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Quantization of the Dirac field In de Sitter space
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Abstract. The Dirac equation in de SiUer sparc is soked analytica.lly.
Explicit expressiolls for the chnrge, {'n{'rgy and 1ll01ll{'lItUIlldellsiti{'s are
obtaiu('d, following lhe standard pro('cdllrps of fidd <Iuantization.
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Introduction

Thc qualllizalion or fields in cllr\'t'd ~I);H'(' sds sevcral IH'W (,oll('('plual and malh-
cmalical <)ucstiolls. The standard tcchniqucs wwd in c¡uantulll field lhcor)' ('all be
gencraliz(,d lo cllr\'cd span', bul lhe procc<iurc is nol always ulIiqu(' dll(, lo tlw lack
of privilcged coordinatc syslclll in gellcral rclali\'ity. J\cn'rtlleless, the situatioll can
be c1arified by working out SOIllCspecific l'xamplcs.

Thc de SiUer space is a particularly simple cllrvcd spa('e in which ficld <¡lIallti-
zation can be lested. There has been rnllch work on massin' scalar ficlds in de SiUcr
spacc !lJ but so far little attcnlioll has b('('n paid to ficlds with spin [2].

In the prcscnt artiele, a spin 1/2 massive ficld in de SiUcr space is considcrcd.
The Dirac equatioll is solvcd in Scctioll II using a particular coordinate systcm:
all possihle solutions can he writtl'n in terms of \VhiUaker fundioos, but there are
no eigellvalucs of the energy.operator, ami thercforc a distinction belwecn partielcs
and antiparticles is not as simple as in nal space; this disadvantagc is rc1ated to thc
particular coordinate systcm which has becn us('{1.1I0\\'c\"er, the second quatization
schcmc is purstled in Scction 111;explicit exprcssions are ohtaincd for the charge,
energy and -Illomenlum dcnsities.

2. The Dirac equation in de siUer space

A spin 1/2 Illi"_<¡sivcparticle is describcd by a pair of l\\'o.:-pinors ~'A and <jJA' (lhe
indices take the values 1 and 2) which satisfy lhe Dirac equatioll {a] (h = G = I
hcreaftl'r):

( la)

(1 b)
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where ~"A' is lhe spinorial covariant derivative opcrator anJ m is the mass of
tite partide ¡,jJ. This form of the Dirac cquatioll is particularly weH suited for a
trcatlllcnt in cur\'(~J spacc. In a conformably flat spacc dcfincd by thc metric

(2)

''''here n(l"r,y,=) is tlle conformal factor, the Dirac equatioll (1) takes OIl theform

(D, + ii. 'V)F + rnOG = 0,

(D, - ii. 'V)G + mOF = 0,

w!lere

(3a)

(3b)

F := 03/2 ( .pI ) ,
t/J2

¡; are tlle usual Pallli malrin~s

G:= ¡¡JI' (:~:), (4)

( ° i)(72 = -i O ' (5)

and V is the divergcllcc operator in Carlesian coor<iinatcs.
In the particular ca'>coC the de Siucr spacc, lile conformal factor in (2) is

n=~
I ' (6 )

where o is a constant (Ricci scaJar R = 120-2). The flat space limit can be obtaincd
by performing thc transformation t ----> t + o ami laking the ¡imil O' ----> oo.

It is cOIl\'enienl to sel

(7)

where Ap is a 2 x 2 matrix which satisfies Eq. (/\ 1). Thus, Eqs, (3) take the form

d. l'
-ti + zpaJu + -v = O,
di t

d. l'-v - ZP"3V - -ti = O
dt l'

(8a)

(8b)

wherc p := (p. p)1/2 and J.l := mer. It is easy to decouple cach componenl oí ti and
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v {rom this las1 sel oC equations. Sctting

(9)

it follows that

( 10)

and a similar cquation applies lo v::i w¡lh only lile changc p --+ -p. As discusscd in
deta;l in Appendix n, the two linearly independent soilltions of Eq. (lO) are w",(¡,!)
and w~(pt). whefe the funetiaos W:t: are ("('ctain comhinations oC Hankcl fundions.
However, lhe spillars u and valso satisfy Eqs. (8). which must be used logcther with
lhe recurrence relations (B4). Summing up, thc mo~t general solutions of Eqs. (8)
turn out lo be

(ila)

(llb)

whcre Ap:t: and Bp:t: are certain constants. The paie u and v can also be wriltcll as
a linear combination oC foue paies

"(1)+ = ( '"0+) ("'"- )v(l)+ := O •

u(1)- = (~+) "(1)- = ( -I~,"~) ,

"(2)+ = ( '"0+) ,
( 12)(~w~)u(2)+ = O

u(2)- = (~~_) "(2)- = ( ~+ ) .

Eq. (87) implies that they satisfy lile orthonormality condition

(13)

and also

(14 )
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lf we define F(i):f: and G(i):f: as those spinor pairs constructed according to (7)
with eaeh pair "(.)ole' V(ilole separatcly, then it follows from (8) that

(j. pF(ilole = :!:pF(i)ole (15 )

and similarly for G(i}::i:' Thus, the spinors given by (12) can be interpreted as defi~ing
a basis with definite hclicity :l:1/2. Note, however, that non e of these spinors, or any
linear combination oC them, are eigenfunctions oC lhe time derivalive operator. 11will
be seco in the following that 1he pairs u(i)::i:' v(l):f:, and and U(2)::i:' v(2)::i:, correspond
to states with oppositc chargc and that, thcrcfore, thcy can be defined as "particles»
and "'i\ntiparticles», but the energies oC these sta tes are not well defined.

3. Current and energy-momentum tensor

To proceed fllrther it is nc("cssary lo consider thc current foue-vector [4]

( 16)

and the energy-momcntum tensor [4]

(17)

, -where l1aAA are the covariant Pauli matrices and '\i'o ¡ndicates the covariant deriva-
tion lo the right minus the co\'ariant derivation to the leCt. The current Ja and the
energy-mornentum tensor are cOTlSCrVM,\7 oJo = O and '\i' aTaD = 0, by v¡rtue oC
the Dirac cquation (1).

Now 1 the total numhcr oC particles in the hypersurCace t = const. is

N:= J un' J'dxdydz
and is a constant. On lhe othcr hand

and thcrefore, more explicitly,

(18)

(19)

N= ~JdXdydzJdP'JdPei(P-P')" [,,1 Al A tl +vl Al A v] (20)2 p'p'PP p'p'PP'

where Eqs. [4) and (7) have been used. The intcgration over the space variables
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yiclds a 6 fundian sincc

J drci(p-p')., = (2~)3é(p - p'),

and using (A3), (4) and (13) one r.nally r.nds that

(21)

Following tite usual proccdure, \Ve normalizc lhe wave functían in such a way
thaL thcrc is one particlc oC ('Mh oC lhe fom possihlc t),P(,5 in a cell oC \'oJume (211-)'1
in pha.sc spacc. This is achi('\'cd sd.t.ing

Ap~ = (2rr)-3 [21'(1' 'f I'J)r'/2"1d

np~= (h)-3 [21'(1' 'f I'JW'/2 {¡;~

whcrc Qll:i: and bp;! are cOlIlplex numbccs oC unit moduli; lhus

(23IJ)

Considcr no\\' lhe Tu compotlcnt oC lhe cllcrgY-lllolllC'lIlullI tt'nsor. oc more
prccisely lhe cncrgy dCllsity e IIlcasurcd hy all ohscr\Tr w¡Lh four-vdocity [P' =
n-'(I,O), lhal is e = UI'U.'I;, •. It follo\\'s frolll Ec¡. (Ii) that

(25)

l),;ing Eqs. (7), (9), (;\:!), (I:!) and (1.1), it can 1", se'I'n Ihat lhe "ncrg)' E i" the
hypcrsllffacc t = const is

. 3(I)J [ (tdU IdV) (1 du I dV)]=8111"' - dp -p tJ - + tJ - +]).1 1l 0".1- + t' (7J- .
n di di di dt (26)
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From Eqs. (11) and (23) it [urther [ollows that

E =(21r )-3 (*) J dpp [(o;+op+ + o;_op_ - bp+b;+ - bp_b;_) F

+ (bp_ap_ - b,,+op+) IIC + (o;_b;_ - o;+b;+) IIC'] ,

whcre

(27)

(28a)

(28b)

A similar ealculalion permits us find the rnomentum vector. Duc to the symme-
try of the problem, it is enollgh to eonsidcr lhe z dircction only; the total mornentum
in that direetion is

P3 = J dxdydz U¡')' lJ"c~T,,", (29)

\....here c:í is a unit vector in the z diredion. Following algebraic ealculations similar
to Er¡. (26), onc finds that

and more explicitly

whcrc

(32)

An exactly similar exprcssion results for PI and 1'2, with only PI and ]12 in Eq. (31)
instcad of pJ.

Summing up, we have obtained cxpressions for the particle number, Eq. (31),
oC lhe field. In order lo extraet mcaninful rcsults, the seeond quatization oC tite ficld
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must now be consideren. Following lhe usual procedure [5], one takes ap:l: and bp:t
as operalors in Fack space which satisfy lhe anticommutation relatiaos

(33)

and define the "particJc" and "antiparticle" number operalors as

(34)

respective1y. Furthermore, il musl be assumed that statcs w¡th only "particles" are
orthogonal lo slales with only "antiparticlcs", that ¡s, the vacuum expcctation val-
ues oí products sllch as a+b+ musl be zeTO.

With these assumptions, Eqs. (24), (27) and (31) take the forms

Q:= N = (h)-3 J dp (Np+ + Np_ - Np+ - Np_ - 2),

3J t ( --E = (2~)- dppF(pt); Np+ + Np_ + Np+ + Np_ - 2) ,

Pn = (h)-3 J dPPnH(Pt)~ (Np+ + Np_ + Rp+ + Rp_ - 2) .

(34)

(35)

(36)

Q is now lhe charge deosity, simply the llumber dcnsity oC "particles "minus "ao-
tiparticles". Eqs. (35) and (36) imply a complicatcd relatian betwecn lhe energy
and lhe momenlum oC a particle which has nol hren possihle to e1ucidate. FinaIly,
note the appearance of the term -2 which corrcsponds to the vacuum energy in
Eq. (35) and the "Dirac sea"in Eq. (34) (there is one partide of given helicity and
negative energy in cach cell oC volumc (21l'h)3 in phase-space). As in the flat-spacc
case, the vacuum energy can be eliminated if normal ordering oí operators in aH
vacuurn expectation is takcn.

4. Concluding remarks

Though the coordinate systcm t1sed in tbis papcr pcrmits to solve analytically the
Dirae equation, it does not permit a clear distinetion betwecn positive and ncgative
frcqueney solutions. Thus, the eoncept of particle and antiparticle is bascd only 00

the eharge sign: Eq. (31) implics that the opcrators ap;i; and bp+ are associated to
particles oí opposite chargc. !\.toreover, it must be postulated that "particlc" and
"antiparticle" states are orthogonal to cach othcr1 as mentioned just aftcr Eq. (33).
It is Iikely that a coordinatc system which does not dcpeod cxplicitly on time leads
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to solutions of the Dirac equation such that positive and negative energy states are
well defined. This point will be invcstigated in a future article.

Appendix A

The matrix a . p can he diagonalized in the following form

where p:= (p. p)'/2. Explicit1y

(Al)

A = (PI +ipz
P P - P3

and it follows that

PI + ipz)
-P - P3

(A2)

Appendix B

Equalion (lO) is of lhe form

x' f~ + xf~ + (x' :J: ix + I")I< = o.

The two linearly independent solutions are

and

(A3)

(Bl)

(B2)

where Wu/,,;p(2ix) is lhe Whillaker fundion of imaginary argumenl [6]. [In gen-
eral, W~,p(x) and W_~,p( -x) are lwo linearIy independenl soJulions of lhe Whil-
laker equalion, and W~,p(x) = W~,_p(x)J.

From tbe standard recurrence relations of the Whittaker function [6], it can he
shown that

(B4)
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and al so tllat

(B5)

whcrc Jl~2~'/ ..•(.r) is tite lIankcl functioll of the sccond kind.IJI. ~

Thc \Vronskian of the two solulions tu.;/:: ami tv~ is

(R6)

which logclhcr with Eqs. (;1.1) implics lIJe importan! propcrty

Note, finally, tlle asympt.otic fOrlns of 1"::1::fOf largc .r:

, ••c-ü [ .1" + I " ]w_ = (2)-'e-'-- 1+ '-.,- + 0(.,-.)
:r _.r

References

(Bi)

(RS)

1. T. S. Bunch and P.C.\\'. D<tvies,Proc. /l. Soc. LO/u/. A 360 (1978) 117, alld rcfcrcllccs
thcrcin.

2. For spin 1/2 in ltoberslon-Walkcr sparc, see 1L\.C'lstagnino, L. Chimcnto, 0.0.
Harari, aud C.A. Nlíliez, J. Malh. Phy.'1. 25 (198.1) :JGO.kO. lIarllt alld 1.11. Duru,
I'hys. Rev. D. 36 (lg88) 3705.

3. V. B. Bcrcstctskii, E.M. Lifshitz, ami L.r. PitaC'\'skii, '"D. /,(IIU!r1ll nrul E.JI. Lifshitz
Course in ThwT'dical PhY$ics. Vol. '1. Pcrg;'lIllolI Prcss. Oxford, (1971), p. 62-3.

4. See, c. g.: J. Pleballski, Spinors, Tctmd .••amI Form .••, C('ntro de Investigación y
Estudios Avanzados del IPN, México (H);5); "articularly S('ct. IV.4 (or thc Dirac
equation.

5. Sec, c. g¡ Rer. 3 325.
6. 1.5. Gradshteyn and I.~I. Ryzhik, Table ol/n/cgm/ .••, Serio (Hu! P,vducts. Academic

Press, New York, (1%5); Sec!. g.22.

Resumen. Se resuelve analíticamente la ('cnación de Dirac en espacio
de 5iUer. Se sigue el método está.ndar de clIantización de campos para
obt~ner explícitamente las densidades de carga, energía y momento.




