccrtain purposcs; cxampl~s of such usage may
be found in Refs. [2] and [3]. From this viewpoint, lhe initial conditiolls, for instance,
are conslants oC mol ion and a complctely integrable system has 2N of them.

Among lhe possible conslanls of the motion, thcre are SOTllethal have a parlic~
ular imporlancc, narncly lhe so-called int.egrals oC motion. Their iTllportancc comes
from lhe faet thal to cach one of lhem corresponds a conserved quantity, i.c., a
quanlity that defines lhe statc oC motion of lhe systcm and lhus serves to climinatc
a dcgrce of freedolIl frolll tIJe descriplion. The inlegrals of motion are (conlinuous,
single-valued, differentiable) independenl functions of 'Ti and Pi that are defined over
lhe whole (accesible) q,p-space, have a const.ant vallle along lhe trajectory and are in
involution. \Ve rccall thal t\\'o funetions F, G' are said lo be in involulion when their
Poisson bracket is zero (or, lranslatcd into quanluTll mechanics, when their commu.
lator is zero). A system with N degrees of freedom can have al most N iolegrals
of molion; in such a case, the systcm is called cornplctcly integrable [4]. A lotally
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integrable lIamiltonian systcm has regular trajectories only, wbereas non-inlegrable
systms usually give rise lo highly irregular and chaolic motions.

As has becn cslablishet:1 in the last decades [4J, for most dynamical systems
only a fe••••.constants cxist, and even then. no general methoa is known for their
conslruction Ilor for finding their total number. It is nol llnfreqllcnt, for example,
thal the onl)' integral of motion is the lIamiltonian (in the case of autonomous
Hamiltonian s)'stems), whose value gives the cnergy of the system. Tilere are certain
siluations, ncvcrthcless, in whieh it is possiblc to eonstruct intcgrals of motion
by rcasonably simple means; we bridly reeaH here several (Ii(fercnt procedures of
practical ami thcoretical value, withoul cntering into details.

i) 'fhe most important example is given by an external force tilat depends on tile
coordinates only ane! is derivable from a potcntial, P' = -VV; this is tile so-called
conscrvativc problcm. In this case, by taking the sealar product of the cquation of
motion mx = F, observillg that X. F = -dVfdL and illtpgrating over time one gets:

which is the law of conservatioll of encrgy. Ftlftbcr, by taking the cross product of tile
equatioTl of motion with r it is possible to demollstratc that tlle angular.momcntum
vector r x p is cOTlservcd if the force is radial, i.c., if F is of the form r f(r, {J, </J).

ii) \Vhcn the systcm is deseribed by mrans of tile lIamilton cquations of motion
(1) and JI does nol depcnd on a spccific coordinate qJ' lhen the corresponding
momentum PJ is conserved, as follows frarn the second equalioll in (1).

iii) \Vhen the lIamiltonian is (completely) separable or integrable [4), ¡.c., when
there cxisls a set of N (action-angle) pairs of variables (Ji, v.) such thal /{ can be
written as a sum of functions, each one depending onl)' on OIleof tile Ji, then these
action variables are conser\'ed1 as follows from the argulnent just fJi\'en. The other N
constants are obtained by derivation of the lIamiltonian: Wi = iJ;, as fo11owsfroln
Eq. (1), with the frcquencies given by w. = Ji. Evcn though this is a particular case
of (ii)1 this method is so important-for dealing with multiply periodic systcms, for
example-that it deserves explicit consideration.

iv) A constructive melhod for Lagrangian (or lIamiltonian) systems is providcd
by Noether's thcorem, which givcs an explicit rule for finding the dynamical variable
that is conscrved as a rcsult of a given syrnrnetry. The formulation of this theorem
gOCELeyond e1ementary textbooks and we tilf'rdore rcfrain from any (lisCllSsion
oC it (,e'C <.9. ReL [2]). Other, ,o.called non-Noelherian con,tant, oC the motion
have been showll lo exist, even for more general systerns1 and methods for thcir
construction have Leen suggestcd (s('(', e.g., Ref. [3D.

The problem of finding the integrals of motion is in general a difficult one.
1I0wever, if the solutions to the equations of motion are known, it is possible in
several cases of interest to use them for the construction of constant functions that
do oot involve the time. The procedure is obvious and of limited thcorelical interest,
since often the point in knowing the constants of the motion is just to avoid the
need of finding the explicit solution of the problcm, or to hclp lo get it by reducing
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the effective number oC degrccs oC fc('edom. The m('thod has however a pedagogical
value, since it allows to construcl constauts of lhe motion from scratch in several
elementary but intcrcsting cases, including time-dcl){'ndcnt problems.

2. Direct procedure to construct some constants o( the motion

In what follows we use a c1assification of lhe cOIIstan1s of lhe motion G into two
types: we say thal G is global (or g-lype) if il can be put in lhe form G = G(q¡,q¡; 0:,,)
where 0" represent lhe sel oC parameters of the system. Altcrnatively, we say lhat
Gis spccifie (or 5.1ype) if it is of the form G = G(q¡, q¡; ().'J; qo, (0), i.c., if it depends
(non lrivially, o£ course) also on the initial conditions; in particular, this is the case
foc time.dependent forces, uecause sllch forces fix im origj~ foc time.

The pcocedure to construct lhc (;'s is as £ollo\\'s. Assurne you know the explicit
sollltioll of a problem in lile form

foc i = 1,2, ... , N. Take one of the l/¡ or q¡, say ql, and invert it (assuming you can do
it) to get the time t as a fUllction of ql, ti\{' initial valll(,s qo, 40 ano lhe parameters
of the probletll, 0: .•. Insert this expressioll for t illto the rernaining equations foc
q¡ and 4¡ and you gel '2N - 1 rclalions that hold £or all i but do not contain i
explicitly. In each oue o£ lhcsc rclalions, transfN all variables q¡, q¡ lo one side oC
the cquation so as lo express the rcsulls in the form Gj(qi,q¡)=const; then you
llave got 2N - 1 eonstants of the tTlotion. It should be c1eac that the method can be
applied only to those q¡, q¡ tltat are kllown as fUlldions of time, and once it has been
possible to in\"ert one of these functions to obtain t. r\lthough you cannot be too
optimistic, you wil! always get alleast one constant of lhe motion, when tite method
is applicable; Nccdlcss to say, to test if a gi\"en G is indcc'd constant it suffiees to
sltow, by substiluting tite equations of molioll, that 1he time derivative G is zeroj oí
eourse if the lIamiltonian is at hand, one can sito\\' tilat the Poisson braeket [G, H]
glves zeco.

3. Time.dependent (orces

Let us first study SOTllCIlon-conscrvatin' (nonaulonomous) one.dimensional prab.
lem, of the typc mi = F(i); in these cas('s thc lIamiltonian is obviously not con-
served, but still a constant of lhe motioll exists, as will come out from the examples.

1. F(i) = Foc-Ol• with O" > O (amI Fo > O). 'fIJe explieit solution is

F: (1 _ e-"'). . ox=xo+ ----,
mn

(3a)
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(
Fo) Fo(l-e-o')

x = IO + .ro + - 1 - -----~.
mo ma2

From (3a) we obtain

_1 [ (ro - r)]t = -o In 1+ om Fo '

which introduccd into Eq. (3&)gives

G ( . ') (. Fo) I [ (ro - i:)]= m x - xo + amx + mxo + -;- n 1 + am F
o

.

(3b)

(4)

The valuc of this constant is amxo for a given trajectory. This function G is of
typc S, sincc it d(:pends non-trivially on :To, Notice that it is dcfincd for x < IO + !fa
ollly; it is actually evident from Ec¡. (:Ja) th<lt :T <lt.t.<linsits max;murn allowcd value
:ro + -!!; a.symptotically witlt time.

In the limit as O' gocs to zero, and thc exterIl<ll force Iwcomes time indepcndent,
an expansion of Ec¡. (4) in powers of O' to first order gives

'.0 [ .0]G' - G am Xo _ m.T~
= - --- - om x - -- .

2Fo 2Fo

Hencc:, for a constant force Fo, G is of the global type and bccomes a funclion of
the lIamillonian 11 = ~mÍ2 - Fox (as it should, since lhe lIamiltonian is constant
in this case).

2. F = Acoswt, with A and w constant. Thc solution is

. . A.
x = xo + - sJnwt,

rnw

. A ( )x = Xo + xol + --2 1 - coswt .
mw

FroIll Ec¡. (5a) we obtainl with p = mÍ,

which introduccd into (50) gives

,
G A [1 w'(p - pof] , A Po'-I= mx + - - - - ? - - Sin

w2 A2 w- w

(5a)

(5b)

(6 )
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This rcsull is once more of lype s, and il is definC'donl)' for

-A :Sw(p-po):S A

as follows also diredly from inspcction of Eq. (5a). In lIw limil as w -+ O, lhe
reslrictions 00 the value oC ]J are liftcd ami Eq. (6) reduces to the Hamiltoniao for
lhe constant-force problem.

3. F = Al", with A> Oand n 1-1,-2. The solution is

Atn+!
p=l>o+(n+I)'

Atn+2
mT = mTo + 1'01 + ( )( )'n+l n+2

wilh p = mx. From Eq. (7aL

Inlroducing this into Eq. (7b) wc oblain

1"+211 A [(71+1)(P-PO)] "+1
G = mx _ po [(n + 1)(1' - PO)] ("+1) A _

A (n+l)(n+2)

(7a)

(7b)

(8)

This result is in general of type 5, aud restricte" lo (n + 1)(1' - Po) 2: O if n 1O.
For n = O, ooe gets once more a constanl force and G becomcs of type g.

In the ahove examples, a time-depcndC'llt force gives rise lo an s-type G; more
spccifically, to a functioo G that depends non-tri\'ially on lhe initial value oí the
mom{~ntum. This may be understood as a consequence of the íact that the time-
dependent force breaks the symmelry of lile syslcm with respcct to time transla-
tions, i.e., it introduces an origin for t, and the constallt of the motion-which is
not the Hamiltonian any more- depends cxplicilly on the conditions of the system
at this origino One might sllspect "tilat a time-dl'pcndent force always gives rise to
an s-type G, although this is Bot proved in general, a.s far as we know.

4. The damped oscillator

\Vc study now the olle-dimensional, linear oscillator acted OH by a damping force
ami describcd by the equation

(9 )
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This includes the physically interesting case oC the radiating dipole: (r = J~~)

in the approximate description to first order in T, in which the radiation ter m mrx'
is replaced by its firsl-ordcr approximation -mTw2j; and hence 1 = !rw2.

Let us start with the underdamped case, w > 1. The solution oC Eq. (9) is

x = a exp(ia1) + a* cxp( -ia*t),

x = iaaexp(ia1) - iata: exp(-ia*l),

with . . .
a Xo - 1.TO

a=----
a + a*

and

( /');
a::;:w l-w2 +i,.

Upon elimination of exp(i<7t) from Eqs. (10) we ohtain, lIsing (11),

i 1 (a'T + ii, )1=- n ---- .
at axo + iio

lntroducing this result into Eq. (lOa) wc gel

u

(
ax + ii; ) -;;;- * ax + iX

x=a .. +a .. 1

axo + lIO axo + lIO

which with the help oC Eq. (11) leads aCtcr sorne minar algebra to

(lOa)

(1Ob)

(11 )

(12)

(13)

We have arrived al: a global G, that reduces to the Hamiltonian oC the harmonic
oscillator HO = !m(i2 + w2x2) as the damping factor '""{goes to zero and hence a
and a. go to w.
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For srnalJ values o[ 'Yh %: w) E~. (1~) gives lo firsl order in 'Y

[ o 'I[ i'Y WX+iX]G= 1I + "l"{XX 1+ -In ..
W WX -IX

for the quantity that is eonserved along the motion. Notiee that cven though the
energy of the damped oscillator dcercases exponentially with time, there exists a
function G assoeiatcd to its motion that remains constant. However, this constant
is not an integral of motion, sincc it is not singlc-valued. This kind of constants has
bccn diseussed in the litcrature {3J.

In the ovcrdamped case (¡ > w) one o1>tains fmm tIJe solution of Eq. (9)

(14 )

inslead o[ E~. (13), with

As 3 --> 00, Eq. (14) reduces lo G = (.í' + 2"fX)'" corresponding to an x(l) lha~
dccreases exponentially with time.

5. Systems with two degrees of freedom

l. Let liS eonsider two coupled one-dimensional oscillators, describcd oy the Hamilto-
nian (we are taking the masses and the Tl<ltur<llfrequcncics equal to 1, for simplicity,
and we assnrne O $ e $ 1)

11 = ~ (j,' + y') + ~ (x' + y') + C.ry. (15 )

With x = 2-~(Z +z), y = 2-~(Z -z), wc get two uncouplcd oscillators described
by

Z = Al exp(iOI) + !JI exp( -iOI),

z = A, exp(iwl) + !J, cxp( -iwl),

(16a)

( 16b)
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where

1
fl = (1 +C)',

I
w=(l-C)'.

The problem has thus becn redu(":cd lo lhilt oC t\\'o indepcndent oscillalors oC dif-
ferent frequencies. We thercforc know lhilt not only tIJe total IIamiltonian (15)
is constant, but also the individual lIilmiltonians ilrc, ami thcse can be laken as
two independent constants of the motion. Now we can use the explicit solutions to
construel a differcnt combination tllat is also a constant, as follows. From Eq. (16a)
and its time dcrivative we gel

(.fl) (flZ - iZ)
exp 1 t = 2A,fl .

Similarly, from (16b) and its lime dcrivalivc w(' gel

. (wz+ii)
exp( -.wt) = n .2 ZW

The above cquations can be combincd in lhe form

( ..)-0WZ+1Z

2fl'}.w

In an analogous way one gets

( ..)-0
w2zA~~z

These two equations can be combined to gi\'c

G = (flZ - iZ)'(wz + ii) - (flZ + iZ)'(wz - ii), ( 17)

1

where r¡ = ñ- = [g~gn'7. This conslanl is of type 9 and it is dcfillcd for all valucs

oC Z, Z, z and z. If lhe oscillators are \'ery wCilkly coupleJ, then r¡ ~ 1 and G can
be approximated by the expression

G ;; 2iw(Zi - zZ) = 2iw(yi - :r!i) = 2iwl,

where 1 is the angular momentum of the motion in the xy.plane. On the othcr
hand, ir the coupling is strong (C ~ 1) tbe syslclll heha\'cs still as an oscillator in
the z direelion but as a free particle in the z dircction: G ~ 2ii. Eq. (17) defines
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a constant fundion that is a generalization oC lhe angular momentum to arbitrary
values of 11, O::; 1] ::; 1.

2. Let us now consider a system oC two intcracting particles (with coordinates
x, y) described by the Hamiltonian (notice that Uds is a two-dimensional Toda lat-
tice [4])

l/ = i (i' + y') - A cxp(x - y).

Upon the change oC variables

. (18)

r = y - x,

the Hamiltonian takes the forr~

1
z = 2(x + y). (19)

l/ = " + ~r'- A exp( -r).

which allows us to immedia.tely identify two integrals oC motion, namely the total
linear momentum (assoda.ted to the ignorable z variahle), and the Hamiltonian
associated to the relative motion; wc thC'rcfore write

Z = zo,

~r'- Acxp(-r) = /lo.
4

(20a)

(20b)

To construct a third constant oC thc motion we salve Eqs. (20). The solution oC
(20a) i, immcdiatc:

z = =0 + zot (21a)

and to solve (20b) we introduce thc change oC variahle r = Inf2, leading to j2_
1

llof2 = A, whose solution is f = (.fio)' sinh J[T;;(t - id, with t¡ an integration
constant; henre

r = In[~,¡nh' -.j'Ho{t - Id] .
l/o

(21b)
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Using Eq. (21a) to eliminate lhe time variahlf' from (21b) we obtain after sorne
minor algebra

G ZO. 1-1
1 = Z - !TI SIIl 1

V 110

I(Il~c') , (22)

Th~ value of this constant is =0 + zotl. Sincc zo ami lIo are of type 9 (see Eqs. (20)),
Eq. (22) gives a third g-type constant of tllC'mot.ion.

6. Final comments

\Vhen applied to elementary problcllls, tlle c1illliTl<'ltionof time froIn the cxplicit
solutíOIlS of the equations of motion can IC'ad t.o intcrcsting examplcs of constants
of tl1(' 1ll0t.iOIl,anJ t.hus it providcs <'lnat.ural ilpproach lo lIJe subject. The method,
despite it.s Clen1<"Iltarycharacter, a.llo\\'s to. construct constants of the mol ion even
for unusuill circumstanccs, as ShOWflin t.he CXéllllplf's.

\Vhcll tite cotlstant G is a singlc-vi'llllcd fnllctioll of t.ype g, it defines a surface on
pbase space on \\'hich t.he trajectory lics; 1.11(' knowlf'dge of it.s spccific value arnounts
to thc c1imination of a degrt'C of fref'<iolll of t\l<' motíon. I1owever, if the constant
happcns to be of t.ype 5, t.bcn in additioll to G Ollf'nf'cds lo kIlow sorne initial values
(sc(', eg., Eqs. (-1) or (6)) t.o define the sI)('cillc t.riljectory of the motion and only
wit.h this extra information can thc pr<)("cssof I"CdlldioTlbe pcrformcd. \Vc thus
scc t.he rneaning of the distinctioll, sinc(' onl)' g-Iypc const.ant.s rnay lead t.o gcnuine
illlcgrals of Illotion in the convcnt.iolli'll Sf'ns(' of \H'ing conservcJ quantitics dcfin<..>J
in thc \\'holc phasc space ami thus allowing by theJnselvcs a reduetion of the nurnber
of dcgff'cS of frccdom.

Acknowledgment

The a.uthors are pleascd to acknowlcdgc v¡:¡luablc commcnts from S. Hojman and
R. Pércz-Pa.scual.

References

1. L.D. Landau and EJvI. Lifshitz, Mec/wnirs. Perg<ltnon Prcss, N.Y., (1960).
2. 11. Goldstein, Classical !dcchanic,", 2nd. f'dition. Addison-\Vesley, Reading, Mass.

(1980).
3. S.I1ojman and n. HarIcston, J. Math. Phys. 22 (1981) 1-11<1;S. 1I0jman, J. Phys.

A17 (1984) 2399.
4. A.J. Lichtcnhcrg, ~I.A. Lieherman. R(fjutnr (Inri Slorh(I."fic Molion. Springer Verlag,

Stuttgart (1983).



Constructing iTltrgm'.~ o/ motion by cirmentary rncans 161

Resumen. La construcción de constillltes de movimiento para un
sistema mecánico es 1lllil tarea difícil en general; sin embargo, para
problemas elementales resllltil posible obtener algunas de ellas mediante
la eliminación directil d<'llicmpo en la solución. Pese a que el método es
de aplicación limitada, debido ti. que se basa en el conocimiento previo de
la solución y en la posihilidad de invertir ~sta para despejar la variable
temporal, puede conducir ti. exprf'siones explícitas para integrales de
movimiento aun en situaciones poco usuales -como en problemas con
fuerzas dependientes del ticmpo-- y, por lo tant.o, resulta de interés para
cursos introductorios. Hay dos c1ascs ele constantes de movimiento: las
que dependen de un solo plinto gf'nérico del espacio fase, y las que
además SOIl funciones de las <,ondiciones iniciales; las primeras pueden
ser integrales de movimiento que sirven para eliminar grados de libertad
de la descripción.




