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Abstract. A detailed proof is given for the Suppes-Zanotti theorem,
which states that the existen ce of certain trivariate probability distribu-
tion is hoth a necessary and a sufficient condition for the validity oC the
Uell inequality. This candition is not satisfied in the usually considered
experimental situations (correlations of spin projections from pairs of
particles with total spin zero, oc of pairs of cascade photons). It is shown
that tile three carnmonly adduced locality cr¡teria bear no relation to
this condition and are not even very plausible. Hence the rather extreme
conclusio:ls often drawn from locality considerations are not acceptable.
Lastly, the Bell situation is formalised in a more natural way. in which
the problem of a seeming contradiction with quantum theory cannot
arise.
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1. Introduction

The violation of the BeU inequality [1,41 by both quantum theory and experiment
has commonly becn explained along the lines ,uggested by Dell in the cited paper:
it is taken to mean that no local hidden-variable models can olfer an adequate
explanation oC quantum mechanics [5,6]. From this it is concluded that in the de-
bate betwecn Einstein and Bohr 17,8Jreali,m is the loser 19J,or that the ensemble
interpretation of quantum mechanics is untenable [10]. .

Such conclusions stem from Bell's original argumentj in deriving the inequality
he required that the spin projection oC one particle issuing from the dissociation of
a spin-Q pair could be measured in complete independence of what happens to the
other partide -a stipulation that he called locality. lf the resulting inequality is
not satisfied by quantum systems, it is argued, they must be non-local.

This conclusion is not in fad valid, since it has becn shown [11-17] that the Bell
inequality holds between four dichotomic variables (i.t. variables that take only the
values +1) if and only if any three posscss a trivariate joint probability distribution
(jpd), a condition which is trivially fulfillcd if the four variables have a quadrivariate
jpd. Thus locality or non-Iocality is irrclevant, for the existence or non-existence of
a jpd depends on quite other considerations.

The present paper gives a general proof of the theorem that underlies this ar-
gument, and attempts to clarify aH the stcps. This appears to be necessary, partly
becausc these details have not so far becn brought together, partly bccause the
argument, in spite of its simplicity, is often misunderstood (18) or ignored [I9).
For the sake of completeness, the next section briefly discusses the three principal
criteria of locality that have becn proposcd. Then section 3 exhibits the relation~
between the Bell inequality and the existence of a jpd, by giving a simple proof of
the Suppcs-Zanotti theoremj section 4 discusses the conditions under which a jpd
can or cannot exist¡ in section 5 an experimentalIy more satisfactory formalism is
given, in which a jpd for those oorrclations which are involved in the Dell inequality
but which are not measurable cannot existo

2. Non-Iocality

Intuitive!y, the concept of locality used hy Bell [II is of eourse sound: event, that
have a sufficiently great spatial separation should not, in principie, affccl each other.
If this sort of locality could be shown not to hold at aH (or even not very often), the
consequences for the whole of lhe scienlific effort would be nothing shorl of disas-
lrous, for il would no langer be possible to consider any system as sufficienlly isolated
for a manageably simple theorctical modcl lo apply to it. Whal gives this notion its
strong appeal is not only its agrccrncnt with common experiencc, but also -at least
in classical physics- the fact that the known forces faH off with the inverse squarc
of distance or even faster. Ncvcrthcless, exceptions are of course docuIT1entable:
gravitational cffects are significant over cxtrcrncly long distances, and we are c10se
to the technical ability to generate intensc and weH focussed light beams that oould
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provide causal links r¡ght across the entice un¡verse. It is tberefore neeessary lo
consider formulations oC the locality coocepl which do nol admit such exceptions.

Locality (which we shall nol dislinguish from separability) is a clear-cut coocepl
in lhe framework oC special relativity, bul is less easily formulaled w¡thín non-
relativistic theories. Therefore lhe locality critería employed in connection w¡th
the llell inequality will be cvalualed by comparison w¡th lhe relalivistic concepto
Hefe two points represenling evenls are non-separable (or non-local with rcspect
lo cach othcr) ir their foue-distance is timelikc, so tha1 lhe earlier aue could -
bul nccd oot- be causally linked lo lhe other; ir it is spacelikc, 00 the other"
hand, there cannot exist any causal link between them, and their relation is termOO
local. They may nevertheless be correlated. through a common cause within the
(neccssarily existing) intersection of thcir past light cones. The concept of non.
scparability can immediately be extended to events that are represented by finite
spatio-lemporal regions; for systems considered to possess an indefinite tife time il
is less easy lo forrnulate. The impossibility of a causal link belween events with a
space-like separalion has no known exception, and thereíore is a satisíactory hasis
for loeality, whieh we shall define as the corresponding property oí a theoretical
model that satisfies the relativistic separability conditioo, or a suitable equivalent
oí it. Note that causal links can have a well.dcfined diredion, since the identily
of the forward and backward lighl eoncs are eonserved separately under Lorcntz
lransformations; this win be relevant below (scclion 3).

The rncasurements oC a spin componcnl along diredion 0', giving a result a, for
one of a pair oC partic1es and along dircction P, with result b, for the othcr, Corm
an evcnl pair ",hieh can be local to eaeh othcr if their separation is space-likc. The
relevance to thc I3ell case is less evident: not only is the theoretical description formu.
latOOin a non-rclativistic íramework, whcre no such restriclions on causallinks exist,
but the parts containing any space and time dependeoce oí the wave fundioos are
factorcd out since they are irrelevaol lo the expectation values íor the spin correla-
tions; it is oot c1ear how the latter could be affcctCti by a non-separability expressihle
only in the space-time coordina tes they no longer contain. lo fad the derivations of
the Del! inequality that have so far beco givcn imply that it should hold whether
the relevant measurement evcnts have a spacelikc separatio~ or nol¡ this is not
compatible with the relevan ce oC a locality condition of the relativistic typc.

The difficulty is nol merely formal. The existence oC a correlation betwccn lwo
events is not by itsclf evidence of non-separability, for such a correlation may be due
to a common cause in their past. But if space and time variables cannot be used to
cstablish a discciminatioo, then only conditions 00 thc conclations oc tIJe CJuantities
involved in their computation could appear as criteria of separability. Three Conns
for such a crilerion have appeared in lhe lilerature:

(i) Bell's crite.rion (1). Bell slipulates lhat a, the spin projection of tlle first
particle, should dcpend only on o, the measurcmcnl angle, and A, the hi<lden vari-
able(s), and similarly for b:

a = A(o,.\) b = 8(¡1, .\). (1 )
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Sut this criterion may be satisfied even when the measurement events are not space-
wise separated, e.g. for the Bell inequality between the orbital and spin components
in different directions of a single electron [20]; it may be violated even when the
relativistic criterion holds, if the hidden variables ..\ conncct a and b as in (1):
whenever the correlation betwcen a and b differs from zero, lhen, given b and {J , we
can determine), and henre a from Eqs. (1), or at least find that the probabilities with
which its two values appear are altered. It may be concluded that BeWs criterion,
while it is presumably satisfied for the spin and cascade-photon cases, cannot exactly
be termed a locaiity criterion; it is, rather, a criterion of functional independence.
It is then not surprising to find that it is neither necessary nor sufficient for the
validity of tbe SeU inequa1ity, as is discussed below; and BeWs derivation of the
inequalities requires a further condition, as we shall see below.

(ii) A rclated criterion is due to Stapp [21-23J and Eberhard [24,25J and has
becn used by Peres [26) and, somewhat differently, by Santos [271; it may be called
the countcrfactual criterion, since it stipulates that the value of a would have becn
the same ií instcad oí measuring b at an angle {3¥le had done so at another angle
{J'. Of course, the weakness oí this critcrion [28,29} is that it is nol susceptible
to experimental verification. In general, a counteríactual argument is acceptable
only ir lhe counteríactual siluation envisaged does oot ruo counter to the theory;
but in quantum mechanics, the specific details (the "hiddeo variables", if they can
be defincd) which yielded a particular value oí a are not describable, and only
the corrcsponding expectation valucs may be compared, theoretically as wen as
experimentany; thus the couoterfactual criterion yields (in ao obvious notation) the
prediction

(A(o,¡3)} = (A(o,¡3')}.

lo this statistical sense the criterion is compatible with quaotum mechaoics, and
the two measurements oí a and b are separable; but this is oot, oí course, sufficient
to de<luce the 13ellincquality.

(iii) A third form of separability criterion is the factorisability criterion [30),
that it should be possible to write the jpd of a and b in the forro

(2)

whcrc PI and P2 are conditional probability densities aod dJl. is the probability
dcnsity of ..\. Here l' can depend on o and {3as paramcters, PI on Q, and 1'2 00 {J.
The condition (2) is unsatisfactory: it can be shown (3I] that the existence of p(a, b)
is a suflicient condition for (2) to be always satisficd; the llcll incquality would then
follow, provided that Jl is lhe salllc for aH instruTIlcnt angles; ami this rcmaining
criterion, as win be secn bclow, is entircly equi\'alent to lhe criterion that a jpd
should exist, -a criterion that ha..••nothing to do with locality. The Clauscr-Horne
conJition is also subject to the criticism made aboye, namdy that it is uorelated to
any space-tirne coordinatcs.



174 T.A. Brody

Thus none oC the three criteria agree in their physical meaning with the rel.
ativistic criterion. It could be argued that qqantum theory requires a differcntly
formulated locality criterion; but even ir this had been achieved, such a criterion
would likewise be ¡rrelevant, as will be shown in the next SectiOD. It oould also be
argued that since the particles' propagation can be represented by plane wavcs,
which do not suffer inverse-square attcnuatioD, we have here the exceptional case
mentioned aboye oC a parallellight beam, for which locality is not valid, or al least
not valid Corthe distances realisable in lhe laboratory; but such a violation oC locality
does not conflict with any presentIy known physical law, and none oC the extreme
conc1usions mentioned ahoye would follow.

3. locality is irrelevant

Bell's derivation [1] uses (1) to write the correlation between measurements when
the angles are o and P as

P.p ; 1A(o, A)B(P, A)d¡l(A).

Then~considering a further direction "1 and its corresponding function eh, ,x),
we have

P.p - P.,; 1A(oA)B(P, A)d¡,(A) -1A(o, A)C(¡, A)d,,(A)

;1A(oA)B(P. A)[l - B(P. A)C(-y, A)] d¡'(A).

where we have used the fact that B2(P. A) ; 1, and so obtain the trivariate Bell
inequality

(3)

In a similar way, using only the functions A and E, but each with two directions,
o. o' and P. P' [32J, we find the quadrivariatc Bell inequality

Ip.p - p.p'1 + ip.'p + p.'p,1 ; 1[lA(o, A) {B(P. A) - B(P'. A)} I

+ IA(o',A) {B(P.A) + lJ({J'A)} il d,,(A) $ 2. (4)

The inequality in (4) follows because, oí( B(P. A)-B(P', A)) and (B(P, A)+B(P', A)),
one is necessarily Oand the other :1:2,while A(o, A) and A(o', A) at most efrect sign
changes. Also, ¡.t(..\) is a normalised distribution fundion.

Many other forms of the Bell inequality are known [33-41J but the arguments
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presented here can be adapted to them without difficulty, and they will not be
furlher discussed. As is well known [41, lhe inequalilies (3) and (4) are violaled for
a wide range of angles of measurement, both theoretically and experimentaUy, a
situation which has given rise to the discussions alluded to aboye.

The "locality" assumption made by Bell is needed in the argument leading
to (3) or (4) in order to enable the second members to be written as single integrals,
with common factors taken outside the parentheses in the integrands. But a further
assumption is requiroo, since one of these common íactors is Jl()¡); to make it a
common factor we require the second part of the Clauser-Horne locality criterion,
namely lhal lhe dislribulion funclion 1'(.\) be lhe same in all lhe applicalions oí (2);
if this is the case, the quadrivariate distribution p(a,a',b,b') for the set oí possible
outcomes exists, for in terms oí the fundions A and B of Eq. (1) it may be written as

p(a,a',b,iJ) =

~ r [1 + aA(o,.\)] [1 + a'A(o',.\)] [1 + bB(¡3,.\)) [1 + b'B(,B',.\)] dl'(.\) (5)
16 lA

11is lrivial lo show lhal (5) salisfies all lhe condilions of a probabilily densily.
Inversely, the existence ofthe distribution (5) ensures that Jl(>.) is the same in the
four applicalions oí (2), which all correspond lo marginals derived from (5). Thus
lhe CJauser- Horne localily condilion is equivalenl lo lhe exislence of lhe jpd (5),
and should not be interpreted as a locality condition. Nor are locality conditions
needed in the other derivations oí the inequality, as has been discussed in detail
e1sewhere [42,43,161. For inslance, Wigner (44) considers (adapling somewhal his
nolalion) probabililies such as p(+ + --), lhe probabilily lhal a = a' = +1,
b = iJ = -1; lhe four correlalions on lhe lefl of (4) can lhen be wrillen as sums of
lhe íorm

P.p = L abp(a,a',b,b')
a,a',b,b'

(6)

and so on, and the inequalities then íollow by essentially the same argument as led
lo (3) and (4). But now no localily assumption bas been made, either explicilly
or implicitly; indeed, in the marginal distribution of a and b we might have the
"non-local" case

q(a,+) = Lp(a,a',+,b') # q(a,-) = Lp(a,a',-,b'),
a' ,b' a',b'

yet (6) rcmains a valid Jefinition and the derivation of (3) and (4) gocs through as
before; lhe only necessary assumplion is lhal lhe jpd (5) should existo Thus lhe Dell
inequa1ity may be derived without assuming either locality or non-locality (or, for
that matter, the existence of hidden variables). Nothing but the sixteen elementary
probabilities have been assumed.
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This is no more than a particular case oí the general conclusion to be dcrived
rrom two theorems lo be cstablished hefe:

Theorem 1

This theorem was given, with slight reslriclions, by Suppes and Zanotti [11].
Three randoro variates x,y,z, which are dicholomic wiU satisfy the trivariale Bell
inequality oC type (3),

(xy) + (xz) - (yz) $ 1

and its cyclic permutations [1], togelher with the condition

-1 $ (xy) + (xz) + (yx)

ir and only ir the joint probability dislribution p(x,y,z) exists.

(7)

(8)

IIcre (xy) etc. are the covariances, i.e. the expectation valucs oC thc correspond.
ing products. Ir the means oC thc thrce varialcs are zero, lhe covariances will be
equaI lo 'the correlation coefficicnts.

\Ve bcgin by defining compatibility among probability dislributions. A sel of
joint probability distributions in subscts of a given set of variatcs are said to be
(pairwise) compatible if the marginal distributions of the maximal cornmon suhset
of variates for any pair of distributions coincide. Thus the bivariate distributions of
x and y and of x and z are compatible if the two marginals for x coincide.

For the case of three dichotomic variates, compatibility is immediately seen lo
require, firstly, that only 7 of thc 12 probabilities in the thr<.-'Cdistributions are
independent; calling these Pi, i = 1 ... 7 and using an obvious notation for writing
aH 12, we find the CoHowing table:

(++')=1'1
(+-.)=1'2
(-+.)=1'3
(--.)=1"

(+,+)=1'5
(+.-) = PI + P2 - 1'5
(-.+)=1"
(-.-)=1'3+1"-1"

(.++)=1'7
(. + -) = 1'1+ 1'3- /'7
(.-+) =1'5+1"-/'7
(. - -) = P2 + 1" - 1'5- 1" + 1'7.

(9)

The second requirement for compatibility is of course that the 5 probabilities
(Jefincd.in lcrms oC PI lo P7 in lhis lahlc bc non-negativc; lhis yiclds thc incqualitics

PI + 1'3 $ /'7

/'5+1',$/'7
( 10)

1'2+ 1', + 1'7$ 1'5+ 1',
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It is Bot necessary to require normalisation of the second and third distributionsj
this follows automatically.

Ir now thcse three compatible bivariate distributions are to be the marginals of
a trivariate distribution p(x,y,z), then cach of the 12 probabilities is the sum of
two trivarialc probabilitiesj thus.

(++.)=(+++)+(++-)

and so oo. Since there are only 7 independent quantities, one of the trivariate
probabilities, say Q' = (+++), is not determined; if the others are expressed in terms
of Q', there are 8 conditions to be simultaneously satisfied if all trivariale probabilitics
are lo be non-negative (their normalisation is automatic). These conditions may be
resumed as

m == max(O.p5 - 1'2.1'7 - 1'3,1'7 - 1'6)

~ min(php5,p7,P' - 1'6+ P7) == M,

m ~o ~ M.

(lla)

(llb)

Eq. (lla) is equivalent to 16 independent ioequalities. Of these 7 are trivial, in
the sense that they are valid if for each a ccrtain Pi is non.ncgalive; five others are
lhe inequalities of the compalibility conditions for the three bivariate distributions.
The remaining four inequalities are

1'5 ~ P2 + P7, (12)

1'7 ~ 1'3 + 1'5, ( 13)

1'7 ~ PI + Po, (14 )

1'6 ~ 1', + P7. (15 )

Now the three covarianccs in Eq. (7) are, in terms of the Pi.

(xy) =1'1-1'2-1'3+1",

(xz) = -PI - /Jo¡ + 1'3 + 1', + 21'5 - 2/'6,

(yz) = -PI + 1'2 - 1'3 + 1" - 21'5 - 2/'6 + .1/'7. (16)

so thal the four inequalities (12) lo (15) are precisely equivalent lo the four inequal.
ities

(xy) + (xz) - (yz) ~ 1,

(xy) - (xz) + (yz) ~ 1,

(17)

(18)
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-(xy) + (xz) + (yz) :s 1,

-(xy) - (xz) - (yz) :s 1.
(19)

(20)

Inequalilies (17) lo (19) are lhe lhree possible forros of lhe lrivariale Bell in-
equalily, Eq. (7), and (20) is lhe addilional condilion (8). This eslablishes sufficiency.
Tú prove necessity, we observe that ir p( x, y, z) exists, then the three marginals
p'(x,y), p"(x,z}, and p"'(y,z}, exisl and are compalible; and if eqs. (7) and (8)
are rewritten in terms oE-the eight componenls oí p(x,y,z), they will be seen to
be trivially satisfied. Thus these equations are both necessary and sufficient ror the
existence oC the trivariale jpd.

Suppes and Zanolli [111wrile lhe four inequalilies (17) lo (20) in lhe equivalenl
and more compact form

-1 :s {xy} + (xz) + (yz) :s 1+ 2 min( (xy), (xz), (yz)}.

We now establish a result needed below 1 in the form oC the following

Lemma

(21 )

Given two compatible bivariale jpd's Corthe dicholorrllc variales x, y and x, z,
respectively, a jpd ror y and z compatible with them always exists.

The given jpd's satisfy the tirst two inequalities oí (10). The assertion oCthe
lemma is then equivalent to the statement that there always exists a non-empty
range oí possible values íor Pz, such that the last three inequalities oí (10) are
satisfied. Combining the last two oí them, P: must satisfy

ps + P6 <: P7 <: Ps + Pf> - P2 - P•.

But this is incompatible with the rcmaining incquality only ií

that is to say ií

Ps + P6 > PI + pz + P3 + P. = 1

and this is excluded by the normalisation oC thc jpd oC x and z.

Theorem Il

This extends the result oí Theorem 1 to the quadrivariate type of Bell inequali.
ties oí Eq. (4). Four dichotomic random variables x,y, z, u will satisfy the inequality

I(xz) - (yz)1 + I(xu) + {yu)1 :s 2 (22)
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(Clauser el al. (45)) if and only if the jpd's p'(x,y,z) and p"(x,y,u) exisl and are
compatible.

To prove sufficiency, we assume p' and p" to exist and be compatible. Then, by
applying (17) to the triple {xyz} and (19) to {xyu}, we find

(xz) - (yz) + (xn) + (yn) .,:;2, '(23)

and three similar uses of Eqs. (17) to (20) combine with (23) to complete the
derivation of (22). To prove necessily, we observe lhal (23) may be divided inlo lwo
inequalities

(xz) - (yz) + c":; 1,

(xn) - (yz) - c .,:; 1, (24)

where e must evidently satisfy Iel :5 l. But the Icmma given aboye establishes, from
cach of these two inequalities, the existence of tIte jpd of x and y, with a covariance
{XV} which satisfies them and is thercforc a possiblc value of c. Analogous reasoning
starting with the olher three inequalities rcsurncd in (22) provides a further six
inequalilies like (24). Four of lhis lotal of eighl are lhe conditions (17) to (20) for
the existcnce of the trivariate jpd of x, y and z, the other four for that of the jpd
of x, y and u. By construction thesc jpd's have the sarue marginal for x and y and
so an: compatible, as required.

In Theorem 11there occurs only a single quadrivariate Bell inequality; but since
in (22) any of the four covariances may carry the minus sign, there are another three.
(Thesc are the four physically meaningful inequalities; the others would involve the
two "forbidden" corcelations (aa') and (bY)). By applying the lheorem lo aU four,
we immediately obtain the foUowing

Corol/ary

I3etwecn four dichotomic random variables x, y, z and ti all four possible quadri-
variale \leU inequalilies nol involving eilher (xy) or (zn) hold if and only if the
four trivariate jpd's p' (x, y, z), p" (x, y, u), plll (x, z, ti), and piv(y, z, ti), exist and are
pairwise compatible.

lt should be Doted that if the conditions of this corollary are satisfied, then the
Bell ineqmilities involving the two "forbidden" correlations will also be satisfied.
Furthermorc, the corollary does not allow us to conclude that the quadrivariate jpd
q(x,y,z,u), cxists when we know aH the Bell inequalities to hold. The argument
leading to Theorern 1 can be repeated to show that the existence of a quadrivariate
jpd, givcn four trivariate jpd's, requires a further 32 conditions beyond the compati-
bility conditions; these, combined in suitable ways, yield new Bell-type inequalities,
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involving now the expectations oC the product oC three variables, such as

-1 =:; (xy) + (xzu) + (yzu).

It is easy lo find counterexamples where the four trivariate jpd's are compatible, 50

that the Bell inequalities are satisfied, bul the quadrivariate dislribution does nol
existo

Bul ir it does exist, then the fOUT trivariate jpd's exist and are compatible. If
a lrivarialc Bcll inequality is violatecf, then Theorem 1 shows that the jpd oC the
thrce varialcs cannol existj ir a quadrivariale Dell inequality is violated, then the
corresponding two trivarialc jpd's do nol exisl¡ in either case, the quadrivariate jpd
cannol existo Convcrscly, ir the quadrivariale jpd exisls, both typcs oC Del! inequality
must hold. OC course thc non.cxislence oí the relevan1 jpd is a necessary but not
a sufficient condition for the Dell inequali1y to be violatedj sufficicllt conditions for
this are no1 yet known.

The conclusion is clear: for the Sell inequality to hold, no locality condition
is eilher ncccssary or sufficient. The only relevanl criterion is the cxistence of the
appropriate jpd's. If quantum theory (and thc corresponding experiments) violate
the Sell inequality, then neither the jpd oí a, a/ and b nor that oí a, a' and b'
exists, and so nOlle of higher-order distributions can exist. But this non-existen ce
is not surprising; ¡ndeed, quantum theory makes the joint occurrcnce of a and a/
impossible, and similarly for b and b'. Any theory that postulates the existence
of, say, p'(a,a',b) conflicts with quantum mechanics; for if such a trivariate distri.
hution existcd, it would predict values for expectations like (aa'b); hut for these,
nol only does the theory provide no prediction, they are evidently inacccssible in
any conceivable experimento The Clauser-Horne criterion implies the cxistence of a
quadrivariate jpd, Eq. (5), as noted aboye; but this in its turn implies the existen ce
also of (aa'bb/). From these contradictions with what theory yields and cxperiment
confirms the non-existence of these jpd's is clear.

Nor is this failure of the jpd to exist due to any kind of non.locality; a and a'
are mutually exclusive alternativcs for measurements on the salfle particlc, not on
two particles with a possibly spacelike scparation, and the non-existence of p(a,a/)
is unrclated to locality.

Thal a non-local explanation of the viola tia n of the Bell incquality is untenable
is made even more obvious by the fact that what c1early are local situations -in
Ihe sense of Bell- may neverlheless violale Ihe inequalily [20J, while (as menlioned
aboye) non-local situations can satisfy the inequality. A non-local model, bccause
oC its potential conflict with spceial rclativity, can evcn gi\'c rise lo striking para-
doxcs (45).

In terms of tite Clauser-Horne locality criterion, the non.existellce of a jpd for
the Bell case implics that the distribution function of the hidden variables, J,(A)
must depend on the measurement angles o and /3. Such a dependen ce secms first to
have bccn poslulaled hy Lochak [461; Ihal il is physically juslified is immedialcly
obvious since the relevant values of the hidden variables J' are thosc they posscss
at the time of mcasurement -when they have bren modified by tite intcraction
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with whatever inhomogeneous magnetic field splits trajectories according to spin.
These modifications cannot be predicted from their starting values, which lie in
their backward light eones, as noted aboye in section 2. An analogous argument
holds for the photon polarisation measurernents.

More in general, to postulate, as is often done, that J!(,\) cannot depend on the
measurement angles is to assume that the hidden variables are not dynamical vari-
ables. That such a dependence is also enough to reproduce the quantum predictions
has been shown by Cetto [471.

In order to render uncootroversial the violation oí the inequality by local models,
a recent paper [48] introduces an explicit time dependence; 00 the basis of the
discussion in section 2, this is a plausible notion. But other types oí local rnodels
that do not satisfy the Dell inequality have also been eonstrueted [49-54,16].

The eonelusion that the Dell inequality is irrelevant to the loeality problem in
quantum mechanics has been drawn also by de Muynek and Abu Zaid [14J, by De
I3aere [4] in his exhaustive review and, from a somewhat difrerent point oí view, by
Lehr [551. It has also been attaeked [18,56], euriously enough, on the basis of the
sarue logical error in both papers quoted: the authors conclude that, because the
I3ell inequality can in fad be deduced using a locality condition, its violation implies
that the locality condition must be false. For this conclusion to hold it would have
to be shown that the"Bell inequality cannot be deuuced in any other way, i.e. that
the locality rcquirement is a.dually ncccssary. From the aboye discussion it should
be clear that it is not in fad either nccessary or sufficicnt; 00 the other hand, the
assumption that aH subsets of thrcc of the fOUTvariables have compatible trivariate
jpd's is both necessary and sufficient.

The relation between hidden variables, local or non-local, and the existence oí
a jpd is also oíten confused. Thus Pine (12,13] concludes that, in his terminology,
a "deterministic hidden-variable model" (composed oí a hidden-variable space A, a
probability fundion J!(,\) over it, and response functions A(a, ,\), etc.) is equivalent
to the existence of a jpd. Now his particular modcl guarantccs the coexistence oí
a, al, b and b', simply because it postulatcs a single jL("\), with no angular depen-
denre; as we saw aboye, this is almosl trivially equivalent to the existence oí the
corresponding quadrivariate jpd. But this type of argument ignores the possibil-
ity of a hidden-variable model where such a jpd does not exist, which is the case
whenever the hidden variables that determine e.g. a do not posscss a jpd together
with those that determine al; then J!(A) will contain further parametcrs, in the
Bell case the measurcment angles. Such models can be relevant also in c1assical
physics. Por instance, in statistical mechanics most enscmbles depend on a number
of parameters; the distributions corrcsponding to differcnt va.lues oí such parameters
are not compatible and so do not give rise to joint distributions.

A rclated point made by De [lacre [28,29] is all loo orlen ignored: random hidden
variables must necessarily be irreproducible. This implics that successive measurc-
rnents whose valucs depend on such hidden variables do not possess ajpd, and hcnce
cannot satisfy I3ell inequalities. But oue cannot condude that these hidden variables
can never be made "visible"; however, when we do so, the physical charilct.er oí the
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syslem sludied changes, which is why now jpd's foc the formerly hidden variables
could existo .

4. When do joint probability distributions exist?

A set S or random variables possesses a jpd ir and only ir togetber tbey define
a measurable state spacc. The mathematieal content oC this stalement is trivial.
It is physically relevanl as 5000 as the measurable space define<! by the variables
in S forms the state space foe a physical system in a valid thcoretical modelo If
this is thc case, thcn thc existence oC the jpd implies tltat thc variables are jointly
defincd and jointly measurablcj foe ir they were not, it would be impossible lo
determine for instance the vacious correlations implicd by the jpd, and whose value
thc model predictsj hencc thc model would requirc modification. Inversely, if these
correlations can be measured, a jpd correctly prcdicting thcir values must exist
within the model ií it is lo be theoreticalIy satisfaclory. Thus joint measurability
of the variables ("joint" here meaning that the determination of one \'ariable does
not interíere with the determination of another or alter the value found for it, and
not necessarily simultaneous measurcment) is the experimental equivalent oí the
existencf of a jpd. This does not necessarily mean tllat in a given experiment a
joint measurement is carricd out, but only that such a rncasurement is [easible, at
least in principie. \Vherc it can be shown that -as in the case oí two diiTerent spin
projections for one partiele- such a joint measurement is not íeasible, the theory
should prcdict the non-existence oí a jpd. This is the case for quanturn mechanics,
since the operator corresponding to the probability oí Eq. (5) is not Hermitian.

To avoid certain misunderstandings, it should be noted that the existence oí a
jpd íor the set S does not imply that these variables are correlated or possess sorne
statistical dependence. On tlle contrary, the concept oí statistical independence is
defined only [or sets oí variables that do possess a jpd; hence random variables that
have no physical connection w¡th each other and should therefore be statistically
independent wiII (at least in the non-relativistic approximation) possess a jpd within
a theoretieal model which ioeludes them, providcd an cveot structure can be defined
where one realisation oí each variable is associatcd in a physically meaningful way
with an event (time is commonly adequate íor this purpose); they must thereíore
satisry tbe BeU inequality.

In contrast, random variables that do not posscss a jpd are rather strongly linked
to each other, but in a way lhat cannot be charactcriscd by means oí statistieal
paramelers. Their case is i\nalogolls lo thal oC muluall)' exclusive events though
more extreme: not just subsets within a common vi\lue range exelude each other,
but the entire valuc ranges do so. There is also an obvious conncction betwcen the
two cases: if a randqm variable x is conditioncd on another random variable y, then
the mutually exclusive events that y = 1 and that y = 2, sa)', generate two variates
whieh may be written

(xlY = 1) and (xlY = 2) (25)
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in an obvious notation; these do not possess a jpd. From (25) it fol!ows that given
a trivariate jpd p(x, y, z) we may form four correlation coefficients

p(x,Ylz = Z¡), i=1 ... 4
(Z¡ '" zj,i '" j)

from the corresponding four conditional bivariate distributions, and find that they
may violate the Bell inequality. We show in the next section that the Bell inequality
may be reformulated in precisely these terroso

The non-existence of a jpd is by no means associated with quantum physics
alone, as the example given aboye should make clear. A case more relevant here
is the "mechanism" underlying the classical models (referred to in the preceding
section) that do not satisfy the Bel! inequalily.

To conclude this section, we note that quite in general the existence and com-
patibility of aH n marginals of n - 1 variates does not imply the existence oí the
jpd of aH n variates. If thc n marginals Pn-J, are compatible, they contain 2n - 1
independent probabiliticsj hence one oí the 2n that make up Pn can be arbitrarily
chosen, provided that then aH the olhers are non-negative. This implies, much as
in section 3, a set oí 22n-2 inequalities, of which 2n - 1 are trivial, (o - 2)2n-1 are
the compalibility condilions for the Pn-h and others are the condilions for aH the
Pn-l to exislj there remain

n!:f)-1)n-'~2'-l(2'-1 - k)
1=1

ncw incqualities, wh~ch musl be satisfied for the jpd Pn lo cxist. These inequalities
involve expectation values for products of n-l variatesj hence only for n = 3 do lhey
yield Del! inequalit.ies. In general, we cannot assume for any n > 2 that Pn exists
merel)' bceause the marginals pn-l exist, contrary to what is often supposed. In the
Bell situation, the bivariate distributions for the four pairs (a, b), (a, b'), (a', b), and
(a', b') exist, because the corresponding correlation coefficients can be determined
cxperimentally; ir the trivariatc dislributions existed, the Bel! incqualities, as we
have seen, would always be satisfied; but even in the latter case we cannot assume
the existence of the quadrivariate dislribution.

5. He physical description of the B.II situation

In the Bell.type experiments, as the discussion aboye has shown, the Suppes-Zanotti
theorem and its extensions imply thal thc commonly used variables do not possess
a jpd. Thc discussion of the prccL.¿ings(.-ctionimplics that thia casc is Dot at aH ex-
ceptional; it may nevertheless be made much more comprehensible by the following
two arguments:

(a) The variables normally used to describe the Bell problcm may be considered
to be somewhat misleading, in that a and a' bear two related but distinct pieces
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oC ¡n[acmalion: the anglc oC measurement (o or a') is ¡nd¡cated by the choice oC
variable, while the oulcome oC the measurement is indicalcd by the value oC the vari-
able. Cornmon laboratory practice requires that thcse clements be separated, sioce
aIle is dclcrmined by thc experimenter al the time oC initiating the measurcment
proccdurc, while thc other depends 00 the measured syslcm and ¡ts environmcnl,
and nol 00 the experimenter. Wc thercfore considcr, ¡nstcad oC the paie a and a', a
paie mA and 0A' Her~ OA ;;;::Q oc o', according lo what rncasurement will be done,
while mA = ::1::1,according lo the outcome. \Ve wrile, similarly, mE and Os ¡nslcad
oC b and b'. The foue new variables conlain exactly the same in[acmalion as the
original four, and the two sets are interconvertible. Out now the four correlation
coefficients required for the Bcll inequality (4) arrear as

(26)

and so on; they are obtaincd froIn conditional probability distributions such as
P(mA,mBIOA = 0,08 = f3), derivcd from the jpd of mA, mil, OA! and 081 rather
than from the marginal distributions of the (non-existent) jpd of a, a', b and ¡jo
There is then no rcason to suppose them to satisfy any Bell inequality, for now the
situation is analogous to that of the previous scction.

Of course the jpd p(mA1mn,OA,OB) exists, and the correlation coefficients of
any four of its six marginal distributions, p(mA, mn) etc., satisfy the Bell inequality.
This is obvious, since

p(mi,Oj) = 0, i,j = A,lJ

while p(OA, On) is determinc-d by the methodology of the experimento Only p(mA, mn)
carries any information derived from the two-particle system, and by itself cannot
form a Bell inequality.

This argument has physical content: the spin projcdion of a particle does not
have a value in the absence of a corresponding angle; it is also undefined if more
than one angle is spccificd, bccause the inhomogencous magnetic ficld (or equivalent
sct.up uscd to measurc it) can have only one oricntation at a given instant. (A
point commonly overlooked is that a Slern-Gerlach magnet or similar arrangement
serves only to measurc lhe spin projedion of neutral particlcs; however, the presenl
argurncnl applies also lo thc rneasurement of spins of charged particlcs, and a similar
one applies to the measurelllenl of photon polarisatiolls.) This is a conscquence of
lhe fad thal the rncasurclllcnt of spin projections is rcally a preparation procedure
that has been adapted to tile purposcs of a Jnroi\surcnlellt. A dcpendencc of the
outcome on an instrumental parameter such as lhe angular orientation is therefore
neccssary and indced unsurprising.

This rather obvious point is sometimes presented as evidence for what is caBed a
"'contextual" poínt of'view, and then interpreted as characteristic oí the Copenhagen
interpretation of quanturn m'?chanics [27]. lIerc, however, a confusion has crcpt in.
Conlextualism -which docs have a c10se rclatíon to the Copcnhagen school, though
il should not be identified with it- attributes a rncasuring-device dependence to
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the outcome oC aH measurerncnts. It is the opposite oC ob jcctivislIl, i.e. the vie,,,' that
a mcasurcment outcome must always he interpreted as an attribute oC the measurcd
system (the "object" in objcctivism). Roth vicws are unaceeplable ovcrsimplifiea-
tiolls of lhe rcal situation, for it is cvidenl thal in fael olllcomes are in many cases
corre<:lly idenlified as being csscntially due to lhe syslcm ullder sludy, in olher cases
as due lo bollt tIte system ami tlle ITIcasuring apparatus, in still others as due only
lo the mcasurcInent device, and finally in sorne cases are to be atlribuled tq still
othcr parts oC the world (including crronrolls opcration oC thc cquipmcnt). It is part
of thc cxpcrimenter's job lo carry out a proper separation oC thcsc cascs and lo
eorred for 1I1ldesired "outsidc" innuences; hut he can do this ollly insofar as he has
becn provided with an adcquate th<,'orctieal picture, ami when it is pr<.>cisc1ythis
adequacy wltich is in qucstioll, then it is imporlant to f('('ognise and apply correctl)'
thcse distinctions.

(b) An altcrnative way oC sccillg this problem takes ti\(: hiddcn-variahlc formal-
iSIn seriollsly and considers them to be dynamkal variables with a corresponding
time depcndenec. Ir wc take the brcak-l1p of the original spill.Q systclll to occur at
time O and the two measurelllents lo be made al limes tn and t¡J (whieh neN nol
be cqual), lhen lhe hidden-yariahle set musl be brokcn up into ).O'(tn) and )..8(t.8).
and lhe corrc1ation betwecn the nH'asurcmcnts hecolllcs

and silllilarly

It is evidcnl lhat froIn cqualioTls of lhe t)'pe oC (27) aJl(I (28) no Bcll incqllality can
be dcduced. This is so C\'CIl if "p = "¡JI and 1'0 = I':J'; a IJcll inequality can be
dcrived 001)' if we also oeecssarily havc tg = tD', i.e. if the mcasuremenls are carricd
out joinlly, so that a jpd exisls.

The last point of (a) ahoye now implics that '\0 must be writtcn as ).(to, o),
and so on; in this case nol c\'en in = to' can guarantec the cxislcnee of a jpd and
so pcrmit lhe derivalion of a Bcll inequality. This argllmcnt is dosely rclated lo thc
irreproducibility of hidden variahl~ cOIllTllf'nlC1:1on ilho\'c.

In conciusion il may he silie! lhal tlw loeillily criteria comInonly employed are
Iwillll'r Jlccessary nor sllfficif'lll lo C'stablislt llw Bell inC'qualily, which depcnds only
on wllf'tlwr of nol a joillt prohilhilily distrihulion cxisls. In clilssical and in quantum
physio sitllatiolls are roulltl whcre 110 sllch dislrihulioll ('xists; lhis oecurs whcnlwo
(or more) quanlilies ha.vc Iwcn so definc(\ theoretically lhat lhey cannol coexist;
and as dicuss('(1 above for the Bcll case, il may t1sllally be a\'oidcd by using qllan-
tilics more suilably dcfinc(1. Thc rclevanee of lhe nell incquality lo problems of
undcrstanding quanlurn physics is lhl1s dOllblful, and tite largc eoncillsions that, as
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mentioned in the introduction, are orlen drawn from supposed violations of locality
canDot be mainlaincd.
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Resumen. Se da una demostración alternativa y más general de que
la existencia de las cuatro distribuciones de probabilidad tri variadas
posibles entre las cuatro variables dicotómicas involucradas es condición
necesaria y suficiente para que sean válidas las desigualdades de Bell.
En las situaciones experimentales habitualmente contempladas (correla-
ciones de proyecciones de espines en p<ues de partículas con espin total
cero o pares de fotones en cascada) esta condición no se cumple. Se
muestra que los tres criterios de loc",lidad más citados no guardan
relación alguna con esta condición y ni siquiera son muy plausibles,
de modo que las conclusiones extremosas que se suelen derivar de su
aparente violación no se pueden mant.('n('r. Finalmente se propone una
formalización más natural para los experimentos tipo Dell, tal que
no pueda surgir lo que parece ser una contradicción con la mecánica
cuántica.




