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Abstract. We present a study of the stability regions for the solutions
of the Statz-DeMars equations. It was found that only one of the two
critical points of these equations corresponds to a stable solution; an
asymptotically stable spiral point. This was done by finding a Liapunov
function and by usual stability analysis methods. From this, we found a
necessary condition for the stability of a laser. Finally, these results are
extended to the case where the @ of the laser cavity suffers a periodic
modulation. In particular, it was found that a weak modulation of the
quality € of a laser has as a consequence that an originally asymptoti-
cally stable spiral point transforms into a stationary stable limit cycle.

PACS: 42.55.Bj; 42.60.-v; 42.50.Tj

1. Introduction

A quantum mechanically based description of a laser gives rise to a set of three
equations known as Bloch or master equations. These equations provide the tempo-
ral evolution of the radiation field amplitude, polarization and population inversion
within a laser cavity [1,2]. These equations can be obtained for a one-photon [1,2],
or multiphoton [3,4] laser, and in both cases studies of the stability of their solutions
have been carried out [5,6] .

An alternative and simpler, but inherently less complete, description of a laser
can be provided by a set of two phenomenological equations given by Statz and De-
Mars [7]. In these equations the variables describing laser action are the stimulated
photon density of frequency w, denoted by M(t), and the population inversion,
denoted by N(t). These equations can be written as follows [8]:

dM(t) ., M(t)

7 —BM(t)N(t)—T, (1)
NG _ (No = N(t))

2 = ~PEMUN® + 2T, (2)
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where T' is the photon lifetime inside the cavity, T} is the relaxation time between
the upper and lower levels of the laser transition, B' = Bhw where B is the Einstein
coefficient. 3 is a constant depending on the number of laser levels and N is the
equilibrium inversion density i.e. the inversion density value when pumping takes
place but no oscillation is allowed.

The physical interpretation of the above equations is straightforward. Eq. (1)
states that the photon density increases proportionally to the inversion density
and decreases inversely to the photon lifetime inside the cavity. Eq. (2) states that
population inversion decreases proportionally to the photon density and increases
proportionally to the pumping process and inversely to the relaxation time 7.

Denoting by Ner the value of population inversion when oscillation just starts,
we can define the following quantities and write Eqgs. (1) and (2) in an adimensional
form

Ts
m(t') = BrT]M(i‘,Tl),
N(t',T)
)= —F—
nf) Ner
_No
~ Ner’
T
G= T
as follows:
dm
= = Gm(n —1), (3)
dn
E=a—n(m+l). (4)

Typical values for the relaxation time Ty, and the photon lifetime are 1073-10-6
sec for the first and 102 sec for the second. Therefore typical G values are around
102-10%, while typical values for a are 2 < a < 30.

In what follows we will find out the stability regions and critical points that
satisfy Egs. (3) and (4) during laser operation. It will be seen that of the two
critical points of these equations only one corresponds to a stable solution, an
asymptotically stable spiral point. It also will be shown that the introduction of a
weak modulation of the quality @ of the laser has as a consequence that an originally
asymptotically stable spiral point transforms into a stationary stable limit cycle.
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2. Critical points

Eqgs. (3) and (4) are a system of autonomous, first order, and non-linear differential
equations which can be represented as follows:

%%E = M(m,n) = am + bn + M'(m,n), (5)
dn ;
E:N(m,n):cm+dn+N(m,n), (6)

where a, b, ¢ and d are real constants and M'(m,n), N'(m,n) are non-linear func-
tions.
It can be verified that Eqgs. (3) and (4) satisfy the following two conditions:
i) (ad — be) # 0,
it) M'(m,n) and N'(m,n) have continuous first partial derivatives for all (m,n).
It can also be shown that the critical points, i.e. points satisfying M(m,n) =
N(m,n) =0, of Egs. (3) and (4) are:

Q1 = (0,0),
Q2 =(a-1,1).
Considering the critical point ; and making the change of variable
m(t') = u(t'), (7)
n(t') = v(t') + a. (8)

Egs. (3) and (4) can be written as follows:

= Guv+a-1), (9)
d
d—: = —u(v+a)—uv. (10)

Taking the linear terms of Eqgs. (9) and (10) and since (ad — cd) # 0 we obtain
the characteristic equation

P2 —(Gla-1)—1)p—Gla-1)=0 (11)

with solutions p; = G(a — 1) and p» = —1. Since G and a are always positive
quantities (and a > 1) the roots of the characteristic equation (11) are real and of
opposite signs. Therefore the critical point @; = (0, ) is a saddle point and since
the previous conditions i) and ii) are satisfied, this is a saddle point for both the
linear and the non-linear system [Eqgs. (9) and (10)]. This result states that the
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FIGURE 1. Phase space solution of the Statz-DeMars equations [Egs. (3), (4)]. As it is shown, the
solution is asymptotically stable towards the critical point (o — 1,1).

dynamic system described by Egs. (9) and (10) will never remain at the critical
point @, unless the initial conditions are (0,a), but in any case this point lacks
any useful interest for laser application.

Considering the critical point Q2 and making the change of variable
m(t') = u(t') + (a = 1), (14)
n(t') =v(t') + 1, (15)
Eqgs. (3) and (4) can be written as follows:

du

i Go(u+a—1), (16)
d
d_:’ = —v(u+ta)—u (17)

Taking the linear terms of Eqs. (16) and (17) we obtain, for the characteristic
equation of the system

pP+ap+Gla—1)=0 (20)

-

with solutions

" Va? —4G(a - D) '(21)

e
P12 = —5 2
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FIGURE 2. Phase space solution of the Statz-DeMars equations when a periodic variation of the
quality of the cavity Q is introduced [Eqgs. (29), (30)]. As it is shown the solution is
asymptotically stable towards a limit cycle around the critical point (e—1,1)

Assuming validity of the condition
4G(a —1) > o? (22)
we obtain:

pig = —g +iy/Gla—1), (23).

These solutions are complex with negative real part. Once again, since the
above conditions i) and ii) are satisfied, the critical point @2 = (a —1,1) is an
asymptotically stable spiral point for both, the linear and the non-linear system
[Eqs. (16) and (17)]. This means that independently of where the dynamic system
starts, it will always finish, in phase space, at the critical point Q3. A computer
generated plot of the phase space for this case is shown in Fig. 1 for @ = 30 and
G = 105. Any other typical value of a and G will give qualitatively similar plots.

It can be seen that condition (22) will, in general, be satisfied for any laser.
Therefore its oscillation will also be stable and towards the critical point Q5.

3. Liapunov function

The stability region of the Statz-DeMars equations [Eqgs. (3) and (4)] around the
critical point @3 = (a — 1,1) can be found by using the Liapunov direct second
method [9].
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Defining the function

n?—-1
L(m,n) = — (24)
with domain D = {m,n|m,n > 1}, which contains the critical point Q.
The function L(m,n) satisfies:
i) L{e —1,1) = 0,
i) L(m,n) > 0 for any other point (m,n) € D.
The derivative of L(m,n) is:
; _ dL(m,n) OL(m,n)
L(m,n) = _;';m_M(m’n)-‘- TN(m,n). (25)

So L(m,n) satisfies:
i) L(a —1,1) =0,
it) L(m,n) < 0 for any other point (myn) € D.

Therefore L(m, n) is a negative definite function in the domain D. It follows that
L(m,n) is a Liapunov function of the Statz-DeMars equations. These equations are
valid for any (m,n) € D and are asymptotically stable towards the point (a—1,1).

4. (Q-switching

As it is known, the Q-switching technique consists in that if there is initially a
very high loss in the laser cavity, i.e. low Q value, and pumping is taking place, the
population inversion can reach a very high value without laser oscillations occurring.
If cavity losses are suddenly reduced, i.e. Q is switched to a higher value, laser
oscillations will start and a rapid depopulation of the population inversion will
occur with the consequent emission of a short, intense laser pulse.

Following (8] we will assume a periodic variation of frequency wp, of the quality
@ of the cavity as

Q(t) = Qo(1 — v cos(wmt)). (26)
Since the photon lifetime T' inside the cavity is T = Q/w we get for Eq. (1)
aMm(t) — M(t)w
= B'M(t)N(t) Bl — e’ ‘(27)

Defining Ty = %Q and assuming a weak modulation v < 1 we may approximate
the above equation as

de_t(‘) = B'M(1)N(t) — %ﬁt—)(l + 7 cos(wmt)). (28)
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FiGURE 3. The solution obtained when a periodic variation of the quality @ of the cavity is
introduced (as shown in (a)) for the population inversion density n (shown in (b)) and
the normalized photon density m (shown in (c)) as a function of time ¢'. We can see
that when @ has a high value, the population inversion decreases while the photon
density increases in complete agreement with what is expected.

Introducing the above adimensional quantities and defining w),, = wnT1;G = %
we can write the Statz-DeMars equations [Eqgs. (28) and (2)] as

‘i—tnf = Gm(n — 1 — ycos(wipt')), (29)
%:a—n(m-l-l). (30)

These equations are an approximation of the Statz-DeMars equations for the
case of () weak modulation. They are a system of non-autonomous first order non-
linear equations. An analytic solution for these equations is not known yet. However,
for a weak modulation the numeric solution in phase space using the same a and
G values as in Fig. 1, is shown in Fig. 2. In this case it is shown that the solution
tends to a stationary limit cycle. It can be seen that the systems of Eqs. (29), (30)
and (3), (4) are essentially the same, with exception of the term —v cos(w,t') for
Eq. (29) which acts as a small perturbation term. We can see that this perturbation
causes an asymptotically stable spiral point in the system (3), (4) to transform into
a stationary limit cycle in the system (29), (30).

Fig. 3 shows a plot of the quality @ of the cavity, the normalized inversion
density n and the normalized photon density m vs. time t' . We can see that when
Q has a high value, the population inversion decreases while the photon density
increases in complete agreement with what is expected.
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5. Conclusions

It was found that only one of the two critical points of the Statz-DeMars equations
corresponds to a stable solution, an asymptotically stable spiral point. The stability
of this point was confirmed by a Liapunov function obtained for these equations.

Also, a condition necessary to have a stable solution was found [Eq. (22)]. Nev-
ertheless, this condition will in general always be fulfilled by any laser.

Finally, it was found that a weak modulation of the quality @ of a laser cavity has
as a consequence that an asymptotically stable spiral point of the original equations
transforms into a stationary limit cycle.
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Resumen. Se presenta un estudio de la estabilidad de las soluciones
de las ecuaciones de Statz-DeMars. Se encontré que de los dos puntos
criticos de estas ecuaciones sélo uno corresponde a una solucién estable
que es un punto espiral asintéticamente estable. Esto fue hecho en-
contrando una funcién de Liapunov y aplicando métodos estandar para
andlisis de estabilidad. De aqui se encontré una condicion necesaria para
la estabilidad de un ldser. Finalmente estos resultados son extendidos al
caso en que el Q de la cavidad ldser sufre una modulacién en amplitud
peritdica. Se encontré que una modulacién débil del @ de la cavidad
transforma un punto espiral asintéticamente estable en un circulo limite
estable.





