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Abstract. Chernikov et al. [2] have discovered new features in the
dynamics of a periodically kicked LHO & + w2z = (K /koT?)sin(koz) x
3., 6(t/T —n) . They report that its phase space motion under exact
resonance (pwo = (27/T)g; p,q integers), and with initial conditions
on the separatrix of the average hamiltonian, accelerates unboundedly
along a fractal stochastic web with g-fold symmetry. Here we investigate
with numerical experiments the effects of small deviations from exact
resonance on the diffusion and symmetry patterns.We show graphically
that the stocliastic webs are (topologically) unstable and thus the un-
bounded motion becomes considerably truncated. Moreover, we analize
numerically and analytically a simpler (integrable) version. We give its
exact closed-form solution in complex numbers, realize that it acceler-
ates unboundedly only when wo = (27/T)g (¢ = £1,2...), and show
that for small uncertainties in these frequencies, total predictability is
lost as time evolves. That is, trajectories of a set of systems, initially
described by close neighboring points in phase space strongly diverge in
a non-linear way. The great loss of predictability in the integrable model
is due to the combination of translational and rotational symmetries,
inherent in these systems.

PACS: 05.45.4+b; 02.50.4s

1. Introduction

Perturbed Linear Harmonic Oscillators (LHO) have been the subject of investiga-
tion over the years by several authors and have served as a paradigm for under-
standing various basic physical concepts. Recently, with the fashionable emphasis
on non-linear dynamics, every single characteristic underlying chaotic systems has
been shown to be present in perturbed LHOs. For example, Mode-locking, Devil’s
staircases, Arnold Tongues, and quasiperiodic transition to chaos are present in
damped perturbed LHO [1]. In contrast, unbounded diffusion in phase space through
stochastic fractal webs and covering of phase space by non periodic tiling (e.g.
5-fold symmetry, quasicrystals) appear in the nondissipative periodically perturbed
LHO studied by Chernikov, Sagdeev, and associates [2-5]. They discovered the afor-
mentioned features when the system of natural frequency wy is in exact resonance
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(pwo = gAw p,q integers) with the perturbing frequency Aw. Moreover the initial
conditions must coincide with those of the separatrix of the average hamiltonian.

The phase-space structures found by Chernikov et al. establish a dynamical
origin for quasicrystals for the first time. They can be understood as the separatrices
of an average hamiltonian which, dressed by a perturbation term, acquire a constant
width. The separatrix then becomes a mesh and, in its filaments, the motion is
stochastic. This is basically the level of understanding about the origin of these
structures and there are still some open questions, e.g., what is the fractal dimension
of the stochastic web? and does the difussion constant for the motion on the web
depend on its fractal dimension? Moreover, there are reasons to believe that the
structures found by Chernikov et al, for the special value of p/q = 1/5, may have
deep connections with quasicrystals and superstrings [6,7].

In this work, we are interested in gaining an understanding about the sta-
bility of these structures under changes of parameter. In particular, we inquire
about the effect that small deviations from eract resonance have on the unbounded
stochastic diffusion and on its associated symmetry patterns. The motivation for
this is two-fold. On one hand, frequencies of real systems cannot be measured with
infinite precision; there is always an uncertainty or an “error bar” tolerance in their
measurements. On the other hand, if we were to consider a set of systems, some in
exact resonance and others near resonance, then how much would their time evolu-
tion differ? i.e., how will their trajectories in phase space diverge? In section 2, we
report numerical experiments on the system that Chernikov et al. use to describe the
dynamics of a particle moving in a magnetic field wich is disturbed by a wave packet.
They show that under certain conditions this system can be modeled by a linear
oscillator, perturbed by a force proportional to sin(koz) Zﬁ:t: §(t/T — n), where
z is the position of the oscillator and T' is the kicking period. We show graphically
that stochastic web structures are unstable under small deviations from resonance
and its motion is truncated. In section 3 we study numerically and analytically
a simpler, but surprisingly still complex, system. The kicks are still periodic but
now constant in magnitude. Complex numbers are used to describe its motion in
phase space. We show (in polar coordinates) that under certain conditions, small
uncertainties on the frequencies yield unpredictability not only of the phase (as
is the case of a general integrable system) but also of its radius. In section 4 we
summarize our conclusions.

2. The non-integrable periodically kicked LHO

The equation of motion for the particular system that Chernikov and collaborators
studied is

s B K - s (1 o
I 4wir = e sin(kox) Z ) T T=Es (1)
n=—co

where kg is the wave vector of the infinite set of identical plane waves forming the
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FIGURE 1. kxact-resonance pattern wy/Aw = 1/5 and initial conditions (ug, vo)on the separatrix,
and k=.7T.

wave packet [3]. This is not an integrable system and the standard way of analyzing
its dynamics is to study its associated recurrence relation

K .
Un41 [uﬂ + (l) sin v,,] cos & + vy, SIn @
o o
M, : (2)
[ (I{) . ] '
Un41 = — |Up + | — | sSIN vy | sSIna + vy COS a,
o

where

a=wT = 2;‘:", (3)

and

e
u="2,  v=—ka (4)
W

Using the notation of Ref. (3), (un,vs) are the normalized velocity and position
of the system, respectively, just before the n'" kick. This map, derived in Ref. [4], is
obtained straightforwardly by calculating the effect of the é-impulse (a discontinuity
in its velocity) and resetting initial conditions for the homogeneous equation after
every kick.

The patterns produced by the map Ha under resonances (pwp = qAw, p,q
integers), can be of 5 general types: 1) stochastic diffusion-web patterns produced
when the initial conditions (ICs) lie along the separatrix of the average hamiltonian;
2) isolated (primary) island patterns, 3) simply connected loops, 4) fixed points and
5) multiply connected loops. The second, third, and fourth types are associated
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FIGURE 2. Near-resonance pattern wp/Aw = 1/4.9999 and same (up, v)and k as of Fig. 1.

with ICs far from the separatrix, and the fifth one, with ICs closer to it. All this
is in agreement with the russian group’s claim that outside the web the motion is
nonchaotic [4] . The ICs for the most interesting pattern (type 1) can be obtained by
i) finding the singular point of the unperturbed hamiltonian; ii) by the “symmetry
lines” method [8]; or iii) by playing patiently with the ICs until stochastic diffusion
is observed in the computer.

In Fig. 1 we show our computer-produced pattern for the stochastic diffusion
type which we obtained with initial conditions vy = 57.50102, ug = 19 and the same
parameters K = .7 and a = 27 /5 used in Ref. (3). Most of our Fig. 1 was completed
at n a~ 105, iterations with a P.C. using single precision. We allowed it to run
for 96 hours and diffusion did not continue, although the separatrix of the average
Hamiltonian does not contain a limiting invariant set [4,5]. We believe it did not
diffuse any more because the accumulated round-off errors became large enough so
as to deviate the system away from the separatrix. By changing to double precision,
the complete Fig. 1 was obtained at around n = 10° iterations but did not diffuse
any more after that. Thus, it seems that infinite precision (of course unachievable) is
needed for the phase point to diffuse truly unboundedly. Furthermore, as mentioned
above, here we are mainly concerned with the effect of small deviations from exact
resonance on the diffusion and symmetry patterns of the system, which we shall
now discuss.

We have run several numerical experiments to observe the following typical
results. Fig. 2 is the pattern for a system with same ICs and K value as of Fig. 1
except its ratio of frequencies is now w/Aw = 1/4.9999. We observe that it coincides
(when they are compared with the naked eye) with the plot of Fig. 1 except that
the interior little circles and the outer 10 leaf-like structures present in Fig. 1 did
not appear in Fig. 2 even up to one million iterations. Thus a small deviation from
exact resonance truncates diffusion in a noticeable manner.
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FIGURE 3. Phase-space portrait for wg/Aw = 1/4.9995 and same (uo, vo) and K as of Fig. 1.
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FIGURE 4. Phase-space portrait for wy/Aw = 1/4.995 and same (g vp)and K as of Fig. 1.

Figs. 3 and 4 show the pattern for same ICs, k = .7, and wy/Aw = 1/4.9995
and 1/4.995, respectively. Notice the the original pattern has changed drastically
and diffusion is absent. In fact, the pattern of Fig. 4 belongs to type 3 above. The
same kind of experiments (not shown here) on types 2, 3, and 4 mentioned above
served only to confirm the predictions of KAM theory [9].Furthermore, suppose
we take the ratio p/g to be equal to an irrational number, say, the golden ratio
(V5 — 1)/2 = 618034 = 1/1.618034 = 10°/1618034. At thls precision, the ratio
implies a symmetry of order 1618034. Thus, we can understand the stability of
incommeasurate frequencies predicted by t.he KAM theorem, as our inability to
detect any structural changes for symmetries of such large orders. In fact, Zaslavskii
et al. [4] reported that already at ¢ = 191, “the mesh becomes strongly deformcd”.
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These experiments give us an insight into the nature of a chaotic system. That
is, on the one hand neighboring points diverging exponentially (an essential char-
acteristic of chaotic systems), together with intrinsic numerical round-off errors,
truncate the stochastic diffusion. On the other hand, slightly different systems,
initially practically unrecognizable (e.g. systems wo/Aw = 1/5 and 1/4.9999) will
also diverge greatly, truncating acceleration and modifying the symmetry patterns.
That is, its phase space structure is unstable under small variations of its frequency
near resonance. This last fact motivated the study of our simpler model, discussed
below.

3. The integrable-periodically kicked LHO

Consider a LHO which is also periodically perturbed by é-impulses, but the strength
of the kick is constant. This means that the “modulation” term sin(koz) is absent.
Thus, its equation of motion is

i+ wiz = (%) Y 6T -n), T=2r/Aw. (5)

Its recurrence relation, obtained analogously to the non-integrable case, is the
“simplified” twist map

K )
Un41 = [Ttu + (—)] Ccos @ + Uy SIN &
s @

I (6)

K
Vil = [un + (——)] sin & + v, COS @
o

where, again, (u,,v,) are the dimensionless phase-space coordmates just before the
n'™ kick, and a is still defined by (3).

We shall concentrate first on the “exact system” wo/Aw = 1 and “neighboring
systems” defined by wg/Aw = 1 + ¢, where € is small. We shall see below that the
exact system, and integer multiples of it, are the only ones in the §a, map that
permit unbounded, non-stochastic, acceleration. The initial point inﬁhase space
moves along the w-axis by an amount k/a for each kick. The map M, does the
same, except the amount of displacement is (K /e)sin(vg). Now we look at the
neighboring systems (or near resonance-systems) and observe, via the iteration §u,
the evolution in phase space of their common initial conditions (ug,vp).

Fig. 5 Sshows the trajectories in phase-space of a few systems close to the exact
resonance wo/Aw = 1. Their initially close (practically the same) phase points
diverge noticeable already at N = 200 kicks. Fig. 6 shows the trajectories of another
set of systems a little farther from exact resonance. Notice that some systems move
(CW) Clockwise and others (CCW) Counter Clockwise, and that only the system
wop/Aw = 1+ .001 diverges above the straight line, even though there are the
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FIGURE 5. Phase-space trajectories from n = 0 to n = 400 kicks for 5 nearby systems S, S1+ and
S;’, defined by their ratios wo/Aw = 1, 1/1 + .0001, and 1/1 £ .0002, respectively.

FIGURE 6. Phase-space trajectories from n = 0 to n = 200 kicks for systems with wo/Aw = 1 ¢,
€ =0, .001, .002, .003. See notation of Fig. 5. '

same number of systems “above” (wo/Aw = 1+ ¢) than “below” (wp/Aw = 1 — )
resonance, where € = .001, .002, and .003. The system wy/Aw = 1 4+ 2¢ hardly
moved from the ICs and shows up as a dot. Alternatively, if we had a single system
whose frequency ratios are known within a tolerance 6 (wo/Aw = 1 4 6, § = .003)
then after only 200 units of time (or kicks) predictability is lost significantly.

Inorder to understand these results we shall use the fact that our simplified
model is integrable. Its solution can be found, e.g., by the Green’s function Method,
by the Fourier-Transform Method, or by induction using an alternative complex
number representation. That is, the complex number expression

Zuis = (7 + ) explia), 7
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where
Zn = Un+ i‘ljn (8)

gives, as can be checked readily, the map 5.

Incidentally, replacing K/a — K/asinv, gives the map ﬂa, and (7) is a rep-
resentation of the unperturbed LHO with K = 0. The rotation-translation combi-
nation (7) or, equivalently, the map S, has the solution

% . .
Zn = Zyexp(—ina) + IZ (l e Y el e—'(ﬂ—l)n) exp(—ia). (9)

In turn, expression (9) can be put in a useful closed-form

K 1- :
B, o= B i) s e RO iy (10)
a 1 —exp(—ia)

The only little dissadvantage of this form is that in cases when a = m2r, m
integer, the denominator is zero and the computer’s result is not trustworthy even
though, analytically, the limit as & — m2n of the second term is unambiguosly equal
to nK /2rm. This minor problem can easily be remedied by proper substitution of
its analytical limit.

We use expression (10) to illustrate (Fig. 7) how a set of initially close systems,
in the range wy/Aw = 1/(1 + €),e = .003, diverge after n = 10,20, 30,...1000
counts of time (or kicks). Figure 8 shows the same set of systems (50 in number) in
their evolution from n = 0 to n = 10000. Notice the assymetry of the upper plane
with respect to the lower plane. These graphs also indicate the way predictability is
lost for a system whose ratio wp/Aw is known within the limits of precision (here,
+.005).

We emphazise that the sequence of appearance of points which produces the
pattern of Fig. 8 does not follow the circles. In fact, the points forming the little
clusters shown there belong in general to different systems at different times. Thus it
is practically impossible to predict where the next point in the iteration shall appear,
simulating in this sense a chaotic system. The patterns are different for different
ranges of uncertainty, or for different systems near exact resonance. Compare, Figs. 7
and 8 with Fig. 9. Fig. 9 illustrates the divergence of 30 initially close neighboring
systems in the range wo/Aw = 1 + 1.52107%. As a further example, suppose we
know the ratio wg/Aw to be 1 plus or minus an uncertainty of 1 x 10~% and we wish
to know where the systems may be at 10, 100, 200. .. units of time. Figure 10 shows,
using Eq. (10), the diffusion of unpredictability for this system as time evolves.

All of the features shown in the graphs above can be understood by noting
firstly, that Eq. (10) can be manipulated algebraicaly to show that all iterations lie
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Figure 7. Divergence pattern for 50 neighboring systems in the range wo/Aw = 1 + .005 with
same initial conditions (ug,vo) = (0,40) and k = 3. Sy labels the position of the
system wo/Aw = 1 at n = 1000; Sy, the system wo/Aw = 1.0001; S2, the system
wo/Aw = 1.0002; and S the system wo/Aw = 1.0010 at n = 1000 units of time. The
rest of the systems are not labeled.

FiGURE 8. Divergence pattern for the same 50 systems of Fig. 7 for a longer time period (n = 0
to 10000).

on a circle centered at Z. and of radius |R4|

|Zn — Zc| = |20

cha

-K K sina (11)

Ue + 10,

It

e

2a _1%1 — cos

|Ral = /(w0 — ue)? + (vo — ve)?

Secondly, that the variation of a point Z,, due to a small variation in the
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FiGURE 9. Divergence pattern, from n = 0 to n = 1300, for 30 near exact-resonance systems all
with same ICs. The exact one is labeled Sy and the two nearest ones are defined by
wo/Aw = 1+ .0005.

ratio wo/Aw is

AZy = 652“6 = —indexp(—ina)R, +
o

2.
da
+ nd exp(—ina)Z,, (12)

§(1 — exp(—ina))

with o = 27w /Aw, 6§ = a — 27.

Now, the reason that patterns are not symmetric with respect to both sides
of the straight line can be explained by considering the 2°¢ term in the definition
of Ry (Eq. (11)). For suppose that vy > v, then the initial point being above v;
the direction of motion will be CW and the circle will be below the horizontal line;
and viceversa for vy > v.. This explains also why trajectories are very sensitive
to a variation of «. Inspection of Figs. 11 and 12 makes this clear. Fig. 11 was
plotted using solution (10) for n=500, and varying « in small steps (2x10~°), from
a = 27 to a = 27 plus 6x1073%. Note that the CCW curve moves away from the
exact system point, returns to the ICs (ug = 0,v9 = 30) then continues CCW but
below the 1Cs;, whereas the lower curve moves CW and remains below the 1Cs.
This figure also tell us that a system with wy/Aw =1+ 62102 is to be found
somewhere along these curves at the 500** kick. Fig. 12 shows a similar detail near
the ICs (ug,vo) = (0,24) for a system wp/Aw =1 plus 1x107* at n=500.The figure
indicates that the farther the system is from exact resonance, the more likely it is
to be found below the ICs and that systems which are closer to exact resonance will
eventually be found somewhere below the ICs. Moreover, as n gets larger the phase
points may appear below or above the ICs in an apparently random fashion. Fig. 8
was formed just this way, except that there, systems with ratios wg/Aw less than
one were also included.
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F1Gure 10. Diffusion of unpredictability for “system” wo/Aw = 141 x 102, Each “arch” is the
domain where the system may be at n = 10, 100,200, ... 1000, given an uncertainty
on its frequencies ratio of 1x1073.

FIGURE 11. Uncertainty curve at n = 500 for a system defined by wo/Aw = 1+ 6 x 1073. Initial
conditions are (ug,vp) = (0,40) and k& = 3. The circle marks the position of the exact
system at n = 500 in the complex plane. The separation between each point indicates
an increase in uncertainty of the frequencies ratio of 2 x 1073,

Our estimates on the loss of predictability or, divergence of initially close sys-
tems, are

ndl Ryl for @& £, W= 1,80, (13a)
K a — 2w

lim |AZy] = § ;"8 5 ey F=(a—27) (136)
K
Ly TS E e e,

27 né > 1’ (13¢)
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FIGURE 12. Detail of uncertainty curve at n = 1000, near the ICs. Here (uo,vo) = (0,24), and
k = 3. Separation between points represents and uncertainty increase of 5 x-1075.
We only show the position of the systems farthest from exact resonance. E.g., Sa and
Sb mark the positions of systems wo/Aw = 141 x 107° and wo/Aw = 1+1x 1072,
respectively, at the 500 kick.

Estimate (13a) is pertinent for casesta.r from the resonances a = m27; e.g., a =
271/3. This is clearly manifested in the Sq plots (not shown here) for as time evolves,
systems near this ¢ = 3 resonance circulate (CW or CCW) covering a circle of radius
Rq; the closer (but not equal) to exact resonance the systems is, the more dense the
circle is and the longer it takes to cover it. This is in agreement with the fact that
the motion of a general integrable system whose ratios of (constant) frequencies are
irrational is ergodic on the torus [10]. Thus, a ratio like wy/Aw = 1/4.9895, although
not strictly irrational, practically covers the circle. Estimate (13b) is consistent with
our figures (5-12); that is, for short times (n small) and § also, or for larger n and
small enough uncertainty 6, the system diverges proportional to time, and to the
conbination né. For small § but very large times (r§ 2 1) or, for shorter times but
greater uncertainty, the system diverge much faster (c.f.(13¢c)).

4, Conclusions

With respect to the M, map, our experiments show that: 1) stochastic diffusion is
truncated and symmetry-patterns are topologically unstable under small deviations
from exact resonance; and 2) the computer inherent accumulated round-off error in
the iterations, combined with the basic chaotic characteristic of positive Lyapunov
exponents, places the system out of the stochastic net and truncates diffusion .

With respect to the simpler 5 map, we find that small deviations from exact
resonances wo/Aw = p/q, lead to a great loss of predictability, specially noteworthy
for the resonance wo/Aw = p/1, p any integer. For resonances wo/Aw = plq, ¢ # 1,
the loss of predictability is the common one for a general integrable system. However



234 G.A. Luna-Acosta and E. Cantoral

the unpredictability associated with wp/Aw = p/1 is so large that for long enough
times, total predictability is lost no matter how small (non zero) the uncertainty is.

As compared with a truly chaotic system where the exponential divergence of
neighboring initial phase points leads to total unpredictability (K-entropy), here the
total unpredictability is associated with our limitation to know with infinite preci-
sion the parameters of the system. For the usual integrable system this limitation
does not yield, for a given uncertainty, complete loss of predictability for we know
the system is somewhere on the torus (here a circle): i.e. we know its radius but not
its phase. However for this integrable system near resonance, not only do we lose
predictability of the phase but of its radius also. This total loss of predictability is
due to the combination of translational and rotational symmetries of the map, which
is evident when complex numbers are used. We believe that the phenomenon of
stochastic acceleration, discovered by Chernikov et al. for the nonintegrable system,
is due to the uncertainty on both, the phase and the radius, already present in the
integrable system studied here. The integrable model also helps us distinguish the
essential causes for: 1) the stochasticity (the non linear kick) and 2) the unbounded
motion (resonance conditions along the separatrix) present in the non-integrable
model.
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Resumen. Chernikov et al. [2] han descubierto nuevas caracteristicas
en la dindmica del oscilador lineal periédicamente perturbado: i+wiz =
(K [koT?)sin(koz) Y. (t/T — n). Reportan que su movimiento en el
espacio fase bajo resonancias exactas (pw = (27/T)q; p,q entéros), y
con condiciones iniciales sobre la separatriz del hamiltoniano promedio,
se acelera desacotadamente a lo largo de una “telerafia” estocdstica
fractal con simetria q. Aqui investigamos con experimentos numéricos
los efectos de pequeiias desviaciones de la resonancia exacta sobre los
patrones de difusién y de simetria. Mostramos graficamente que las
telarafias estocdsticas son (topoldgicamente) inestables y, por lo tanto,
el movimiento desacotado se vuelve considerablemente truncado. Mds
atin, analizamos numérica y analiticamente una versién mds simple
(integrable). Damos su solucién exacta cerrada en nimeros complejos,
notando que se acelera desacotadamente sélo cuando wo = (27/T)q
(g = £1,2...), y mostramos que para incertidumbres pequeiias en estas
frecuencias, se pierde totalmente la predictabilidad con el tiempo. Es
decir, trayectorias de un conjunto de sistemas inicialmente descritas por
puntos en una vecindad cercana en el espacio fase divergen fuertemente
en una manera no-lineal. La gran pérdida de predictabilidad en el
modelo integrable es debida a la combinacién de simetrias traslacionales
y rotacionales inherentes en estos sistemas.
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Abstract. A new geometric model for non-abelian gauge fields on the
group manifold is proposed. It is constructed on the basis of the gauge
interpretation given to the geometry of the Lie group. It is proved that
the Noether theorem follows from the geometry of the group manifold.
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In the last few years it has been shown by several authors that the geometrical inter-
pretation of gauge fields in terms of connection forms in the principal fibre bundle
1s not unique and there are other possible pictures of geometrical setting [1,2]. Fur-
thermore, with the correct geometrical picture, prospects of unification of gauge and
Higgs fields are expected and a single vector-scalar scheme of them is obtained [3,5].

In the present paper a geometrical model of gauge fields is proposed on the
group manifold. It is made on the basis of the gauge interpretation given to the
geometry of the group described in the Cartan setting [6].

Two remarkable features are obtained which consist in the different structure of
gauge transformations of this model in comparison with the standard version of the
fibre bundle and in the crucial role which the geometrical properties of the group
manifold play in the gauge invariance of the theory.

In order to give a gauge interpretation to the geometry of the group manifold
we shall first of all establish the geometry on the group manifold Mg. For any
differentiable arbitrary manifold M we can put the one-form [7,8]

da = wle,, be, = ley, (1)

which determine the infinitesimal translations of a certain movable basis e,,(a:)
so that éa denotes the translation vector of the co-ordinate origin, and w® and
wy are the infinitesimal displacement and affine connection one-forms, respectively.
They can depend on the co-ordinate system {z!...z"} which may parameterize the
n-dimensional manifold M. Following Cartan it is said that the geometry of the M
is fixed if the structure equations which take place for the differential forms w?® and
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