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On the geometry for non-abelian gauge fields
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Abstract. A new geometric model for non-abelian gauge fields on the
group manifold is proposed. It is constructed on the basis of the gauge
interpretation given to the geometry of the Lie group. It is proved that
the Noether theorem follows from the geometry of the group manifold.

PACS: 11.10.-z; 11.30.-j; 02.40.4+m

In the last few years it has been shown by several authors that the geometrical inter-
pretation of gauge fields in terms of connection forms in the principal fibre bundle
1s not unique and there are other possible pictures of geometrical setting [1,2]. Fur-
thermore, with the correct geometrical picture, prospects of unification of gauge and
Higgs fields are expected and a single vector-scalar scheme of them is obtained [3,5].

In the present paper a geometrical model of gauge fields is proposed on the
group manifold. It is made on the basis of the gauge interpretation given to the
geometry of the group described in the Cartan setting [6].

Two remarkable features are obtained which consist in the different structure of
gauge transformations of this model in comparison with the standard version of the
fibre bundle and in the crucial role which the geometrical properties of the group
manifold play in the gauge invariance of the theory.

In order to give a gauge interpretation to the geometry of the group manifold
we shall first of all establish the geometry on the group manifold Mg. For any
differentiable arbitrary manifold M we can put the one-form [7,8]

da = wle,, be, = ley, (1)

which determine the infinitesimal translations of a certain movable basis e,,(a:)
so that éa denotes the translation vector of the co-ordinate origin, and w® and
wy are the infinitesimal displacement and affine connection one-forms, respectively.
They can depend on the co-ordinate system {z!...z"} which may parameterize the
n-dimensional manifold M. Following Cartan it is said that the geometry of the M
is fixed if the structure equations which take place for the differential forms w?® and
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wy are given. For generalized spaces they are [9)
dAwW* +wf Awd 4+ Q0 =0, (2)
dAwy +wg Awp 4+ Qf =0, (3)
where d A w is the external differential of the w-form, w A w is the external product
of two w-forms. Q% and 2} are the two-forms of torsion and curvature of the space,

respectively.
If now we put in (1)

ea = € = MJ(z)ey(z) (4)

where M € GL(n, R), we obtain that the Eqgs. (1-3) are invariant ones under the
transformation (4) if the following set of transformation laws for w?, w, Q% and 3
take place

¢ = (M)t (5)
wt = (M™1)ewiME + (M™)2dM§, (6)
' = (M), - (7)
o = (M)sMg, (8)

(M~')M = 1. Note that we shall only consider real spaces and real algebras. Thus
we see that transformation laws inherent to pure physical objects are reproduced on
the manifold M. However the question that arises here is when such transformations
are integrable ones? In order to answer this question we shall consider only a group
manifold Mg.

Let G be a Lie group of dimension n and ¢'(a,b) (i = 1,..., n) be a multiplica-
tion law in G, a and b are parameters in G. The integration conditions of ©*(a,b)
take the form [10]:

LD el ] M), )
20D 6 fota,N GO (10)

which allow to establish the composition law ¢'(a, b) if the function plla) = gf,;!b=g
and {;(b) = %f;—iazg are given

Ha(@)i(a) = &,  €i(a)E(a) = 6} (11)
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Eqs. (9) and (10) in turn, are integrable ones if the Maurer-Cartan equations

1 a
d A Q%(a,da) + gC,,cuE* Awt =0, (12)
a _l a b (- -
d A w(b,db) — 5Chw! A =0, (13)

take place [8]. Here cf"(a. da) = A(a)da* and u‘é“(b, db) = (2(b)db' are the left and

right displacement 1-forms in the group.
Functions ¢'(a, b) establish the projection of the group manifold into itself

¢'L(b) = ¢'(a,b),  R(a)t' = ¢'(a,b), (1)

determining thus the left action or the second parametric group and the right action
or first parametric group, respectively, with (12) and (13) as integration conditions.
As is known, both these parametric groups are isomorphic ones. Due to this
fact, we, in order to study the geometry on Mg, shall consider only one of them,
e.g. the second parametric group of left displacements.
If we now attach a w-form to a basis X, of the left Lie algebra £ of the Lie

L
group G, then an infinitesimal displacement in the group gives rise to an infinitesimal
displacement in the Lie algebra [10]

§X, = ad(w)X, = u[;b [X: Xa] = wbCE, X o = wi X (15)
g L L

C}. denote the structure constants and wyg is the affine connection form corre-
sponding to a certain geometry chosen in the Lie algebra L.
Egs. (1) take the form

ba = cf"Xa, 6Xp = wi Xe. (16)
i

By taking the external differentiation of the latter expression and by using (12), the
following equations result

dAw+wp AW+ 0% =0, (17)
L "L L L
dAwp +wd Awj =0. (18)
L & &

These structure equations, following (2) and (3), characterize the geometry in
L} as a geometry with torsion without curvature. Here

|
N = ——Clw?Aws.
L R e



On the geometry for non-abeliar® gauge fields 239

By introducing a local frame 7i(a) = M\X, attached to a point a € Mg we
obtain from (17) and (18) that

SiAdd + Q' =0 (19)
L L
AANG; + T ATE =, (20)
¥ kI
where
f% = i (@)\dat —fwukda (21)
gL iqe b ¢ Gi g k
! =§‘uacbcw Aw® = [jkda A da”, (22)

where A%, means Q{- Eqgs. (19) and (20) establish the corresponding local geometry

da
on MG-
If we now reduce the matrices M € GL(n, R) to matrices A € O(n) so that they
transform the left functions A? into right (# and vice versa, i.e.,

=AM, Q= (AThN, (23)

* where by (14) it is evident that

Af =2 (a)€i(a),  (AV)E = cb(a)uk(a). (24)

and now we relate the components of the vectors of the left and right Lie algebras
by a linear transformation

tg“(a,da) = D;;(a,b);}.éb(b, db), (25)

assuming that they both have a common co-ordinate origin, then it is easy to see
that such a diffeomorphism is given by the equations of the multiplication law

o’ _ g (a)ci(s), (26)

only if D(a,b) = A(a).

Thus we obtain the gauge interpretation of the group G' as a projection of the
group into itself. Here the elements of the algebra of the one parametric group be-
come elements of the algebra of the other parametric group. These transformations
are performed by matrices A from O(n) and the geometrical magnitudes on Mg
transform themselves according to (5-8).
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Thus it is clear that matrices of gauge transformation in our model belong to
the group O(n). Now, in order to build a gauge model, we assume the existence
of reflection functions a'(z) projecting the space time R4 onto the gauge group G.
These functions a'(z) can be given by differentials

da' = K;(a, r)dz*

whenever the conditions dAda' = 0 hold.
Functions a'(z) induce the following evident displacement and connection forms
in the Lie algebra

w¥(z,dz) = \(a(z))aldz* = Mda'(x), 27
wy (z,dz) = Cfc/\fl(a(::))a:dz“ = CHAEda”(z), (28)

which, because of the Egs. (17) and (18), can only model vacuum gauge configura-
tions.
Due to this fact, we generalize the forms (27) and (28) in the following way

w® — A%(z,dz) = fi(a,z)dz", (29)
wi — Af(z,dz) = C3A(x, dz), (30)

where now, no conditions like d/\f:; = 0 hold. By using (29) and (30) and doing sev-
eral algebraic transformations, the following structure equations in the generalized
Lie algebra result

(RY)uwdz® A de” = C3F2,dz* A dz*, (31)
F2, = 0uf2 — 8uf5 + Cfpfs. (32)

These are invariant ones under gauge transformations like (5-8) if the structure
constants Cj, transform themselves as a tensor, i.e.,

Ch. = AgCam(A (AT
However, if matrices A are given by (24) then it can be proved [11] that
Che = Che-
Thus, structure equations of the generalized Lie algebra model pure gauge potential
of Yang-Mills type. As (31) denotes the field strengths may be given either in terms
of torsion or in terms of curvature of the group space.

Due to the fact that w® forms in turn establish the distant parallelism on the
group manifold, in the local frame related to a point a € Mg, that field strength
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F,E',l,) becomes
B =8, = {Bﬁf.‘; ~oufi+ (st - 1) + 2fizf,'ffi} . (33)

where now and henceforth indices related to the Lie algebra will be closed in
parenthesis if it is necessary.

Just in this way, i.e. by using (33), it is interesting to study the geometrical
features of this model. Once the gauge invariance has been provided, we put

= __fd zgi ,uu ;.un (34)

where gir(a) = Cbchd)\“,\ is the Killing-Cartan metric tensor on Mg. Using
standard variational methods the Yang-Mills-like equations result in the following
way

OuFL” — A AF{" = 2SS F{" = 0. (35)

In order to prove how the gauge invariance is controlled we follow how the
Noether identities §5/6a* = 0 take place. Ta.kmg the variation of S over a' and
considering that _f,‘l do not depend on the fields a', we have

40, (9;&7:;1Fk*wf:) + gikJF_gqukw
+ 20 [k (0 £ — G f2) + 28k S 2] = 0. (36)

At the level of equation of motion (35) it is easy but tedious to confirm that the
Noether theorem (36) becomes controllable by the set of the following well-known
properties of the group manifold Mg [9]:

a) Nullity of the curvature tensor on Mg
Rhin = Yhns = Tom + TimVia = Wa¥im =0,
b) Jacobi identities for the torsion tensor S, take place
SE.5l 4 8k80 4888, =0,
c) Nutillity of the convariant derivate of S},

k — ok k k ] k
SIn;m = Slu,m + ’YJ'mSJ - ’nmS 7'{’“5‘” = 0’
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d) Nullity of the convariant derivate of g;;
9ikl = Gikl — Yikgmk — Y1 9im = 0.

Thus it is proved that gauge invariance is provided by the geometrical properties
of the group manifold. The properties mentioned below take place in the compact
Lie group with an absolutely antisymmetric torsion tensor. The proof for the case
when fi = fi(a,z) is straightforward.

By starting from the gauge interpretation given to the Lie group as projections
of the two parametric groups into themselves and by means of a generalization of the
Lie algebra, it was possible to formulate a new geometrical model for non-abelian
gauge fields. The projections of the two parametric groups are performed by equa-
tions of composition law and their integration conditions. Precisely, because the
transformation matrices performing such projections belong to O(n), the main re-
markable feature of the model consists in the structure of the gauge transformations.
It is easy to see that at infinitesimal level, when a'(z) — 0, matrices A(a) € O(n)
become reducible matrices Af = exp{a®(z)C%,.} from the adjoint representation of
G. This fact in addition to the fulfillment of the Noether identities make possible
to perform the renormalization procedure of the model [12].

As regards the fact that the gauge invariance of this model is a consequence
of the geometry of the group manifold, one can think that this is an interesting
property which the standard Yang-Mills version in the fibre bundle does not offer.
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Resumen. Se propone un nuevo modelo geométrico de los campos de
calibracién no abelianos en la variedad del grupo. Este se construye en
base a la interpretacién de norma dada a la geometria de un grupo de
Lie. Se demuestra que el teorema de Noether es una consecuencia de la
geometria de la variedad del grupo.





