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Abstract. To construct constants of the motion for a mechanical sys-
tem is in general a difficult task; however, for elementary problems it is
possible to get some of them by direct elimination of the time variable
from the solution. Although the method is of limited value because it
is based on a previous knowledge of the solution and on the possibil-
ity of getting rid of the time varible, it leads to explicit expressions
for constants of the motion even in some unusual situations, such as
problems with time-dependent forces, and thus, it may be of interest
for introductory courses. A classification of these constants is made
according to whether they depend only on one generic point of phase
space or they are also functions of the initial conditions; in the first
case, they can be true integrals of motion and thus serve to eliminate
degrees of freedom from the description.

PACS: 03.20.4i

1. Introduction

Consider a closed or autonomous mechanical system having N degres of freedom.
Associated to it there exist at most 2N-1 significative constants of the motion,
t.e, functions of the generalized coordinates and velocities or momenta that do
not depend explicitly on time and that evaluate to a constant along the motion
(In order to simplify the discussion we shall use indistinctly the sets of variables
(i, Gi) or (gi, pi), according to convenience) [1]. The complete set of these constants
determines the trajectory of the system in 2N-dimensional phase space.

An alternative definition of a constant of the motion for a Hamiltonian system
can be given in terms of Poisson brackets. Even if accessory to the discussion that
follows, it seems convenient to include it here for reference. Consider a dynamical
system described by the Hamilton equations of motion
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where the Hamiltonian H is a function of the coordinates ¢; and the correspond-
ing momenta p;. The total time derivative of the dynamical variable G(q;,pi;t)
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is then given by
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where the Poisson bracket of G and I is defined by
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Eq. (2) shows that (& is a constant of the motion if a) it does not depend explicitly
on time and b) its Poisson bracket with the Hamiltonian is zero. This is probably
the most usual definition of a constant of the motion; it is even translated into
quantum mechanics, where b) above is sustituted by b°): if its commutator with the
Hamiltonian is zero (as follows from the general correspondence of Poisson brackets
with commutators). Notice that the rule applies to all Hamiltonian systems, but it
serves only to check whether a dynamical variable is a constant of the motion, not
to construct it.

The definition given above excludes constants of motion that depend explicitly
on time; thus for instance, a simple procedure as the mere rewriting of an equation
p=plq,t; qo,po) in the form py = po(q,p, t; qo), does not yield in general a constant
of the motion in the above sense. We should remark that more general definitions
that allow the explicit time dependence of the constants of motion, are also frequent
in the literature and may be useful for certain purposes; examples of such usage may
be found in Refs. [2] and [3]. From this viewpoint, the initial conditions, for instance,
are constants of motion and a completely integrable system has 2N of them.

Among the possible constants of the motion, there are some that have a partic-
ular importance, namely the so-called integrals of motion. Their importance comes
from the fact that to each one of them corresponds a conserved quantity, i.e., a
quantity that defines the state of motion of the system and thus serves to eliminate
a degree of freedom from the description. The integrals of motion are (continuous,
single-valued, differentiable) independent functions of ¢; and p; that are defined over
the whole (accesible) ¢, p-space, have a constant value along the trajectory and are in
involution. We recall that two functions F, G are said to be in involution when their
Poisson bracket is zero (or, translated into quantum mechanics, when their commu-
tator is zero). A system with N degrees of freedom can have at most N integrals
of motion; in such a case, the system is called completely integrable [4]. A totally
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integrable Hamiltonian system has regular trajectories only, whereas non-integrable
systms usually give rise to highly irregular and chaotic motions.

As has been established in the last decades [4], for most dynamical systems
only a few constants exist, and even then, no general method is known for their
construction nor for finding their total number. It is not unfrequent, for example,
that the only integral of motion is the Hamiltonian (in the case of autonomous
Hamiltonian systems), whose value gives the energy of the system. There are certain
situations, nevertheless, in which it is possible to construct integrals of motion
by reasonably simple means; we briefly recall here several different procedures of
practical and theoretical value, without entering into details.

i) The most important example is given by an external force that depends on the
coordinates only and is derivable from a potential, F' = —VV: this is the so-called
conservative problem. In this case, by taking the scalar product of the equation of
motion mx = F, observing that x-F = —dV/dl and integrating over time one gets:

1
&= §m;i:2 + V = constant,

which is the law of conservation of energy. Further, by taking the cross product of the
equation of motion with r it is possible to demonstrate that the angular-momentum
vector r x p is conserved if the force is radial, i.e., if F is of the form rf(r, ¥, ¢).

ii) When the system is described by means of the Hamilton equations of motion
(1) and H does not depend on a specific coordinate g, then the corresponding
momentum py is conserved, as follows from the second equation in (1).

iii) When the Hamiltonian is (completely) separable or integrable [4], i.e., when
there exists a set of N (action-angle) pairs of variables (J;,9;) such that H can be
written as a sum of functions, each one depending only on one of the J;, then these
action variables are conserved, as follows from the argument just%ivcn. The other N
constants are obtained by derivation of the Hamiltonian: w; = 3-_‘?;, as follows from

Eq. (1), with the frequencies given by w; = ;. Even though this is a particular case
of (ii), this method is so important—for dealing with multiply periodic systems, for
example—that it deserves explicit consideration.

iv) A constructive method for Lagrangian (or Hamiltonian) systems is provided
by Noether’s theorem, which gives an explicit rule for finding the dynamical variable
that is conserved as a result of a given symmetry. The formulation of this theorem
goes beyond elementary textbooks and we therefore refrain from any discussion
of it (see e.g. Ref. [2]). Other, so-called non-Noetherian constants of the motion
have been shown to exist, even for more general systems, and methods for their
construction have been suggested (see, e.g., Ref. [3]).

The problem of finding the integrals of motion is in general a difficult one.
However, if the solutions to the equations of motion are known, it is possible in
several cases of interest to use them for the construction of constant functions that
do not involve the time. The procedure is obvious and of limited theoretical interest,
since often the point in knowing the constants of the motion is just to avoid the
need of finding the explicit solution of the problem, or to help to get it by reducing
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the effective number of degrees of freedom. The method has however a pedagogical
value, since it allows to construct constants of the motion from scratch in several
elementary but interesting cases, including time-dependent problems.

2. Direct procedure to construct some constants of the motion

In what follows we use a classification of the constants of the motion G into two
types: we say that G is global (or g-type) if it can be put in the form G = G(gi, ¢;; as)
where a, represent the set of parameters of the system. Alternatively, we say that
G is specific (or s-type) if it is of the form G = G(q;, ¢;; as; qo, o), t.€., if it depends
(non trivially, of course) also on the initial conditions; in particular, this is the case
for time-dependent forces, because such forces fix an origin for time.

The procedure to construct the ('s is as follows. Assume you know the explicit
solution of a problem in the form

gi = qi(qo,qo; g3 1), ¢i = 4i(qo, Go; as; t),

fore =1,2,...,N. Take one of the g; or ¢, say ¢, and invert it (assuming you can do
it) to get the time t as a function of ¢, the initial values qg, ¢o and the parameters
of the problem, a,. Insert this expression for ¢ into the remaining equations for
qi and ¢; and you get 2N — 1 relations that hold for all { but do not contain t
explicitly. In each one of these relations, transfer all variables ¢;,¢; to one side of
the equation so as to express the results in the form G;(gi,¢i)=const; then you
have got 2N — 1 constants of the motion. It should be clear that the method can be
applied only to those g;, ¢; that are known as functions of time, and once it has been
possible to invert one of these functions to obtain ¢. Although you cannot be too
optimistic, you will always get al least one constant of the motion, when the method
is applicable. Needless to say, to test if a given (7 is indeed constant it suffices to
show, by substituting the equations of motion, that the time derivative G is zero; of
course if the Hamiltonian is at hand, one can show that the Poisson bracket [G, H]
gives zero.

3. Time-dependent forces

Let us first study some non-conservative (nonautonomous) one-dimensional prob-
lem, of the type mi = F(t); in these cases the Hamiltonian is obviously not con-
served, but still a constant of the motion exists, as will come out from the examples.

1. F(t) = Fye™®', with a > 0 (and Fy > 0). The explicit solution is

Fo(l —e=ot)

mao

T =9+ (3a)
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From (3a) we obtain

t=—alln [1 = Qm(ru—_l’l] s

Fy

which introduced into Eq. (3b) gives
G =m(z — z9) + amz + (ma':g - %) In [1 + am(‘TDF—_I)] ; (4)
0

The value of this constant is amzg for a given trajectory. This function G is of
type s, since it depends non-trivially on . Notice that it is defined for & < &+ -,g%
only; it is actually evident from Eq. (3a) that & attains its maximum allowed value
g+ % asymptotically with time.

In the limit as a goes to zero, and the external force becomes time independent,
an expansion of Eq. (4) in powers of « to first order gives

. -2
crmz:rg mx”
=
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Hence, for a constant force Fy, G is of the globhal type and becomes a function of
the Hamiltonian H = %m:i:2 — Fyz (as it should, since the Hamiltonian is constant
in this case). :

2. F = Acoswt, with A and w constant. The solution is

5 A .
T = &g + — sinwt, (5a)
mw
T = xg + £ot + A (1 — coswt) 5b
= ——(1 — coswt).
ot ot + —3 (5b)

From Eq. (5a) we obtain, with p = mz,

t =w lsin~? [w—m(P - ;50):| g

A

which introduced into (5b) gives

w(p *pa)g] : BB [M] )

A
= L P
G mr+w2[ Y
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This result is once more of type s, and it is defined only for
~ASwpp-p)<A

as follows also directly from inspection of Eq. (5a). In the limit as w — 0, the
restrictions on the value of p are lifted and Eq. (6) reduces to the Hamiltonian for
the constant-force problem.

3. F= At", with A > 0 and n # —1, —2. The solution is

Agp+l
p=pot Y (7a)
Atn+2

— i t —_—
mz = mzgy+ po +(n+1)(n+2)’

with p = mz. From Eq. (7a),

,_ [(nﬂ)tp_m)]ﬁﬂ
- [t X |

Introducing this into Eq. (75) we obtain

A (n+1)(n+2)

G =mz — py

This result is in general of type s, and restricted to (n 4+ 1)(p — po) > 0 if n # 0.
For n = 0, one gets once more a constant force and G becomes of type g.

In the above examples, a time-dependent force gives rise to an s-type G; more
specifically, to a function G that depends non-trivially on the initial value of the
momentum. This may be understood as a consequence of the fact that the time-
dependent force breaks the symmetry of the system with respect to time transla-
tions, i.e., it introduces an origin for {, and the constant of the motion—which is
not the Hamiltonian any more— depends explicitly on the conditions of the system
at this origin. One might suspect that a time-dependent force always gives rise to
an s-type G, although this is not proved in general, as far as we know.

4. The damped oscillator

We study now the one-dimensional, linear oscillator acted on by a damping force
and described by the equation

mE = —mw?s — 2m~yi. (9)
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This includes the physically interesting case of the radiating dipole: (7 = o
m# = —mw’z + mr¥,

in the approximate description to first order in 7, in which the radiation term m7z

is replaced by its first-order approximation —mrw?z and hence vy = %Twz.

Let us start with the underdamped case, w > 7. The solution of Eq. (9) is

z = aexp(iot) + a* exp(—ic*t), (10a)
T = icaexp(iot) — ig*a* exp(—io*t), (10b)

with
=J'rm—i.r'g (11)

o+ o*
and
.

J:w(l—;) + 1. (12)

Upon elimination of exp(iot) from Eqs. (10) we obtain, using (11),

i or 41T
t=—In (— ) .
ao* org + 11
Introducing this result into Eq. (10a) we get
(az+i:& )—fr , 0T+ it
z=a| ——— +at——,
axg + 12y arg + 179
which with the help of Eq. (11) leads after some minor algebra to

20 |2

1
G'= 3™ ’(ox +iz)7+eT

(13)

We have arrived at a global G, that reduces to the Hamiltonian of the harmonic
oscillator H® = %m(:i:2 + w?z?) as the damping factor 4 goes to zero and hence o
and o* go to w.
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For small values of v (v < w) Eq. (13) gives to first order in 7

G = [H® 4+ myai] [1 i
w

wT + 1T
wr — 11T

0 v ( mwzt v ] TET
= H [1+;( 770 —l)sm _:‘IO—]’

for the quantity that is conserved along the motion. Notice that even though the
energy of the damped oscillator decreases exponentially with time, there exists a
function G associated to its motion that remains constant. However, this constant
is not an integral of motion, since it is not single-valued. This kind of constants has
been discussed in the literature [3].

In the overdamped case (v > w) one obtains from the solution of Eq. (9)
G = (&+ fBz)P( +ex) ", (14)

instead of Eq. (13), with

1 1
w? 3 w2 b3
pea i (1-5) | == (%)

As I — oo, Eq. (14) reduces to G = (& + 2yx)?7, corresponding to an z(¢) that
decreases exponentially with time.

5. Systems with two degrees of freedom

1. Let us consider two coupled one-dimensional oscillators, described by the Hamilto-
nian (we are taking the masses and the natural frequencies equal to 1, for simplicity,
and we assume 0 < C < 1)

| 1
H=_-(*+§")+ 5 (2® + %) + Cuy. (15)

1
2

With z = 2_%(Z+z), = 2“’17(2 —z), we get two uncoupled oscillators described
by

Z = Ajexp(iit) + By exp(—iQ1), (16a)
z = Agexp(iwl) + By exp(—iwt), (16b)
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where
1

0=(1+0)  w=(1-0)
The problem has thus been reduced to that of two independent oscillators of dif-
ferent frequencies. We therefore know that not only the total Hamiltonian (15)
is constant, but also the individual Hamiltonians are, and these can be taken as
two independent constants of the motion. Now we can use the explicit solutions to
construct a different combination that is also a constant, as follows. From Eq. (16a)

and its time derivative we get

o (RZ—iZ)
exp(iflt) = oA
Similarly, from (16b) and its time derivative we get

(wz + i.—*).

exp(—1wt) = 3D

The above equations can be combined in the form

0z -iz\" _ (wz+i\7"
QAIQ N 2ng ’

In an analogous way one gets

QZ+iZ\" _ (wz—ii\7"
28,0 T\ 2Aw ’

These two equations can be combined to give

G=(0Z —iZ)wz + i) — (VZ + iZ)"(wz — i2), (17)
3
where = § = [ i;c ] . This constant is of type ¢ and it is defined for all values

of Z, Z, z and 2. If the oscillators are very weakly coupled, then n 2 1 and G can
be approximated by the expression

G = 2iw(Zz — 27) = 2iw(ys — 1) = 2iwl,
where [ is the angular momentum of the motion in the zy-plane. On the other

hand, if the coupling is strong (C = 1) the system behaves still as an oscillator in
the z direction but as a free particle in the z direction: G = 2iz. Eq. (17) defines
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a constant function that is a generalization of the angular momentum to arbitrary
values of §, 0 < p < 1.

2. Let us now consider a system of two interacting particles (with coordinates
z, y) described by the Hamiltonian (notice that this is a two-dimensional Toda lat-
tice [4])

H= (:f:z +9%) = Aexp(z — y). - (18)

B | =

Upon the change of variables

1
rey-z,  r=iz+y) (19)
the Hamiltonian takes the form
-2 l .2
H=:+ i Aexp(-r),

which allows us to immediately identify two integrals of motion, namely the total
linear momentum (associated to the ignorable z variable), and the Hamiltonian
associated to the relative motion; we therefore write

2 = 5;0, (20&)

ifﬁ’ — Xexp(=r) = Hy. (200)

To construct a third constant of the motion we solve Eqgs. (20). The solution of
(20q) is immediate:

z =z + 3t (21a)

and to solve (20b) we introduce the change of variable » = In f2, leading to f2 —

1
1 % o g 4 3
Ho f* = ), whose solution is f = (ﬁ\—&) sinh /f{o(t — ¢1), with ¢; an integration
constant; hence

A
r=In [E sinh? \/]‘Tg(t = t])] . (210)
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Using Eq. (21a) to eliminate the time variable from (21b) we obtain after some
minor algebra

G=z—

1
™\ 2
sinh™! (H;e ) . (22)

20
VHy
The value of this constant is zg+ 2ot1. Since Zp and Iy are of type g (see Egs. (20)),
Eq. (22) gives a third g-type constant of the motion.

6. Final comments

When applied to elementary problems, the elimination of time from the explicit
solutions of the equations of motion can lead to interesting examples of constants
of the motion, and thus it provides a natural approach to the subject. The method,
despite its elementary character, allows to construct constants of the motion even
for unusual circumstances, as shown in the examples.

When the constant (¢ is a single-valued function of type g, it defines a surface on
phase space on which the trajectory lies; the knowledge of its specific value amounts
to the elimination of a degree of freedom of the motion. However, if the constant
happens to be of type s, then in addition to G one needs to know some initial values
(see, e.g., Egs. (4) or (6)) to define the specific trajectory of the motion and only
with this extra information can the process of reduction be performed. We thus
see the meaning of the distinction, since only g-type constants may lead to genuine
integrals of motion in the conventional sense of being conserved quantities defined
in the whole phase space and thus allowing by themselves a reduction of the number
of degrees of freedom. -
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Resumen. La construccién de constantes de movimiento para un
sistema mecdnico es una tarea dificil en general; sin embargo, para
problemas elementales resulta posible obtener algunas de ellas mediante
la eliminacién directa del tiempo en la solucién. Pese a que el método es
de aplicacién limitada, debido a que se basa en el conocimiento previo de
la solucién y en la posibilidad de invertir ésta para despejar la variable
temporal, puede conducir a expresiones explicitas para integrales de
movimiento aun en situaciones poco usuales —como en problemas con
fuerzas dependientes del tiempo— y, por lo tanto, resulta de interés para
cursos introductorios. Ilay dos clases de constantes de movimiento: las
que dependen de un solo punto genérico del espacio fase, y las que
ademds son funciones de las condiciones iniciales; las primeras pueden
ser integrales de movimiento que sirven para eliminar grados de libertad
de la descripcién. 3





