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Abstract. Chernikov el al. [2] have discovered new fcatures in the
dyna.mics of a periodically kicked LlIO i +wJx = (KfkoT2)sin(kox) X
Ln ó(tfT - n) . They rcport that its phase space motion lInder exact
resonanre (p....'o= (2rrfT)q; p,q integers), and with initia! conditions
on the separatrix of the average hamiltonian, accelerates unboundedly
a!ong a fractal stochastic web with q-fold symmetry. Here we investigate
with numerical experiments the effects of small deviations from exact
resonance on the diffusion and symmetry patterns.We show graphically
that the sto citas tic webs are (topologically) unstable and thus the un-
bounded motioo becomes wnsiderably truocated. Moreover, we analize
numeeically and analytically a símpler (integeable) version. \Ve givc its
exact closcd-form solution in complex numbees, realizc that it accelee-
ates unboundedly ooly when Wo = (21rfT)q (q:;; :f:l,2 ... ), and show
that for small unceetainties in tll('se frequencíes, total peedictability is
lost as time evolves. That is, teajectories of a set oC systems, initially
desceibed by close neighboeing points in phase space strongly diveege in
a non-linear way. The great loss of predictability in the integrable model
is due to the combination oC translational and rotational symmetries,
inherent in these systcms.

PACS: 05.45.+b; 02.50.+_

1. Introduction

Perlurbed Linear Harmonic Oscillalors (LHO) llave been lhe subject of investiga-
tian aYer the ycars by several authors and have scrved as a paradigm for under-
standing vacious basic physical concepts. Recently, with the fashionablc emphasis
on IlOlI.linear dynamics, cvce)' single chaeacterislic underlying chaotic systems has
been shown lo be prcscnl in perturbcd Lilas. For examplc, Mode-Iocking, Devil's
staiecases, Arnold Tongucs, and quasipceiodic transition lo chaos are prcsenl in
damped perturbed LBO (l). In conlrast, unbounded diffusion in phase spacc through
stochastic fractal \~'~bsand covering of phase space by non periodic tiling (e.g.
5-[0Id syrnmetry, quasiceystals) appear in the nondissipativc peeiodically pcrturbcd
LlIO sludicd by Chcrnikov, Sagdecv, and associatcs (2-5]. They discovercd lhe aforo
mentioned f('atures \,,'hen lhe system of natural fr('quene)' Wo is in cxact resonanee
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(PWO = qt;w p,q integers) with the perturbing frequency t;w. Moreover the initial
conditions must coincide with those oC the separatrix oC the average hamiltonían.

The phase-space structures found by Chernikov el al. establish a dynamical
origin for quasicrystals for the first time. They can be understood as the separatrices
of an average hamiltonian whích, dressed by a perturbation term, acquire a constant
width. Thc separatrix then becomes a mesh amI, in its filaments, the motion is
stochastic. This is basically the level of understanding about the origin of these
structures and there are still sorne open questions, e.g., what is the fractal dimension
of the stochastic web? and does the difussion constant for the motíon on the web
depend on its fractal dimension? !vloreover, there are reasons to believe that the
structures found by Chernikov el al., Cor the special value of p/q = 1/5, may have
deep connections with quasicrystals and superstrings [6,7].

In this work, we are interested in gaining an understanding about the sta-
bility of thesc structurcs under changes of parameter. In particular, we inquire
about the effect that small dcvíalíons from exact resonance have on the unbounded
stochastic d¡ffusian and on its associated symmetry patterns. The motivation for
this is two.fold. On one hand, frequencies of real systems cannot be measured with
infinite precísionj there is always an uncertainty or an "error bar" tolerance in their
measurements. On the other hand, if we were to consider a set of systems, sorne in
cxact resonance and others ncar resonance, then how much would their time evolu.
tion di£fer? i.c., hmv will their trajectories in phase space diverge? In section 2, we
report numerical experiments on the system that Chernikov el al. use to describe the
dynamics of a particle rnoving in a magnetic field wieh is disturbed by a wave packet.
They show that under certain conditions this system can be modeled by a linear
oseillator, perturbed by a force praportional to sin(kox)E:~~:6(l/T - n), where
x is the position oC the oscillator and T is the kicking periodo \Ve show graphically
that stochastic web st~uctures are unstable under small deviations from resonance
and its motion is truncated. In section 3 we study nllmerically and analytically
a simpler, but surprisingly still complex, system. The kicks are still periodic but
now constant in magnitllde. Complex numbers are used to describe its motion in
phasc space. \Ve show (in polar coordinates) that under certain conditions, small
uncertainties on the frequencies yield unpredictability not only of the phase (as
is the case of a general integrable system) but also oC its radius. In section 4 we
surnmarizc our conclusions.

2. The non-integrable periodically kicked LHO

The equation of motion for the particular system that Chernikov and collaborators
studied is

(
r ) n~+~ (t )

x +W5X = ko~2 sin(kax) n~oo 6 T - n , T=~
t;w'

(1 )

where ka is the wave vector oC the infinite set oC idcntical plane waves Corrning the
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FIGURE 1. l',xact.rcsonance pattern wo/.6.w = 1/5 and initial conditions (uo, vo)on the separatrix,
and /...= .7.

wave packet [3]. This is not an integrable system and the standard way oC analyzing
its dynamics is to study its associated recurrence rclation

where

and

f U,,+I = [U" + (~) sin v" ] eos n + v" sin n

1V,,+I = - [U" + (~) sin v,,] sino + v"eoso,

, 21l"wo
o=wa7 = 6.w'

(2 )

(3)

kox
u=-;

Wo
v = -kax. (4 )

Using the Ilotation oCRer. (3), (u,,, vn) are the normalized velocity and position
of the system, rcspcdively, just before the nth kick. This map, dcrivcd in Rer. [4}, is
obtaincd straightCorwardly by ealculating the effect oC the c5.impulsc (a diseontinuity
in iís velocity) and resetting initial conditions for the homogeneous equation after
every kick.

The patterns Rroduced by the map Ma under resonances (p.....'o= qt:iw, p, q
integers), can be oC 5 general types: 1) stochastic diffusion.web patterns produced
when the initial conditions (les) lie along the separatrix oCthe average hamiltonian;
2) isolaled (peimary) island palterns, 3) simply eonnccled loops, -1) fixed poinI s and
5) multiply connected loops. The second, thirdl and foucth types are associated
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FIGURE2. NeaHcsonancc pattern wo/aw = 1/4.9999 and same (uo,tJo)and k as of Fig. 1.

,\-'ith ICs far from the separatrix, and the fifth onc, with ICs doser to it. AH this
is in agrC('ment with tlle russian group's daim that outside the web the motion is
Ilonchaotic (4) . The les for tlle most intercsting pattern (type 1) can be obtained by
i) finding the singular point of the ullpcrturbed harniltonian; ii) by the "symmetry
lines" method [8]; 01' iii) by playing patiently with tlle ICs until stochastic diffusion
is observCtI in lhe compuler.

In Fig. 1 we show our computcr-produced pattern for the stochastic diffusion
type which we obtaincd with initial condilions Vo = 57.50102, Uo = 19 and the sam~
parameters [{ = .7 and Q = 21r/5 used in ReL (3). Most of our Fig. 1 was completed
at n ::::::106, iterations with a P.C. using single precision. \Ve allowed it to run
for 96 hours and diffusion did not continue, although the separatrix of the average
lIamiltonian dop.s not contain a Iimiting invariant set [4,5). We believe it did not
diffusc any more because the accumulated round-off errors becarnc large enough so
a.~to deviate the system away from the scparatrix. Ily changing tó double precision,
tlle complete Fig. 1 \Vasobtaincd al around n = 106 iterations but did oot diffuse
any more after tha1. Thus, it sccms that infinite precision (of course unachievable) is
needed for the phase point to diffuse trul)' unhoundedly. Furthermore, as mentioned
aboye, here we are mainly concerned willt the effcct of small deviations from exact
resonance on the diffusion and symmetry patterns of the system, which we shall
now discuss.

\Ve have run sevcral nurnerical experiments to observe the following typical
results. Fig'. 2 is the pattern foc a systern w¡lh same lCs and K value as of Fig. 1
cxcept its ratio of frequcncics is now w/6w = 1/4.9999. \Ve observe that it coincides
(when they are compared with the nakcd eye) wilit the plot of Fig. 1 except that
lhe interior little cireles and the outer 10 leaf.like structures present in Fig. 1 did
not appear in Fig. 2 cvcn up to one million iterations. Thus a srnall deviation from
cxact rcsonancc truncates diffusion in a noticeable manner.
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FIGURE 3. Phase-space portrait for wo/!::J.;..)= 1/4.9995 and same (uo. vo) and K as of Fig. 1.

v,

u,

FIGURE 4. Phll.'ie-space portrait for WO/AoM = 1/-1.995 and same ~d K as of fig. L

Figs. 3 and 4 show the pattcrn for satllc IC5, k := .7, ami wo/D.w := 1/4.9995
and 1/4.995, respectively. Notice thc thc original patlern has changcd dra5ti,ally
and difrusíon is absent. In fad, thc patteTII of Fig. <1bclongs to typc 3 abovc. Tile
sarne kind of experiments (not showll !lere) 011 types 2, 3, alld 4 mcntiotled abovc
scrved only to confirm the predidions of I\:Ai\1 theory [9].Furthcrmore, suppose
wc take the ratio p/q to be cqual to an irrational lIumber, sa.y, the goldclI ratio
(,J5 - i)/2 ,. .618034 ,. 1/1.618034 = 10'/161803.1. Al lhis precisioll, lh" ratio
implies a syrnmetry of arder 1618034. Titus, we'c,an undcrstand thc stability of
inconuneasurate frequencie:- predictcd by the KAM theoreIll, as our inabilily to
delecl any structural changes for symmctries of sueh large orders. In faet, Zaslavskii
el al. [41 reporled that already at q = 191, "the mesh becomes strongly deforllled".
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These experiments give us an insight into the nature of a chaotic syslem. Thal
is, on the one hand neighboring points diverging cxponentialIy (an cssential char-
actcrislic of chaolic syslems), togcthcr with inlrinsic numerical round-off errors,
truncate the slochaslic diffusion. On lhe other hand, slighlly different syslems,
iuilially praclically unrecognizable (e.g. syslem, wo/b.w = 1/5 and 1/4.9999) will
also diverge greatly, truncaling acccleralion and modifying lhe symmelry patterns.
That is, its phase spacc structure is unstable undcr small variations oí its írequency
ncar resonance. This last fact motivated the study of our simpler model, discussed
bclow.

3. The integrable-periodically kicked LHO

Consider a LIIO which is also periodically perturbed by á-impulses, but the strength
oC the kick is constant. This means thal lhe "modulation" term sin(kox) is absenl.
Thus, its equalion of motion is

(
J( )i: + w5x = k 7'2 :L ó(7' - ,,),-o n

7'=h/b.w. (5 )

Its recurrence rc1ation, obtained analogously to the non-integrable case, is the
"simplilled" twist map

So : J Un+1 = [Un + (~) ] cos" + Vn sin"

1Vn+1 = [un + (~)]Sin"+vncos"

(6)

where, again, (Un, vn) are the dirncnsionlcss phase-space coordinates just beíare the
n'h kick, aud " is slill defined by (3).

\Ve shall concentrate first on lhe "exact systcm" wo/.ó.w = 1 and "neighboring
systems" defined by wo/.ó.w = 1 :f:: f, wltere f is smal!. \Ve shall see below thal lhe
exact systcm, and inleger ll1ultiples oC it, are the only ones in the So. map that
pcrmit unboundcd, non-stochastic, accclcration. The initial point in phase spar:e
mo\'es illong thc n-axis by an amount k/a Cor each kick. The map Mo does the
same, cxcept the amount oí displacemenl is (l\/a)sin(vo). Now we look at the
neighboring systems (or near rcsonance-systcrns) and observe, via the ileration So,
the cvolution in phase spar:e of their common initial condilions (uo,vo).

Fig. 5 shows the trajcctories in phase-spacc oí a few systems clase to the exact
rcsonancc wo/D.w = 1. Thcir initially close (practically the same) phase points
divcrge noticeable already at N ~ 200 kicks. Fig. 6 shows the trajeetories oC another
set oC systerns a ¡¡ttle farther [ram exact resonance. Noticc that sorne systcms movc
(CW) Clockwise aud olhers (CCW) Connlcr Clockwise, aud lhat only the systcm
wo/.ó.w = 1 + .001 diverges aboye the straight tine, cven though there are the
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FIGURE 5. Pha.••e.spaee trajedories rrom n = O to n = 400 kieks ror 5 nearby systerns So, Si and
Si, defined by their ratiOl> wo/o.w = 1, 1/1 :f: .0001, and 1/1:f:. .0002, respectively.

FIGURE 6. Phase-space trajeetories rram 11 = O to n = 200 kieks ror systems with wo/aw = 1 :f:e,
e = O, .001, .002, .003. Sc(' Ilotation or fig. 5. .

sarne number oCsystems Iolabo\"c"(wo/ ü.w ;: 1+ () than Iolbclow"(wo/ ü.w ;: 1 _ t)
resonance, where , = .001, .002, .nd .003. The system wo/D.w = 1 + 2, hardly
moved from the les and shows up as a doL Altcrnativcly, ir we had a single system
whose frequency ratios are known w¡lhin a toleran ce 6 (wo/D.w = 1 + 6,6 = .003)
then after only 200 units of time (or kicks) prcdictability is last significantly.

In .order to understand thesc results we shall use the fact that oue simplificd
rnadel i5 integrable. rts solution can be found, e.g., by the Green's function Method,
by the Fourier- Transform Method, or by indllction using an alternative complex
number representation. That i5, the complex numbcr cxpress ion

, (, 1\) (')Zn+1 = Zn + ~ exp -lO, (7)
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where

(8)

gives, as can be checked readily, the map Sao
Incidentally, replacing [(la. -+ /{/a.sinvn gives the map Ma, and (7) is a rep-

resentation of the unperturbed LIIO with /{ = O. Tilc rotation-translation combi.
nation (7) or, equivalently, the map Sa has the solulion

Zn = Zo exp( -ina) + ~ (1 + ,-;0 + ... + ,-;(n-1)0) exp( -io). (9)

In tufO, exprcssion (9) can be pul in a useful closed-Corm

Z Z (
.) f( 1- exp( ino) (.)

n = ocxp -!na + - ------exp -la. .
o 1 - exp(-io)

(10)

The only little dissadvantage of lhis form is that in cases when a. = m2r., m
integer, lhe denominalor is zero and the computcr's result is not trustworthy even
though, analytically, the limil as a. --+ m211'" of the sccond term is unambiguosly equal
to nI< /21rm. This minor problem can easily be rcmcdicd by proper substitution of
its analytical limit.

\\'e use expression (10) to illustratc (Fig. 7) how a set of inilially close systems,
in the range wo/ D.w = 1/(1 01:'),' = .005, diverge after n = 10,20, 3U,... 1000
counts oC lime (or kicks). Figure 8 shows lhe sarne sel of systems (50 in number) in
their evolution from n = O to n = 10000. Notice the assyrnetry oC the upper plane
with respect lo the lowcr planc. These graphs also indicate the way predictabitity is
lost for a system whose ratio wo/ ~w is knowll wilhin tile limits oC precision (here,
01:.005).

\Ve emphazise that the sequence of appearance of points which produces the
patlern of Fig. 8 does not foIlO\\'thc cireles. In fact, the points formiug the tittle
clusters shown lhcre bclong in general lo different syslems at different times. Thus it
is practically impossible to predict where the next point in the iteration shall appear,
simulating in this sense a chaotic system. The patterns are different for different
ranges of unccrlainty, or for different systcms near exact resonance. Compare, Figs. 7
and 8 with Fig. 9. Fig. 9 il1ustrates the divergence of 30 initially close neighboring
syslems in the range wo/ ~w = 1 + 1.5x 10-3. As a furthcr example, suppose we
know liJe ratio wo/ ~w to be 1 plus or minus an uflcertainty oC I x 10-3 ami we wish
to know where the systems may be at 10, 100,200 ... units of time. Figure 10 shows,
using Eq. (10), thc diffusion of unpredictability for this systcm as time evolves.

AH of the features shown in the graphs abo\'c can be understood by noting
firstlYIthat Eq. (10) can be manipulatcd algebraicaly to show that aH itcrations lie
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FIGUR~; i. Divcrgcllrc pattern for 50 ucighboring syslems in Ihe rauge wo/~w = 1 + .005 with
san\(' init.ial rondit.ions ("o,t'o) = (0,40) aud l. = 3. So I"bels t.he position of the
syst.l'lTl wo/~.,.;= I at 11 = 1000; SI, lhe syst.f'lTI wo/~.,.;= 1.0001; 5'1, lhe system
..Jo/!:!."'; = 1.0002; and 510 lhe syslem wo/!:J.:..; = 1.0010 at JI = 1000 unils of time. The
resl of lile systems are lJot labeled .

. V,

u,

....

FIGURE 8. Divergenre pattern for the same 50 syslems of Fig. 7 for a longer time period (ti = O
lo 10000).

on a circlc ccntcrcd at Zc and of radius IRal

-/\ f{ sino:
Zc = -- - i---- = Uf + il'e,

20 20: 1 - cos
(11 )

Secondly, that the variation of a point Zfl' <fue lo a small variation in the
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FIGURE 9. Divergencepattern, from n ;;;;Oto n ;;;;1300, for 30 near exact-rcsonancesystems aH
with samc ICs. The exact one is labeled So and the two nearest ones are definedby
wo/ Aw ;;;; 1 :i: .0005.

ratio wo/~w is

&Zn . . &Z, ( .
ilZn = &0 0= - zno exp( -zna)R. + &0 O 1 - exp( -ma))

+ inoexp( -ina )Z" (12)

with Q = 21rwo/!:1w, ó.== Q - 21r.
Now, the reason that patterns are not syrnrnctric with rcspect to both sides

of the straight line can be explained by considcring the 2nd term in the definition
of R. (Eq. (11)). For suppose lhal Vo > v" lhen lhe initial point being above V,;
the direction oí motion wiII be C\V and tite circlc will be below the horizontalline¡
and viceversa for Vo > Ve. This explains also why trajectories are vcry sensitive
to a variation oí Q. Inspection of Figs. 11 anJ 12 makes this clear. Fig. 11 was
plolled using solution (10) for n=500, and varying a in small sleps (2xI0-5), from
a = 21r to a = 21r plus 6xlO-3. Note that the CC\V curve moves away írom the
exact system point, returns to the ICs (uo == 0, Vo = 30) thcn continues CCW bul
below the ICs¡, whereas the lower curve moves C\V and remains below the ICs.
This figure also lell us lhal a syslem wilh wo/ ilw = 1 :!: 6x10-3 is lo be found
somcwhere along these curves at the 500th kick. Fig'. 12 shows a similar detail near
lhe les (uo,vo) = (0,24) [or a system wo/ilw = 1 plus lxlO-3 al n=500.The figure
indicates that the farther tlle system is from exact rcsonance, the more likely it is
to be found below the les and that systems which are doser to exact resonance wiIl
eventually be found somewhere below the lCs. t\.loreover, as O gets larger the phase
points may appear below or aboye the lCs io ao apparently random fashioD. Fig. 8
was formed just this way, except that thcrc, systems with ratios wo/6.w less tban
one were also included.
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FIGURE 10. Diffusioll of unpredictahilily for "system" wo¡aw = l:!:: 1 X 10-3. Each "arch" is lhe
domain where lhe syslcm may be at n = 10,100,200, ... 1000, given au uncerlainly
011 ils freqllencies ratio of 1x 10-3.
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FIGURE 11. Unccrtainty curve at n = 500 for a systcm defincd hy wo¡aw = l:f: 6 X 10-3. Initial

conditions are (uo. vol = (0,40) and J.: = 3. The cirele marks the position of the cxact
systcm at n = 500 in the complex plancoThe separation bctween each point indicates
an increase in uncertainty of the frequencies ratio of 2 x 10-5,

Qur estimates on the 1055 of predictability or, divcrgcncc of initially c10se sys.
tems, are

nhIR.i, for o l' 2"., m = 1,2 ... , (13a)

,]{ o: ---> 211'

l¡m [t.Znl = -11n8,
nh «: 1 ' h=(0-2".), (13b)n-= 1".

]{ O' ---> 211'
h=(<>-2".).-n

nh ~ l' (13c)2ll'
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FIGURE 12. Detail oC uncertainty curve at n ;:: 1000, near the ICs. Bere (uo, vol := (0,24), and
k ;:: 3. Separation between points represents and uncertainty ¡ncrease oC 5 x' 10-6

.

\Ve only show the p05ition oC the systems Carthest Cromexact resonance. E.g., Sa and
Sb mark the positions oC systems (JO! tJ¡.w ;:: 1+ 1 X 10-5 and (JO! tJ¡."oJ ;:: 1+ 1 X 10-3,
respectively, at the 500 kick.

Estimate (13a) is pertinent for cases far from the resonances Q = m2rr; e.g., 0=
2rrl/3. This is elear1y manifestecl in the Sa plots (not shown here) for as time evolves,
systems near this q = 3 resonance circulate (CW or CCW) covering a cirele of radius
Ra; the c10ser (but not equal) to exact resonance the systems is, the more dense lhe
cirele is and the longer it takes to cover ilo This is in agreement wilh lhe fad lhat
the motion of a general inlegrable system whose ralios of (constant) frequencies ate
irrational is ergodic on the torus [10J. Thu" a ratio Iikewo/oÓ\w = 1/4.9895, although
not strictly irralional, practically covers the cirele. Estimate (l3b) is consistent wilh
our figures (5-12); (hat ¡s, for ,hort times (n small) and Ó also, or for larger n and
small enough uncerlainly 6, lhe system diverges proporlional to lime, and to the
conbination n6. For smalló but very large times (nó.2:.l) or, for shorter times but
grcater uncertainty, the system diverge much faster (c.1.(13c)).

4. Conclusions

With respecl to lhe Ma map, our experiments show thal: 1) stochastic diffusion is
truncated and symmetry-patterns are topologically unstable under small deviations
from exact resonance; and 2) the computer inherent accumulatecl round-off error in
the iterations, combined with the basic chaotic characteristic of positive Lyapunov
exponcnt¿, places the system out of the slocha.slic nel and truncates diffusion .

\Vith rC5pecl to thc simpler Sa map, we find thal small devialions from exact
resonances wo/!:1w = p/q, ¡ead to a grcat loss of predictability, specially noleworlhy
Cor lhe re50nancewo/D.w = p/l, pany integer. For resonances wo/D.w = p/q, q =1 1,
the 105sof predictability is lhe common one for a general integrable system. However



234 C.A. Luna.Acosla and E. Cantora/

the unpredictability associated with wo/!:1w = p/! is so large that for long cnough
times, total prcdictability is 10st no matter hO\••..small (non zero) the unccrtainty is.

As comparcd with a truly chaotic system where the exponcntial divergellce oC
neighboring initial phasc points 1cads to total unpredictability (K-entropy), herc the
total unpredictability is associated with our limitation to know with infinite preci.
sion the parameters of the system. For the usual integrable system this limitation
does oot yie1d, for a given uncertainty, complete loss of predictability Cor we know
the systern is sornewhere on the torus (here a cirele): i.e. we know its radius hut Bol
its phase. However for this integrable systern near rcsonanee, not only do we lose
predictability oC the phase hut oC its radiu5 also. Tbi5 total 1055oC predidability is
due to the cornhination of translational and rotational syrnrnetries oC the map, which
is evident whcn complex numbcrs are used. \Vc bclievc that thc phenomcnon of
stochastic acccleration, discovercd by Chernikov el al. for the noninlcgmble system,
is due to the uncertainty on both, the phase and the radius, already prescnt in the
inlegrable system studied here. The integrable rnode! also hclps us distinguish the
essentia1 causes for: 1) the stochasticity (the non linear kick) and 2) tbe unbounded
motion (resonance eonditions along tite scparatrix) prcsent in the non-integrable
mode!.
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Resumen. Chernikov et al. [2] han descubierto nuevas característicar
en la dinámica del oscilador lineal periódicamente perturbado: x+w5x =
(H/koT2)sin(kox)L •.•(t/T - n). Reportan que su movimiento en el
espacio fase bajo resonancias exactas (pw = (21r/T)q; p,q enteros), y
con condiciones iniciales sobre la separatriz del hamiltoniano promedio,
se acelera desacotadamente a lo largo de una "teleraña" estocástica
fractal con simetría q. Aquí investigamos con experimentos numéricos
los efectos de pequeña.'i desviaciones de la resonancia exacta sobre los
patrones de difusión y de simetría. Mostramos gráficamente que las
telarañas estocásticas son (topológicamente) inestables y, por lo tanto,
el movimiento desacotado se vuelve considerablemente truncado. Más
aún, analizamos numérica y analíticamente una versión más simple
(integrable). Damos su solución exacta cerrada en números complejos,
notando que se acelera desacotadamente sólo cuando Wo = (21r/T)q
(q = :1:1,2 ... ), y mostramos que para incertidumbres pequeñas en estas
frecuencias, se pierde totalmente la predictabilidad con el tiempo. Es
decir, trayectorias de un conjunto de sistemas inicialmente descritas por
puntos en una vecindad cercana en el espacio fase divergen fuertemente
en una manera no-lineal. La gran pérdida de predictabilidad en el
modelo integrable es debida a la combinación de simetrías traslacionales
y rotacionales inherentes en estos sistemas.
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A bst raet. A new geometric roadel Coc non.abelian gauge fields on the
group manifold is proposed. It is constructed on the basis oC lhe gauge
interpretation given lo the geometry oC lhe Lic grol1p. It is proved that
the Noether theorem follows froro the geometry of the group manifold.

PACS: 1l.10 .•z; 1l.30 .•j; 02.40.+m

In the las! few ycars it has been shown by several authors thal the geomelrical inter-
pretation oC gaugc ficlds in leems oC connection forms in the principal tibre bundle
is not unique and there are other possible pictures of geometrical setting [1,2]. Fur-
thermorc, with the correct geometrical picture, prospects oC unification oC gauge and
Higgs fields are expected and a single vector-scalar scheme oC them is obtained [3,5].

In the present paper a geometrical model of gauge fields is proposcd on the
group manifold. It is made on the basis of the gauge interpretation given to the
geometry of lhe group described in the Cartan setting [6]-

Two remarkable fcatures are oblained which consist in the differcnt structure of
gauge lransformations oC this model in comparison with the standard version oí the
fibre bundle and in the crucial role which the geometrical properties oC the group
manifold play in the gauge invariance of the theory.

In order to give a gauge intcrpretation to the gcometry of the grollp manifold
wc shall first of all cslablish the geomelry on the grollp manifold Me. For any
differentiable arbitrary manifold M we can put the one.form [7,81

(I)

which determine the infiniti:>simal translations oC a certaio movable hasis t'/I(x),
so that - 6a denotes lhe translation vector of the co-ordinate origin, and w/l and
w6 are the infinitesimal displacement and affine connection one-forms, respcetively.
They can depcnd on the co-ordinate systcm {xl ... xn} which may paramctcrize the
n-dimensional manifold Al. Following Cartan it is said that the geometry of the M
is fixed iCthe structure equations which take place for the differcntial forms w/l and
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