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On the geometry for non-abelian gauge fields
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A bst raet. A new geometric roadel Coc non.abelian gauge fields on the
group manifold is proposed. It is constructed on the basis oC lhe gauge
interpretation given lo the geometry oC lhe Lic grol1p. It is proved that
the Noether theorem follows froro the geometry of the group manifold.

PACS: 1l.10 .•z; 1l.30 .•j; 02.40.+m

In the las! few ycars it has been shown by several authors thal the geomelrical inter-
pretation oC gaugc ficlds in leems oC connection forms in the principal tibre bundle
is not unique and there are other possible pictures of geometrical setting [1,2]. Fur-
thermorc, with the correct geometrical picture, prospects oC unification oC gauge and
Higgs fields are expected and a single vector-scalar scheme oC them is obtained [3,5].

In the present paper a geometrical model of gauge fields is proposcd on the
group manifold. It is made on the basis of the gauge interpretation given to the
geometry of lhe group described in the Cartan setting [6]-

Two remarkable fcatures are oblained which consist in the differcnt structure of
gauge lransformations oC this model in comparison with the standard version oí the
fibre bundle and in the crucial role which the geometrical properties oC the group
manifold play in the gauge invariance of the theory.

In order to give a gauge intcrpretation to the gcometry of the grollp manifold
wc shall first of all cslablish the geomelry on the grollp manifold Me. For any
differentiable arbitrary manifold M we can put the one.form [7,81

(I)

which determine the infiniti:>simal translations oC a certaio movable hasis t'/I(x),
so that - 6a denotes lhe translation vector of the co-ordinate origin, and w/l and
w6 are the infinitesimal displacement and affine connection one-forms, respcetively.
They can depcnd on the co-ordinate systcm {xl ... xn} which may paramctcrize the
n-dimensional manifold Al. Following Cartan it is said that the geometry of the M
is fixed iCthe structure equations which take place for the differcntial forms w/l and
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Wb are given. For generalized spaccs lhcy are [9]

d 1\ wb + w~1\ wb + n6 = 0,

(2)

(3)

where d 1\ w is lhe external differential of the w-form, w 1\ (¿., is thc external produet
of two w-forms. na and nb are the two-forms of torsion and eurvalurc oí the spaee,
respedivcly.

If now we put in (1)

(4 )

where M E GL(n,R), we obtain that the Eqs. (1-3) are invariant ones under the
transformation (4) if the following set of transformation laws for wa, W61 na and n:
take place

•• ('1-1)"'w =,/~ bW 1

w;" = (M-I)~WdMt + (,WI)~dMg,
n'" = (Arl)¡n',

n;"= (Arl)~ndMt,

(5 )

(6 )

(7)

(8)

(M-1)JI! = 1. Note that we shall only consider rcal spaces and real algebras. Thus
we see that transformation laws inherent to pure physical objects are reprodueed on
the manifold Al. Howevcr the question that arises here is when su eh transformatiolls
are integrable ones? In order to answer this question we shall eonsidcr only a group
manifold Me.

Let G be a Lie group of dimension n and epi(a. b) (i = 1, ... , n) be a multipliea-
tion law in G, a and b are parameters in G. The integration eonditions of <pl(a, b)
take the form iI01:

(9)

( lO)

which allow to establish the eomposition law <pi(a1 b) if the function Jl~(a) =: ~lb=O
a ;

and (b(b) = ~I"~oare given

(11 )
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Eqs. (9) and (lO) in turn, are integrable oncs ir the l\laurcr-Carlan t:'quations

1
d /\ na(a,da) + -Cbc:wh /\ WC = O,

L 2 L L

dA w4( b, db) - ~Cbc(.¡""b 1\ w' ;; 0,
R 2 R R

(12)

( 13)

take place [8]. lIere w"(a,da) = ,\"(a)da' and w"(b,db) = (,"(b)db' are the Icft and
L I R

r¡ght displaccrncnt l-(oTms in lhe group.
Functions r.pl(a, b) cslablish lhe projection of lhe group manifol<1 inlo itsclf

a'L(b) = ,,,'(a,b), ¡¡(alb' = ",'(a,b), (14)

delcrmining thus lhe leCl aclion or the sccond paramclric group ami tite right action
or firsl paramctric group, rcsrJ(~tively, w¡lh (12) and (l~) a." ílltcgration conditions.

As is knowll, both these paramctric groups are' isol1lorphic ones. Duc lo this
Caet, ""'e, in arder lo study the g(,ol1lctry OH Ma, shall cOllsic!ef onl)' Qlle oC them,
(;.9. lhe sccond paramctric grollp oC 1eCldisplan'lllC'uts.

If w(' now attaeh a w.form to a basis Xa of tlw left Lic algcbra CL of the Lic
>. 1.

group u, titen an infinitpsimal displac{,IIl{,lIt in the grollp gives rise to an infinitesimal
displacernent in tite Lie algchra !J O]

bX" = ad(w)X" = w' [X" X"] = w'CO"X, = w~ X,.
/, 1. 1.

(15 )

Che denote tiJe structurc cOlIslanls and w~ is tite alfinc conncclioll form corre-
sponding lo a ccrtain geometry ('hosen in the Lie algebra. CL.

Eqs. (1) take the rorrn

( 16)

lly taking the external differentiation of the latlcr exprcssion and by using (12), the
following equations result

dA wa + wb A wb + na = O,
L 1. /, 1.

dA wb + w~ A wd = o.
L 1. L

( 17)

(18)

These structure equations, following (2) and (3), characlerize thc gromctry in
£1. as a gromctry wÚh torsion wilhout curvature. Bere
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By introducing a local frame Tj(a) = -XiXa attached to a point a E Ma we
obtain rrom (17) and (18) that

where

-i .-i
Wj 11 da' + r! = O
L L

( 19)

(20)

(21)

(22)

whcre).~ k means daa>.~. Eqs. (19) ami (20) cstablish the corresponding local geometry,. a
011 lv/a.

lf we now reduce the matrices j\1 E GL(n, R) to matrices A E O(n) so that they
transform the left functions -Xi into right (f ami vice versa, i.e.,

where by (14) it is evident that

A, = ,\i(a)Wa),

(' = (A-1)'),é
I el' (23)

(24 )

and now we relate the componcnts oC the vectors of the left and right Lie algebras
by a linear transformation

wa(a,da) = D,(a,b)w'(b,db),
L R

(25)

assuming that they both have a common co-ordinate origin, then it is easy to see
that such a djffeomorphism is given by the equations of the multiplication law

(26)

only ir D(a, b) = A(a).
Thus we obtain the gauge interprctation oC the group G as a projection oí the

group ¡nto itself. Here the elements oC the algebra oC the olle parametric group be-
come elements oC the algebra of the other paraOletric group. These transformations
are performed by matrices A froOl O(n) and the geometrical magnitudes on Ma
transform theOlselves according lo (5-8).
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Thus it is clcar thal matrices oí gauge lransformation in OUT model belong to
the group O(n). Now, in arder to build a gauge model, wc assume the existence
oí refledion fundioos al (x) projecting the space time ~ anta the gauge group G.
These functiaos ai(x) can be given by differentials

dal = 1<~(a,x)dxlJ

whenevcr lhe conditions dAdai = O hold.
Fundioos ai(x) induce the following cvidcnl displacement and conneetion forros

in the Lie algebra

wa(x,dx) = '\i(a(x))a~dx" = ,\fda'(x),

w¡;(x,dx) = C¡;,'\~(a(x))a~dx" = C:,'\~daa(x),

(27)

(28)

which, because 01 lhe Eqs. (17) and (18), can only model vacuum gauge configura-
tia os.

Due lo lhis lacl, we generalize lhe Corms (27) and (28) in lhe lollowing way

wa ~ Aa(x,dx) = f;(a,x)dx",

wb --1' At(x,dx) = e:6AC(x,dx),
(29)

(30)

where now, no condilions like d!lf~ = Ohold. By using (29) and (30) and doing sev-
eral algebraic transformations, the following structure equations in the generalized
Lie algebra result

(Rb)J.llldxll/\ dxv = CdbF;vdxJJ A dxll,

F;II = 8¡JI: - 8111; + Chc/~f~.

(31)

(32)

These are invariant ones under gauge transformations like (5-8) if the structure
constants Chc transCorm themselves as a tensor, i.e.,

However, iC malrices A are given by (24) lhen il can be proved (11) lhal

Thus, structure equations of the generalized Lie algebra model pure gauge potential
oC Yang-Mills t.ype. As (31) denoles lhe field slrenglhs may be given eilher in lerms
oC torsion or in terms oC curvature oC the group space.

Due to the fact that wa forms in turn establish the distant parallelism on the
group manifold, in the local frame related to a point a E Ma, that field strength
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F,~~)becornes

(33)

whcrc now and henceforth índices rclated to the Lie algcbra wiU be closcd in
parenthesis if il is ncecssary.

Just in this way, i.e. by using (33), it is inleresting to study the geornetrical
fcalures of this rnodel. Once the gauge invariance has becn provided, we put

(34)

where 9¡k(a) = CbcC~d).P..t is the Killing-Cartan rnclric tensor 00 AJG. Using
standard variational methods the Yang-~'1ills-like cquations result in the following
way

a F"" 1 A' F"" 25' l' F:"" o1J i - lik 1J i - ki 1J 1 = . (35)

In order to prove how lhe gauge invariance is conlrolled we follow how the
Noether identities .8S/8aí == O take place. Taking the variation oC S over aí and
considering lhat J~do not depend 011 lhe fields a\ wc have

4a ( ; F"'"I") + F' F'""l' 9iklnl Jo' 9¡k,1 1JJo'

At the level of equation oC motion (35) it is easy but tedious to 'confirm that the
Noether theorern (36) becomes controllable by the sel oC the Collowing well-known
properties of the group manifold Ma [91:

a) Nullity of the curvature len sor on JfG

/1' -' , " i' - Olmn - "m,n - iln,m + '1m ,jn - 'In '1m - ,

b) Jacobi identities Cor the torsioo tensor Si, take pl"ace

5' 5' 5'.5' 5'5i-Omi ni + m1 1m + li mn - ,

c) Nutil1ity oC the coovarianl derivatc oC Ski

5' - 5' +' 5' i 5' '5' - Oin;m = ln,m '1m in - 'im jn - 1nm 11 - ,
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d) Nullity oC lhe (anvariant derivale oC gil

9ik;f := 9ik,1 - 1a9mk - ,;;¡gim = O.

Thus it is provcd that gaugc ¡nvafiance is providcd by lhe gl.'OITIctrical propcrties
of the group manifold. The properties mcntioned bclow take place in the compacl
Lic group with an absolutcly antisyrnmctric torsion tensor. Thc peDOr roc lhe case
when f: = f;(olx) is straightforward.

By starting fram the gaugc intcrpretation given lo lhe Líe group as projcctiolls
oC lhe two paramctric groups jllto thcmselves and by mean s oC a gcncralization oC thc
Lic algcbra, it was possiblc lo formulale a DC"'" geometrical rnodcl roc Ilon.abelian
gaugc ficlds. The projcclions oC the two pararnctric groups are pcrformcd by cqua-
tiaos of cornposition law amI their intcgration conditions. Prccisc!y, bccause tIJe
transformation matrices pcrforming such projcctiolls bclong to O(nL thc main re-
markable fcaturc of thc model consisls in the structurc of the gaugc trallsformations.
It is easy to see that at infinitesimal level, when ai(x) ---+ O, matrices A(a) E O(n)
becorne reducible matrices Ab = cxp{a4(x)C:cl from the adjoint rcprcsentation of
G. This fad in addition to the fulfillment of the Nocther iJentities make possible
to perform tlle rcnormalization procedure of thc rnodel (12].

As regards thc fad that thc gaugc invariance of this modcl is a consequence
of the geometry of the group manifold, one can think thal tIJis is an interesting
property which the standard Yang.Mills version in the fibre bundle does not offer.
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Resumen. Se propone un nuevo modelo geométrico de los campos de
calibración no abelianos en la variedad del grupo. Este se construye en
base a la interpretación de norma dada a la geometría de un grupo de
Lie. Se demuestra que el teorema de Noether es una consecuencia de la
geometría de la variedad del grupo.




