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Quantization of the Dirac field in de Sitter space
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Abstract. The Dirac equation in de Sitter space is solved analytically.
Explicit expressions for the charge, energy and momentum densities are
obtained, following the standard procedures of field quantization.
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Introduction

The quantization of fields in curved space sets several new conceptual and math-
ematical questions. The standard techniques used in quantum field theory can be
generalized to curved space, but the procedure is not always unique due to the lack
of privileged coordinate system in general relativity. Nevertheless, the situation can
be clarified by working out some specific examples.

The de Sitter space is a particularly simple curved space in which field quanti-
zation can be tested. There has been much work on massive scalar fields in de Sitter
space [1] but so far little attention has been paid to fields with spin [2].

In the present article, a spin 1/2 massive field in de Sitter space is considered.
The Dirac equation is solved in Section Il using a particular coordinate system:
all possible solutions can be written in terms of Whittaker functions, but there are
no eigenvalues of the energy-operator, and therefore a distinction between particles
and antiparticles is not as simple as in flat space; this disadvantage is related to the
particular coordinate system which has been used. However, the second quatization
scheme is pursued in Section III; explicit expressions are obtained for the charge,
energy and momentum densities.

2. The Dirac equation in de sitter space
A spin 1/2 massive particle is described by a pair of two-spinors 14 and ¢4 (the

indices take the values 1 and 2) which satisfy the Dirac equation [3] (h = G = 1
hereafter):

VNAwa = —mqu', (la)

Vaned" = mipy, (1b)
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where VA4 is the spinorial covariant derivative operator and m is the mass of

the particle [4]. This form of the Dirac equation is particularly well suited for a
treatment in curved space. In a conformably flat space defined by the metric

ds® = Q¥ (—dt® + d2® + dy* + d2?), (2)
where Q(t, z,y, z) is the conformal factor, the Dirac equation (1) takes on the form

(+7-V)F+mQG =0, (3a)
(O —37-V)G+mOF =0, (3b)

where

(83 e (% 0) me(b 8) @

and V is the divergence operator in Cartesian coordinates.

In the particular case of the de Sitter space, the conformal factor in (2) is

0=

a
t

. (6)

where a is a constant (Ricci scalar R = 12a7?). The flat space limit can be obtained
by performing the transformation ¢ — t + a and taking the limit a — oo.

It is convenient to set
F=¢PTALu(t), G=¢ePTAu(t), (7)

where A, is a 2 x 2 matrix which satisfies Eq. (A 1). Thus, Egs. (3) take the form

d 1 Iz
it + iposu + = 0, (8a)
%v — ipozv — ':—‘-u =0, (8b)

where p := (p- p)"/? and  := ma. It is easy to decouple each component of u and
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v from this last set of equations. Setting

w= () wnd o= (), )

it follows that

d&? d .
tzgﬁ-ui + taui -+ (p21!2 +ipt + ;42)ui =0, (10)

and a similar equation applies to vy with only the change p — —p. As discussed in
detail in Appendix B, the two linearly independent solutions of Eq. (10) are w4 (pt)
and wi(pt), where the functions ws are certain combinations of Hankel functions.
However, the spinors u and v also satisfy Eqs. (8), which must be used together with
the recurrence relations (B4). Summing up, the most general solutions of Egs. (8)
turn out to be

- Ap+‘h‘.?+ + BP+;J'LU‘_
“= (Bp_pw- + Ap_pw} )’ ()
—Apypw_ + Byl
v ( By_wy — Ap_pw* )’ (139

where Apy and Bpy are certain constants. The pair u and v can also be written as
a linear combination of four pairs

Y)+ = (u;f) Y)+ = (”’5") ,
(0 _ 0
Ba)- = w Y- = —pw? |

(12)
U(2)+=(Flg_) U(2)+=(u6+),
(0 _ (0
o= () o= ().
Eq. (BT7) implies that they satisfy the orthonormality condition
uT u .+ vt Vi p =05 (13)
ME7()x " ()" (0)x (1))

and also

1 t _
Ui T3%()e T V() £08Y )y = F260 (14)



Quantization of the Dirac field in de Sitter space 195

If we define Fi;)4 and G(;)4 as those spinor pairs constructed according to (7)
with each pair u(;)4,v(;)3 separately, then it follows from (8) that

G- pFye = £pF)s (15)
and similarly for G;)4. Thus, the spinors given by (12) can be interpreted as deﬁfling
a basis with definite helicity +1/2. Note, however, that none of these spinors, or any
linear combination of them, are eigenfunctions of the time derivative operator. It will
be seen in the following that the pairs w4, v(1)4, and and u(3)4, v(3)4, correspond

to states with opposite charge and that, therefore, they can be defined as “particles”
and “antiparticles”, but the energies of these states are not well defined.

3. Current and energy-momentum tensor

To proceed further it is necessary to consider the current four-vector [4]

1 '
J7 = 50 M (bara+ dadw) (16)

and the energy-momentum tensor [4]

. - -
Top = gl;'o;” —PaVaYa+6aVpda| + (a = f), )

’ - - . H . . - -
where 0®A4" are the covariant Pauli matrices and V, indicates the covariant deriva-

tion to the right minus the covariant derivation to the left. The current J* and the
energy-momentum tensor are conserved, V,J® = 0 and V,T?# = 0, by virtue of
the Dirac equation (1). :

Now, the total number of particles in the hypersurface ¢ = const. is

N / (%)4J'dzdydz (18)

and is a constant. On the other hand

1 ’ -
e §§(wr¢u +pts + 6'0" + 6%¢%), (19)

¥

and therefore, more explicitly,
1 fimy=nfi
N = §fd$dydzjdp'jdpe'(p P) uI,AI,A,uP-i-Ul,AI,A,,v,,] . (20)

where Eqs. [4] and [7] have been used. The integration over the space variables
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yields a é function since
[ @7 = @xsp - o), (21)
and using (A3), (4) and (13) one finally finds that

N ‘2(2?r)3jdpp ((P=p3)Ap4 Apy + By Byy) + (p+ p3) (Ay_A,_ + B;_B,_).

Following the usual procedure, we normalize the wave function in such a way
that there is one particle of cach of the four possible types in a cell of volume (27)3
in phase space. This is achieved setting

Aps = (2m) 7 2p(p ¥ p3)) ™ a (23a)

Byy = (20) 2p(p ¥ m)r'” by (23b)

where a4+ and b,y are complex numbers of unit moduli; thus
N = (2x)73 fdp( apyapy +ay_a, + b, b, + b,_b;,_ ) (24)

Consider now the Ty, component of the energy-momentum tensor, or more
prcmsely the energy density e measured by an observer with four- velocity U* =
Q71(1,0), that is e = UrUYT,,. Tt follows from Eq. (17) that

! — — — ' ..,0-—‘ ot
g=g= {—ﬂ‘v(‘)r’lfl — Yy Oths + ¢ 018" + 6% 0,0°

i i 4 "TH .I.H ;
“Z(E) (1 e 8;6) (25)

Using Eqs. (7), (9), (A3), (13) and (14), it can be seen that the energy F in the
hypersurface ¢ = const is

3
E =/d1‘dydz ((t_r) €
. dv d dv
<fin R | | o WO (. 2
8ir ( )/dp[ (u 7 +v di) +m (u o3 + v Jgdt)] . (26)
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From Egs. (11) and (23) it further follows that

E =(27r)_3 ( ) /dpp [(ap+a g +ap_ - bp+b;,+ bp_b;_) F

+ (bp-ap— — bprapy) pG + (a ap_b,_ — “;+b;+) J“G‘] ; (27)

where

F:——(1u+w++pw w' )

2
=1+ p = (w_,_w Twy) —wiw_|, (28a)
G 1= % (w_w!, —wipwl). (280)

A similar calculation permits us find the momentum vector. Due to the symme-
try of the problem, it is enough to consider the z direction only; the total momentum
in that direction is

3
Ps= j dzdydz (%) Ures Ty, (29)

where €5 is a unit vector in the z direction. Following algebraic calculations similar
to Eq. (26), one finds that

gt
Py = (2x)3— - /(lpppg [ (utu —vto) — pa(utogu — ‘U+O’3‘U)] , (30)
and more explicitly
Py =(27)~ /dpp; Gpytpy +ap a5 —bobi, ~b, b5 )} H

4t (bpraps + ap by ) wywo + p(ap by, +b,_a, )wiwt], (31)

where

H = - (wywh — pPw_wt). (32)

NI*—'

An exactly similar expression results for p; and py, with only p; and ps in Eq. (31)
instead of p3.

Summing up, we have obtained expressions for the particle number, Eq. (31),
of the field. In order to extract meaninful results, the second quatization of the ficld
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must now be considered. Following the usual procedure [5], one takes a,+ and b,y
as operators in Fock space which satisfy the anticommutation relations

{gpe:05:} =1, {bs, b2} =1, (33)

and define the “particle” and “antiparticle” number operators as

Npt = “;:l:“p:l:’
) (34)

Npsx = by, b4,

respectively. Furthermore, it must be assumed that states with only “particles”are
orthogonal to states with only “antiparticles”, that is, the vacuum expectation val-
ues of products such as a4 b must be zero.

With these assumptions, Egs. (24), (27) and (31) take the forms

Q=N =) [dp (Nps + Ny = Ry = By = 2), (34)
E = (2r)73 /dppF(pt)£ (Np+ + Np— + Npy + Ny — 2) (35)
Py = (27)2 fdpp,,H(pt)-& (Np4 + Np— + Npy + Np_ — 2). (36)

@ is now the charge density, simply the number density of “particles "minus “an-
tiparticles”. Eqgs. (35) and (36) imply a complicated relation between the energy
and the momentum of a particle which has not been possible to elucidate. Finally,
note the appearance of the term —2 which corresponds to the vacuum energy in
Eq. (35) and the “Dirac sea”in Eq. (34) (there is one particle of given helicity and
negative energy in each cell of volume (27%)? in phase-space). As in the flat-space
case, the vacuum energy can be eliminated if normal ordering of operators in all
vacuum expectation is taken.

4. Concluding remarks

Though the coordinate system used in this paper permits to solve analytically the
Dirac equation, it does not permit a clear distinction between positive and negative
frequency solutions. Thus, the concept of particle and antiparticle is based only on
the charge sign: Eq. (34) implies that the operators apt and b, are associated to
particles of opposite charge. Moreover, it must be postulated that “particle” and
“antiparticle” states are orthogonal to each other, as mentioned just after Eq. (33).
It is likely that a coordinate system which does not depend explicitly on time leads
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to solutions of the Dirac equation such that positive and negative energy states are
well defined. This point will be investigated in a future article.

Appendix A

The matrix @ - p can be diagonalized in the following form

A; '3 pA, = po, (A1)
where p := (p - p)'/%. Explicitly
AP=(P1+2‘P2 P1+ip2) (A2)
pP—p3 —p—p3

and it follows that

AJA, = 2(p — paos). (A3)

Appendix B
Equation (10) is of the form
ff+afi+(af izt p®) =0 (B1)
The two linearly independent solutions are
wi(z) = 2~ Wiy 00 20) (B2)
and
wh(z) = Wy o u(=2i2) = &7 Wy /,(2i2)]" (B3)
where Wy, ;,(2iz) is the Whittaker function of imaginary argument [6]. [In gen-
eral, W) ,(z) and W_, ,(—=z) are two linearly independent solutions of the Whit-
taker equation, and W), ,(z) = Wy _.(2)].

From the standard recurrence relations of the Whittaker function [6], it can b
shown that :

dw 1w +'“2w

oWy = twy + W,

dz T (B4)
d

—_—w_ = w_ — —Wy;
dz g
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and also that

wy Tipw_ = (11‘2:)1/28%”;{%.”{2)

l'pd:ljﬂ(m)’ (B5)

where H'.(j)i]/z(m) is the Hankel function of the second kind.
The Wronskian of the two solutions w, and w¥ is

2
whw! —wiw! = < (B6)

which together with Eqgs. (A4) implies the important property
wiwh + pfw_wt = 2. (BT)

Note, finally, the asymptotic forms of w4 for large «:

o 2
Wy = (2)’3’(’.‘4'&_” [l + i_’;—t + O(.r_z)]

xi 3_’:: . 2 1 2
B = (2)_{76_ : - [I + rit-—‘)% + O(:r"')]
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Resumen. Se resuelve analiticamente la ecuacién de Dirac en espacio
de Sitter. Se sigue el método estandar de cuantizacién de campos para
obtener explicitamente las densidades de carga, energia y momento.
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