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Abstract. Using Extended Irreversible Thermodynamics we obtain
evolution equations for the heat flux and for the stress tensor in an
ionized fluid subject to an external magnctic field. These equations may
be compared with those obtaincd from thc thirteen moment solution of
the iloltzmann equation. This comparison yields explicit cxpressions for
the relevant phenomenological coefficients in terms of molecular quan-
tities. The static correlation fUllctions for the fluctllations of tile state
variables describing the fluid are also calclllated.

PACS: 05.70.Ln; 52.25.Dg

1. Introduction

In the comse oí this decade, efforts have bcen made to extcnd Linear Irreversible
Thermodynamics (LIT) to the domain of phenornena which fall outside thc scope of
such linear theory. Several of thcse efforts are now known as Extended Irreversible
Thermodynamics (EIT). Although thcse approachcs diffcr among cach other on the
wa}' in which the non-equilibrium states of the systern lInder stlldy is described,
they aH coincide in the derivation oí time evolution equations for the state variables
describing the system. Such equations are of the hyperbolic typc in contrast to the
parabolic differential equations which are predicted in LIT.

One of these approachcs is bascd OH the idea of extcnding thc ordinary space
of state variables of LIT by raising the £luxes charadcrizing thc non equilibrium
processes in the systcm to the status of independent variables. This method origi-
na.tcd in the so caBed momcnt rnethod solution 1.0 the Ooltzrnallll cquation proposed
by 11. Grad nearly forty years ago [l). Although thcrc are in principie conceptual
difficulties in accepting the fluxes as statc variables [2], the application of the method
1.0 a number of differcnt systcms has proved to be rather successful [3-14].

In this paper, we address ourselves to study another systcm, namely, an ionized
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fluid subjecl to an external magnctie field Ilsing the same approach. Thc reason
for unuertaking sueh a study is that this systcm has becn previously studicd using
the aboye mentioned solution for the Roltzmann equation by 11. Yang (15). Con-
sequently, the results of EIT whieh are purely phenomenological ITlaybe rompared
with a more microscopic calculalion which will allo,\' us to assf'SS thc virtues and
shortcomings of thc former one.

By raisillg to thc status of indepcndent variables the heat flux and the stress
tensor we are able to derive a complete sct of time cvollltion equations ror a.!I the
state variables.

These equations neccssarily contain undctermined phenomenological coefficients.
The comparison with thc set of eq\lations obtaincd by Yang will also pcrmit us to
study the static correlations Cunctions for the state variables leading us reslllts tilat,
to OUT knowledge, have nol b(~n mentioncJ in the literaturc.

The paper is diviclcd in a section 2 containing a summary of tlle unclerlying ideas
of EIT, together with the derivation oC tlle lime cvolution equations Cor tlw state
variables. Next, in section 3 we discuss the physieal nalure oC such cquations and
we compare thcm with thosc obtained by kinetie theory. \Ve follow witil s('ctioll 1,
which contains the calculatioIl of the static corrclatioll functions, alld finally in
section 5 we include sorne rcmarks ahout Ollf results.

2. Extended irreversible thermodynamics time evolution equations

In the frarnework oC Linear Irreversible Thermodynamics (LIT), a SystclO is de.
scribed. by locall)' conscrved variables whose cvolulion ('(¡uations, the conscrved or
balance N"luatioIls, are complemcllh'd by phcllomenological constitutiw" eqllations
Cor the thermodynamic fiuxcs which lIla)' be obtained either empirically or from
more microscopic models. Such is the case of the moment cquations obtain('d from
the Doltzmann cquatioIls, ,•...hich is a kinctic modcl for a dilllte ga.'iCOllSsysteffi.

As it was mentioned in the introd.uction, in EIT OIle broadens the space of statc
variables to indude the dissipativc fluxcs. In our case, such spacc will therefore
contain tile local internal encrgy ((r, t) thc localmass density, p(r, t) as wdl as the
hcat flux q( r, t), ami the stress tensor P( r, t), as spacc varia bIes. For purcly sema.ntic
rea.sons, we shall reCcr ourselves to t.he flllxcs as the variables dcfining thc slIbsel
n of non conserved variables. Thus, the complete sel of state variables Q may be
written as

g=CUR = {,(r,t),¡,(r,I);q(r,I),P(r,I)}

where e is the subset of the locally conservcd variables ((r, t) and p(r,t).
Thesc variables satisCy balance type equations, namcly,

d d'-p = -p IVU
di

(1)

(2)
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P dd' = - div q - pdiv U - l' : grad u + ~i. U x 11, (3)
t ~

where U is the hy<lroclynamic vdocity, p the hydrodynamic pressure, i the e1ectric
current, H the external magnetic fidd and C() the velocity of ¡ight. It is therefore
clcar that our task is to derive the time evolution equations for the R \'ariables.

In order to accomplish tltis objective, we assume that there exists a sllfficiently
cOlltinuous ami differcnliable funclion ." defined in g, i.e.

~= ~(',p;q,p)

such that we lIlay cOlIstrucl a difTerential from,

0'1 o~ 0'1 0'1
d'l = O, d, + o/p + oq . dq + 01' : dI'.

(4 )

(5 )

Notice should be made of the fad that 1] is not the entropy associalcd with the non
equilibrium state of thc nuid descrihcd by the 9 variables. Only whcn the subspacc
of variables R turns out to be irrelcvant for the description of the syslern, ." reduces
to the orclinary local equilibrium entrop)' as defined in LIT (16].

\Ve ma)' \Hite in OUTcase tite analogue of the Gibbs cquation,

d,] o~ d, o~ dp o~ dq ory dI'
di = D, di + op di + oq . di + 01' : di' (6 )

The dcrivatives of ,] are constructed as the most general tensors of the corre-
sponding tensorial order in tiJe space oC state variables. The first two derivalivcs
D'I/D{ and D,'¡Dp must reduce to those defined in local equilibrium when the sub.
space R is the void set, and should be constructcd as the most general scalars in 9.
Thus, if we expand thcse derivatives in terms of the sea lar invariants keeping tcrms
which are at most quadratic in the variables, we obtain that

D,] '1,_1 v v l' DD( = +Allq.q+AI2 :Ir,

!J,] ]'-11', ,
-'J =--,-+'\'lq'q+.X"P:p.
(P P'

(7)

(8)

00 the hand, the derivativcs DrJl8q and 81'¡8P must be lile most g(,ll('ral vector
and tensor constrllctl'd in 9 r~pectivcly, so with the sarue critcrium mcntioned
above, we may \•...rite thal

!J'I 1'-1 1'-1
- = --ollq + --012q. P,
!Jq p p

(9)
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0'1 ]'-1 7'-1
- = --o"lqq + --o,oPOP p' p' ,

(10)

where aij and Xi), i,i = 1,2, are scalars defined in g.
Ir we now impose the conditioll tllat ti,] llIust be an cxact differential, tlle cross

derivatives resulting from Eqs. (7-10) IIlust be equa!. This implics alltomatical1y
tllat nol all thc cocfficients appcaring there are indl'pcndcnt. In Cad, it is ('asy lo
see tilat XII and X22 depend on 011 ami 0'22 according to lhe relalions

Also. we can sel' that,

\' _~.Q. (7'-lnll)
,11-20, p'

. 1(10 ',-1 '1'-10,,)
),,, = 2 ¡. iJp(1 (},,) - -p-'- .

1 O ('1'-1 )XI2 = -- --022 ,
2 O, p

(11)

( 12)

(1 La)

( 12.a)

which clcarly poinls out that only 0'11 ami 0'22 are independent. Notice that lile
condition fP,J!8q¡8Pjk = 82'1/8P)kfJq¡ I('ads to the additional relalionship that
012 = 0'21 = O. Final1y, lhe terms XI2P : P and X2Iq' q appcarillg in Eqs. (7)
and (8) are also easil)' manipulated. In Cael, Xl2P : P, when mulliplied by d<jdl.
givcs rise lo lerms which are al Icast oC order threc in the R variables ami ma)' h('
Ilcgk'Ctcd. On the other hand, X21q. q may be absorbed in an identical terIll which
comes from X 11 q . q by simply re<iefining thc corn ..--sponding cocfficiclIls.

Therdore, the partial derivativ('S for the fundion 7] may be wrinen as

8q 7,-1 + \'0,= .llq'q,

8'1 ]'-11', ,
-O = --0- + .\,,1' : P + .\2Iq' q.
P P'

Oq 7'-1
Oq = -p0llq,

0'1 '1'-1
8P = ponP.

( I:l)

(14 )

( 1;,)

(16 )

Emphasis should be made 011 tile fact that thc vanishing of al'! and 021 is per-
fertly COlIsistcnt with kinelic throry and ordinary magnelohydrodynamies. Illdced.
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tbe resulting time evolution equations for the fiuxes are a set of cOllpled equations
in which tlle hornogeneous terms do not contain the mixC'd expressions '1' dP / di or
P : dqfdl.

The second assurnptioll of the tit('ory is introduced with the idea of providing
a method to compute the equations that govern the lime e\'olutioll of the Ilon
conserved variables, For this purpose, we assurnc that '1 satisfles a balance equation
of the íorm

dll l' Jp;¡¡ + (IV ,,== a", ( 17)

where, J" and a" are flux and the source tcrm assoeiate,d with r¡, and whose íorm
remajos to be determined, \Ve shall irnpose thc rcstriction that in the ca..<;ein which
tlJe non conscr\'cd variables are irrc1cvant, Eq (17) Illllst redllce to thc entropy bal-
ance equatioll in LIT. It is ollly in this sense thal r¡ Illay be regarded as a "generalized
entropy", bllt we shall a\'oid this mislcadillg terminology,

Thc flux J" is thc most general \'ector that may be constructcd in 9. Thcreforc.
up to the seco lid order in tlle R variables, wc have that

where ;1, == f31(f,p). i == 1,2, \Ve choosc

f3, = T'

(18)

(19)

becausc as indicated aboye, J" must reduce to the entropy flux in LIT when R is
the void seL

Using Eqs (6), (13-15) and (17-18) we reaeh lhe following exprcssion for lhe
SOllree terlll (1" narncly

1 , H {X' d' \" d' \" H 1ar¡:;:;-I'uX +'1' - 1]'1 IVq-" llq 1VU-. Ilql'UX -
~ ~

'['-1 d 1
+ -Ctll..3 + grad - + f3, div P + P , grad f3,}

p dt T

+P: {-T-lgradU-X22Pp2diVU+T-ICt22~ +f32gradq}, (20)

The tiwory gives 115 an altcrnativc way lo evaluate a", lndeed, ar¡ must be. thc
most general scalar wc rnay construct in the 9 space, that is

U. = Uo + XI' q + X,: P, (21)

At this point, it 15 rather important to point out the way ]JI which we are
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constructing our theory rcsults in thc omission oC sc\'cral parameters oC rdevanee
to our system. Sueh parametcrs, by their nature not contained in our primitive
set of variables, may have an important role in our description of the system. In
oul' case, the external magnetie field exel'ts a magnetic force on oul' Uuid. So wc
must inelude ud hoc this effect in our formalism. This can be done using the closure
assumption tI7], which cOIlsiders parameters not bclonging to the statc variables in
the construction of O"r¡'

. Having in mind that O"r¡ must reduce to the local cquilihl'ium entropy production
""hen the non conserved variables are irrc1evant, we propase that

T-I
0"0 = --i .u x H,Co
XI = l'Ui x 11 + !lJ2q + fl13l'. ix 11 + IlJ1q .1',

)(, = 1'21i(U x 11) + !'"q(u x H) + 1'231' + fl21Qq.

(22)

(23)

(2~)

Here, the terms associated with u x II and i x H are two such paramcters of
paramount importance to keep our resuIts at grips \,,'ith both kinctic and clcctro-
magnetic thcory.

lf we \introduce the exprcssions COI' 0"0, XI and "2 inta Eq. (21), arnitting for
simplicity non linear terms in the non conserved variables and we compare this
express ion for O"r¡ ""ith the one \Vegel froIn the balance Eq. (17), we finally obtain
the following time cvolution cquations for q and f valid np to first order in the non
conscrved variables, namely,

~¡={/lJ2q + I'u i x 11+ 1'131' . i x H + X; Iq div u

+ X'I (+o. u x H) Q - grad f - {3,divl' -1' .grad{32}, (2.5)

dI' T{ . 1 ( ),[,1 I-di =- 1123P + J1211(U xl) + J122q U x 11, + - gra( u
0'22

(26)

where X~I = -1'(X11 - p2X2d.
The sel of Eqs. (25) amI (26) togcther with Eqs. (1) ami (2) constitut(' the

main resll1t of this papel'. They fonn a complete set of diffcrential f'quations for thc
statf' yariahlf's which ma)' in principIe be sol\'c<l lindel' gi\'f'1l initial amI houndary
cOllditiollS, providcd that wc kllow f'xplicit expressions fOI"the so far undetcrmined
cOCff\Cif'lltS¡'¡J' Xij, ajj and fh. It should be cmphasizcd that these coefficients are
still SPilCf'amI time depcndcnt fllnetions thollgh the (ollsf'[\'('d \'ari¡;¡hles p and L

F{¡rthcnnore. thcil' dctcflnination rclics upon expcriment al' a microscopic model.
For 0111'- systf'1Il Illldf'r study, tlH' s('coml alternative is feasible sincc similar cquations
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have becn derived from kinetic thcory. The determination of such coefficients will
be the subject of the following section.

3. Comparison with kinetic theory

Following the arguments presentcd in the previous section, we may now compare the
time evolution equations we have obtained for q and P, namely, Eqs. (25) and (26)
wilh lhose oblained from kinelic lheory by Yang {15]. In his work Yang oblains
the following time evolution equations for q and P Cor an ionizcd gas as moment
equations of the Boltzmann equation, namely,

dq 2l' 5p. l. 2. 5 (1')- =- --q---I X JI - -P.I X JI- -qdlvu- -¡'grad -
dt 3 Jl 2 p p 5 2 p

p. 7 (1') P 7- - dlv P - -P . grad - - - . grad p - -q . grad u,
p 2 p p 2

dP l' . 4- = - -P + 21(u X JI) - 2pgradu - -gradq -2P .gradu.
dt Jl 5

(27)

(28)

where Jl is lhe viseosily eoefficient. 130lhsels of Eqs. (25)-(26) amI (27)-(28) have
lhe same ,lruelure excepl for lhe lerms Xll(~' U x JI)q and JI22q(UX JI), whieh
are ab::;ent in the kinetic rcsults. It is importa~t to point out the Cact that similar
rcsults have becn obtained in other syslems trcated in EIT [10]. Thus, EIT gives a
more general description of the syslem.

Comparing bolh sels of Eqs. (25)-(26) and (27)-(28) we may perforrn a proper
identification of our coefficients wilh lhe corresponding kinctic quantities. This com-
parison oC our results with those obtaincd via Grad's moment method provides us
a kinetical theoretical justification of the use of EIT in this problem. In order to
accomplish this comparison, we shall consider as a first step what happens to our
equations when our system reduces to a simple fluid. In that case, Eqs. (25) and (26)
reduce to

dq T { 1 }di =;:;;-;- Jll2q - grad T '

dP T { I}-d = - JI2JP+ T- grad u .t 022

(29)

(30)

Ncxt, wc notice that thesc last two cquations are of the type of the weH known
Maxwcll.Cattanco relaxion equations [18-20] for these fluxes, i.c.

dq = _,-1 {q + [{ grad T},
dt (31)
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dP -1 }- = -T,) {P - 1]1' gnuiu ,
di

(32)

\vhere T and Tp' are the relaxatioll tilJlf'S for q alld P r(,slH'diw'ly. /\. is tll<' thermal
conductivity and 1ft, the viscosity. EX<ltllinatioll of Eqs. (2!)-:El) allows liS to identify
the unknown lIlacroscopic coclfici(,lIts, namdy,

T (3:l)nll - 1\'1"

Tp (34)°12 = -,
TI!,

1 (:lo)11\2 = /';'

1 (36)1123 = -,,-,
1 'I!,

Having rdatiolls (31-:3G) ill lJIilld and comparing !lO\\"Eqs. (2.')) i1lld (2G) with
Eqs. (27) and (28), we ueterlllirw t1l<lt

T l' (37)11'=-1\(,'

" (38)JJ¡I = -"2132'

T 1 (3~)JIJJ= 1\p'

2 Tp (40)W!I = y-'~,
2Jl = TJv. PI)

FinalIy, as we saw in Sectioll 2, cocfficicnts .\1) and .\22 dcpend 011 the cocffi-
c¡ents 0':11and 022 as it caB be se('n in rclation (11) and (12).

Sorne interesting cornmcnts are no\\' pertincnt. (\s \Veproposed in Ec¡. (18), lhe
flux J'l \'las expn-ssed in terms of lile codficicnls ¡JI = f3.((. p) i = 1,2. and \Vellave
seen that f3I = f. Furtherrnore, equation (37) indicatcs that 132is a f\lllction of the
state variables l' and p as assumed in our theory. AIso, wc obtain cxprf'ssions for the
coefficients Jtij which appear in the definition of the source terrn a'l. \Ve rnay see
frorn relations (35), (36), (38-40) that these coclficicnts are positive. This assertion
shows that in this case a'l turns out to be positivc dcfinilc which is not neccssarily
a requiremcnt of the theory.

To complete the description of oue systern, we may define a steady statc de-
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scribcd by tlJe foliowing conditions:

dq
Tdi = O,

dI'
Tpdi = O.

(42)

(43)

In this case we obtain the following constitutive equations for the strad)' state fluxes
qo and Po that is

qo = /{ {grad ~ - i'lli x H} ,
1'0 = ry, {- grad u - i'21Ti(u x H)).

(44 )

(45)

Notiee should be made of the faet that Eq. (44) for the heat flux is eonsistent
with the LIT heat flux for this system. This means that besides the usual Fourier
heat conduction there is an additional heat flux due to tlle c1ectric current and the
magnetic fie1d. This is known as the Ettinghausen effect [21). In the constitutive
relatian for the steady state stress tensor we have a new terrn, the tensor ¡(u x H).
Apparentl)', this rcsult has not been thoroughly discussed in the litcrature.

4. Magnetohydrodynamic fluctuations in EIT

The purpose of this section is to compute the static correlation functions of the fluc-
tuations of the state variables around a conveniently defined steady state using the
standard Eisntein.Smoluchowski fiuctuation theory [22-26]. This requires a number
of important remarks. In the first place, we shall .assume that the mathematical
function 1] may be ,used in the same way as the entrapy lo define the probability for
a given state to prevail around a steady state [26-271.

The fluctuations of the state \"ariables around the steady state will be denoted by

bx = x - Xo, (46)

where Xo denotes the value of the variable x in the steady state, and x, its instan-
taneous value, stand s here for any of the quantities f, p, q, P.

Undcr these assumptions, one ma.y formally manipulate the Einstein ..Smolu.
chowski equation by expanding r¡ around the steady state to sllow that in this case
the probability w that a fiuctuation around a steady statc occurs is givcn by [24].

(47)

where Wo is a normalization constant. For Ollf svstem. the orobabilitv w is p'ivl'n hv
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thc following exprcssions, namely,

w -exp {-~ [(_-.!- a1' + aXll qo' qo) (8,)'
2k 1" a, a,

(
21'-1p 1 a , ax" ),+ -- - --(1'- p) + -Po: Po (8p)
p3 p' ap ap

1'-1 1'-1 (a (1'-1011) )+ -p-01l8q . 8q + po,,8P : 8P + a, --p- qo . ó<8q

(a (1'-10,,)) ]}+ ap -p- Po : 8p8P . (-18)

From this last exprcssion, introdllcing the steady state fluxes qo and Po defincd
in Eqs. (44) and (45) we may finally evaluate the static corrdation funetions for our
variables, i.c.

(
1 fJT aXll )-'(8,ó<)= k ,..-,- - --qo' qo1'- a, a,

(
la 27'-1 a"\ )-1(8p8p) = k __ (1'-1),) - __ )J - ~Po: Po
p' ap p3 ap

pk1"[(
(8q;8qj) = --8;j,

T

(49 )

(50)

(51 )

(52)

It is interesting to see that the fllndion for both the fluctuations in the heat
flux and in the stress tensor are the samc as thc ones obtained in LIT by Landau.
Lifshitz [23] for a simple fluid in the ahsencc of a magnetic field. This lTIeans that the
existence of an external magnetie ficld doCEnot efrcet the value of thesc (orrdation
fundions in the case oí an ionizcd fluid, a fad which sccms not to be mentioncd
in the literalure. On the other hand, the correlation íunctions for the flucluations
of the conserved variables have each an extra tcrm if compared with the c1assieal
results. These Bew terms are in both ("a.sess('Cond order t.erms of lhe steady state
fluxes whieh ioelude the external magnctic ficld. This implics that the influencc oC
the latt.er one is exerted only through the fluetuations oC the energy and the dcosity.
This al so secms to be a oc\\' result.
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5. Conclusions

The main issue of this paper is to show that EIT is a suitable throry to obtain
the time evolution equations for the non conserved variables that are chosen to
describe the state of a thermodynamic non equilibrium state of a given system.
In particular, the case of an ionized fluid subject to an external magnetic field
is treated in full detaiJ. The resuiting evolution equations may be compared in a
satisfactory way with cquations for the same quantities obtained from the thirteen
moment method solution to the Boltzmann equation. This comparison enables us
to associate the phenomenological coefficients we introduce in our theory with well
establishcd kinetic quantities. By using an ad hoc extension of the standard Einstein-
Smoluchowski thcory of thcrmodynamic f1uctuations, we may devise a method which
allows us to obtain the static correlation functions for the state variahles. The results
of this calculations show sorne features of these funclions which lo our knowledge
have 110lhecn rnentioned in the literature.
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Resumen. Utilizando la termodinámica irreversible ('xtendicia, se ob-
tienen ecuaciones ele evolución temporal para el flujo ele calor y el ten-
sor de esfm'rzos ('n UII fluido ionizado sujeto a un campo magnético
extt'rno. Estas (,Cllaciones pueden ser comparadas con a(Juellas que se
obtienen a partir de la solución de los trece mom('ntos de la ecuación de
Boltzmann. Esta romparación proporciona exprl"sioll(,s explícitas para
los coeficientes fenomenológicos relevantes en términos de cantidades
moleculares. S(' calclllan además las funciones de correlación estáticas
de las fluctuaciones de las variables de estado (Jue describen al fluido.




