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Abstract. We prcsent a study of the stability regioos for the solutioDs
of the Statz-DeMars equations. It was found that only one of the two
critical points of these equations corresponds to a stable soJution; a.n
asyrnptotically stable spira! point. This was done by findiog a Liapunov
function and by usual stability analysis rnethods. Frorn this, we found a
necessary condition for the stability of a Jaser. Finally, these results are
extended to the case where the Q of the Jaser cavity suffers a periodic
rnodulation. In particular, it W(iS found that a weak rnodulation of tht>:
quality Q of a laser has as a consequence that an originally asymptoti.
calJy stable spira! point transforms into a stationary stable Jimit cyele.

PACS: 42.55.Bj; 42.60.-v; 42.50.Tj

1. Introduction

A quantum mechanically based description oC a ,Jaser gives rise to a set oC thrce
equations known a.s B10ch or master equations. These equations provide the tempo-
ral evolution oC the radiation field amplitude, polarization and population inversion
within a Jaser cavity [1,2]. These equations can be obtained for a one-photon (I,2],
or multiphoton [3,4] ¡aser, and in both cases studics oC the stability of their solutions
have becn (arried out [5,6] .

An altcrnativc and simpler, but inherently less complete, description oC a faser
can be providcd by a set of two phenomenological cquations given by Statz and De-
Mars [7]. In thcse equations the variables describing laser action are the stimulatcd
photon density of frequency w, denoteo by Af(t), and the population inversion,
dcnoled by N(t). These equalions can he wrillen as follows [81:

dM(t) ~ B' M(t)N(t) _ M(t)
dt l' '

d:t(t) ~ -j3B'M(t)N(t) + (No -;,N(t)),

(1 )

(2)

'Permanent Adress: Departamento de Ingeniería Física, Universidad Autónoma Metropolitana-
Azcapotzalco.
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where T is the photon lifetime ¡nside the cavity, TI is the relaxation lime between
the upper and lower levels oCthe Jaser transition, n' ;:: Bñw where B is the Einstein
coefficient. fJ is a constant depending 00 the number oC Jaser levels and No is the
equilibrium inversion density i.e. the inversion density valuc when pumping takes
place but no oscillation is aJlowed.

The physical interpretation of the aboye equations i, straightforward. Eq. (1)
states tbal the photon densily ¡nereases proportionally lo the inversion densily
and dcereases inversely lo the photon lifelime ¡nside the cavity. Eq. (2) slales that
population inversion deereases proportionally lo thc pholon density and ¡nereases
proportionally to the pumping process and inversely to the relaxation time T] .

Denoting by N cr the value of population inversion when oscillation just starts,
we can define the following quantities and write Eqs. (1) and (2) in an adimensional
form

, t
t=-

T'

m(t') = B'T,M(t',T,),

n(t') = N(t', T¡),
Ncr

No
a = Ncr'

G = TI
T'

as follows:

dm
dti = Gm(n-l),

dn
dt' =a-n(m+ 1).

(3 )

('1)

Typical valucs for the relaxation time Tlt and the photon lifetime are 10-3_10-6

sec for the first and 10-8 sec for the seoond. Therefore typical G values are around
102-105, while typical values for a are 2 5 O' :S 30.

In what follows we will find out the stability regions and critical points that
satisfy Eqs. (3) and (4) during laser operation. lt will be seen that of the two
critical points oí these equations only one oorrcsponds to a stable solution, an
asymptotically stable spiral point. It also will be shown that the introduct¡on of a
wcak rnodulation oí the quality Q of the laser has as a consequence that an originally
asymptotically stable spiral point transforms into a stationary stable l¡mit cyclc.
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2. Critical points

Eqs. (3) and (4) are a system of aulonornous, first order, and non-linear differenlial
equations which can be rcprcscntcd as follows:

~17= M(m, ,,) = am + b" + M'(m, ,,),

dn ,
di' = N(m, ,,) = cm + d" + N (m, "),

(5)

(6)

where a, b, e and d are real constants ami il['(m, n), N'(m,l1) are nOII-linear func-
lions.

Il can be verified tbat Eqs. (3) and (4) satisfy tbe following two conditions:
i) (ad - be) t O,
ii) .M/(m,ll) and N'(rn,n) have continuous first partial derivativcs for aH (m,n).

It can also bc shown that thc crilical poinls, i.c. points salisfying Af(m, a) =
N(m, ,,) = O, of Eqs. (3) and (4) are:

QI = (O,,,),

Q,=(,,-l,I).

Considering thc critical point Q¡ ami making tlle changc of variablc

m(l') = ,,(1'),

,,(1') = v(l') + o.

Eqs. (3) and (4) can be written as follows:

d"
di' = G,,(v +" - 1),

dv
di' = -,,(v + ,,) - v.

(i)
(8)

(9 )

(10)

Taking thc linear tcrms of Eqs. (9) and (10) and sincc (ad - cd) t Owc obtain
the characteristic eql1ation

p' - (G(" - 1) - I)p - G( a - 1) = O (11 )

with solutions PI = G(a - 1) and 1'2 = -}. Since G and a are always positive
quantities (and a:> 1) the roots of lhe characteristic equation (11) are real and of
opposite signs. Thercfore the critical point Ql = (O,a) is a saddle point and since
the previous conditions i) and ii) are satisfied, this is a saddle point for both the
linear and thc non-linear system [Eqs. (9) and (10»). This result states that thc
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FIGURE 1. Phase space solution oC the Statz-DeMars equations (Eqs. (3), (4)J. As it is shown, the
solution is asymptotically stable towards the critical point (o: - 1,1).

dynamic system described by Eqs. (9) and (lO) will never remain at the critical
point Qh IInlcss the initial conditions are (0,0), but in any case this point lacks
auy uscful intcrcst for laser application.

Considering the critical point Q2 and making the change of variable

m(t') = u(t') + (o - 1),

u(i') = v(t') + 1,

Eqs. (:3) and (4) can bc written as follows:

du
di' = Cu( u + o - 1),

dv
di' = -v(u + o) -tI.

(14)

(15)

( 16)

(17)

Taking the linear terms of Eqs. (16) and (17) we obtaio, for the characteristic
cquation of the systcm

with solutions

1" + 01' + C( o - 1) = O

o .jo'- 4C(0 - 1)
PI,2 = -"2 1: 2 .

(20)

(21)
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m

FIGURE 2. Phase space solution oC the Statz-DeMars equations when a periodic variation oC the
quality of the cavity Q is introduced (Eqs. (29), (30)]. As it is shown the solution is
asymptotically stable towards a limit cycle around the criticaI point (o - 1,1)

Assuming validity of the condition

4G(a - 1):» a'

we obtain:

PI.' = -~:!:iJG(a - 1).

(22)

(23) .

These solutions are complex with ncgative real part. Once again, since the
aboye conditions i) and ii) are satisfied, the critical point Q2 ::;: (O' - 1,1) is an
asymptotically stable spiral point for both, the linear and the non-linear system
[Eqs. (16) and (17)]. This means that independently oCwhere the dynamic system
starts, it will always finish, in phase space, at the critical point Q2. A computer
generated plot of the phase space for this case is shown in Fig. 1 for O' ::;: 30 and
G = lOS Any other typical value oCa and G will give qualitatively similar plots.

It can be seen that condition (22) will, in general, be satisfied for any laser.
Therefore its oscillation will also be stable and towards the critical point Q2.

3. Liapunov function

The stability region oC the Statz-DeMars equations [Eqs. (3) and (4)] around the
critical point Q2 = (O' - 1,1) can be found by using the Liapunov direct sccond
method [9].
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Defining thc function

n2 - 1
L(m,n) = --2-'

m

with domain D = {m,nlm,o;::: 1}, which contains the critical point Q2.
The funelion L(m, n) salisfies:

i) L( a - 1, 1) = O,
ii) L(m, n) > O for any olher poinl (m, n) E D.

The derivalive of L(m, n) is:

L'( ) - BL(m,n) 'f( ) BL(m,n)N( )m,o - 8m •• m,o + Do m,n.

(24)

(25)

So ¿(m,n) satisfies:
i) i(a-I,I) =0,
ii) i(m,n) < O for any olher poinl (m,n) E D.

Thcrefore ¿(m, n) is a ncgative definite function in the domain D. It follows that
L( m, n) is a Liapunov function of the Statz- Dc~larsequations. These equations are
valid for any (m, n) E D and are asymplolically slable lowards lhe poi nI (a - 1, 1).

4. Q-switching

As it is knowll, the Q.switching t(,'Chniqucconsists in that if there is initially a
vcry high loss in the laser cavity, ¡.e. low Q value, and pumping is taking place, the
population invcrsion can reach a vcry high value without laser oscillations occurring.
Ir cavity losses are suddenly reduced, i.e. Q is switched to a higher value, laser
oscillations will start and a rapid depopulation of the population inversion will
occur with the consequenl emission of a short, intense ¡aser pulse.

Following [8J we will assume a periodic varialion of frequency Wm of lhe qualily
Q of the cavity as

Q(I) = Qo(I-1COs(wmt). (26)

Since lhe pholon lifelime T inside lhe cavily is T = Q/w we gel for Eq. (1)

dM(I) = B'M(I)N(t) _ A/(t)w
di Qo(l -1cos(wml)) (27)

Dcfining 70 = ~ alld assuming a weak modulation '"'f < 1 wc may approximate
the aboye cquation as

dA/(I) , M(t)
---;¡¡- = B A/(t)N(I) - -r.-(I +1cos(wmt)). (28)
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FIGURE 3. The solution obtAillt'd whell A periodie variation oC the quality Q oC the cavity is
introdueed (as shown in (a)) ror the population inversion density n (shown in (b)) ami
the normalized pIJoton dClIsity m (shown in (e)) as a Cunction oC time t'. We can sce
that when Q ha.•• a high vallle, the population inversion deerea.ses while tlle photon
density ¡nereases in complete agreement with what is expeeted.

Inlroducing thc above adimclIsiollal quantities and dcfining W~l ;::: wmT¡; G ;:::~
wc can write the Statz-DcMars equaliolls [Eqs. (28) and (2)] as

dm , I

-1' = Gm(71- 1 -,cos(wmt)),
d

d71
dt' = (}- 7l(m + 1).

(29)

(:JO)

These equations are an approximation of the Stalz.De!\1ars equations for the
case of Q wcak modulation. The)" are a syslem of nOIl-aulonomous first order non-
linear equations. An analytic solution for lil("seequations is nol known yet. Howe\'er,
ror a weak modulalion the nUlIleric solution in phase space using the same Q and
G values as in Fig. 1, is showlI in Fig. 2. In this case it is shown that the solution
tends to a stationary limit cyelc. It can be seen that the systems of Eqs. (29), (30)
and (3), (4) are essenlial1y tlle samc, with cxccplion of the tcrm -,COS(W~tl) for
Eq. (29) which acts as a small perturbation term. \Ve can sre that this perturbation
causes an asymptotically staLlc spiral point in the syslem (3), (4) to lransform inlo
a stationary ¡¡mit cycle in the system (29), (30).

Fig. 3 shows a plot of thc quality Q oC the cñvity, the normalizcd invcrsion
density n and the normalizcd photon dcnsity m VS. time ti . \Ve can see thal when
Q has a high value, the population invcrsion dccrcases while the photon density
increases in complete agrrelllcnt with what is expectcd.
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5. Condusions

lt was found that only one of the two critical points of lhe Slatz-Ddvlars equa(ions
corresponcls to a stable sollltion, an asymplolically stahle spiral point. The stability
of this poinl was confirmcd by a. Liapunov fundion ohla.ined for thesc equations.

AIso, a condition lIeccssary lo have a stable solution was found [Eq. (22)]. Nev.
erthcless, this condition will in general always be fulfilled by any laser.

Finally, it ,••..as found lhat a weak modulalion of lhe qualily Q of a laser cavity has
as a conscqllence lhat an asyrnplolically slable spiral point of the original equatiotls
transforms inlo a stationary limil cyele.
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Resumen. Se presenta un estudio de la estabilidad de las soluciones
de las ecuaciones de Statz-De~1ars. Se encontró que de los dos puntos
críticos de estas ecuaciones sólo UIlOcorresponde a una solución estable
que es un punto espiral asintóticallll'nte estable. Esto fue hecho en-
contrando una función de Liapunov y aplicando métodos estándar para
análisis de estabilidad. De aquí se ('ncontró una condición necesaria para
la estabilidad de un láser. Finalmente estos resultados son extendidos al
caso en que el Q de la cavidad láser sufre una modulación en amplitud
periódica. Se encontró que una modulación débil del Q de la cavidad
tra.nsforma un punto l'spiral a.sintóticaIlH'lIte estable en un circulo límite
estable.




