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Abstract. Using Extended Irreversible Thermodynamics we obtain
evolution equations for the heat flux and for the stress tensor in an
ionized fluid subject to an external magnetic field. These equations may
be compared with those obtained from the thirteen moment solution of
the Boltzmann equation. This comparison yields explicit expressions for
the relevant phenomenological coefficients in terms of molecular quan-
tities. The static correlation functions for the fluctuations of the state
variables describing the fluid are also calculated.
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1. Introduction

In the course of this decade, efforts have been made to extend Linear Irreversible
Thermodynamics (L1T) to the domain of phenomena which fall outside the scope of
such linear theory. Several of these efforts are now known as Extended Irreversible
Thermodynamics (EIT). Although these approaches differ among each other on the
way in which the non-equilibrium states of the system under study is described,
they all coincide in the derivation of time evolution equations for the state variables
describing the system. Such equations are of the hyperbolic type in contrast to the
parabolic differential equations which are predicted in LIT.

One of these approaches is based on the idea of extending the ordinary space
of state variables of LIT by raising the fluxes characterizing the non equilibrium
processes in the system to the status of independent variables. This method origi-
nated in the so called moment method solution to the Boltzmann equation proposed
by H. Grad nearly forty years ago [1]. Although there are in principle conceptual
difficulties in accepting the fluxes as state variables [2], the application of the method
to a number of different systems has proved to be rather successful [3-14].

In this paper, we address ourselves to study another system, namely, an ionized
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fluid subject to an external magnetic field using the same approach. The reason
for undertaking such a study is that this system has been previously studied using
the above mentioned solution for the Boltzmann equation by H. Yang [15]. Con-
sequently, the results of EIT which are purely phenomenological may be compared
with a more microscopic calculation which will allow us to assess the virtues and
shortcomings of the former one.

By raising to the status of independent variables the heat flux and the stress
tensor we are able to derive a complete set of time evolution equations for all the
state variables.

These equations necessarily contain undetermined phenomenological coefficients.
The comparison with the set of equations obtained by Yang will also permit us to
study the static correlations functions for the state variables leading us results that,
to our knowledge, have not been mentioned in the literature.

The paper is divided in a section 2 containing a summary of the underlying ideas
of EIT, together with the derivation of the time evolution equations for the state
variables. Next, in section 3 we discuss the physical nature of such equations and
we compare them with those obtained by kinetic theory. We follow with section 4,
which contains the calculation of the static correlation functions, and finally in
section 5 we include some remarks about our results.

2. Extended irreversible thermodynamics time evolution equations

In the framework of Linear Irreversible Thermodynamics (LIT), a system is de-
scribed by locally conserved variables whose evolution equations, the conserved or
balance equations, are complemented by phenomenological constitutive equations
for the thermodynamic fluxes which may be obtained either empirically or from
more microscopic models. Such is the case of the moment equations obtained from
the Boltzmann equations, which is a kinetic model for a dilute gaseous system.

As it was mentioned in the introduction, in EIT one broadens the space of state
variables to include the dissipative fluxes. In our case, such space will therefore
contain the local internal energy e(r,t) the local mass density, p(r,t) as well as the
heat flux ¢(r, 1), and the stress tensor P(r,t), as space variables. For purely semantic
reasons, we shall refer ourselves to the fluxes as the variables defining the subset
R of non conserved variables. Thus, the complete set of state variables G may be
written as

G =CUR = {¢(r,t),p(r,t); (r,t),P(r,2)} (1)

where C is the subset of the locally conserved variables e(r,t) and p(r,t).
These variables satisfy balance type equations, namely,

d

b =—pdiva (2)
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d 1
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dt o
where u is the hydrodynamic velocity, p the hydrodynamic pressure, i the electric
current, H the external magnetic field and ¢p the velocity of light. It is therefore
clear that our task is to derive the time evolution equations for the R variables.

In order to accomplish this objective, we assume that there exists a sufficiently
continuous and differentiable function 5 defined in G, i.e.

n =nlep;q,P) (4)
such that we may construct a differential from,

. |
b e D, (5)

dn an
—de + B P

d —
7= Be ap
Notice should be made of the fact that 7 is not the entropy associated with the non
equilibrium state of the fluid described by the G variables. Only when the subspace
of variables R turns out to be irrelevant for the description of the system, 7 reduces
to the ordinary local equilibrium entropy as defined in LIT [16].

We may write in our case the analogue of the Gibbs equation,

dn_@ﬁ @@ an‘dq an dP

dt " dcdt "dpdt Taq T @ (6)

The derivatives of n are constructed as the most general tensors of the corre-
sponding tensorial order in the space of state variables. The first two derivatives
dn/de and dn/dp must reduce to those defined in local equilibrium when the sub-
space R is the void set, and should be constructed as the most general scalars in G.
Thus, if we expand these derivatives in terms of the scalar invariants keeping terms
which are at most quadratic in the variables, we obtain that

?.

SL=T"" 4 Xua-q+ XuP : P, (7)
dn T 'p

i/ T, . . P.

p p +X219-q+ XoP (8)

On the hand, the derivatives dn/dq and dn /9P must be the most general vector
and tensor constructed in G respectively, so with the same criterium mentioned
above, we may write that

an T1 =t
5q - p 14 4 5 Fud: P (9)
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or i T
3—; e anqq + Tazzp, (10)

where ajj and Xjj, 7,7 = 1,2, are scalars defined in .

If we now impose the condition that dn must be an exact differential, the cross
derivatives resulting from Egs. (7-10) must be equal. This implies automatically
that not all the coefficients appearing there are independent. In fact, it is casy to
see that Xy; and X, depend on ay; and agp according to the relations

.&l—ég(th“), (11)

Xn=%(%%ﬂ”mﬁ—jh?”) (12)
Also, we can see that,

X12=%% (TT_lazz), (11.a)

X = %6% (%’1-011) ; (12.a)

which clearly points out that only ey; and azs are independent. Notice that the
condition 8 n/dq;0P; = an/aﬂ’jkaq,' leads to the additional relationship that
a2 = az = 0. Finally, the terms X;2P : P and X»;q - q appearing in Eqs. (7)
and (8) are also easily manipulated. In fact, X;2P : P, when multiplied by de/dt,
gives rise to terms which are at least of order three in the R variables and may be
neglected. On the other hand, X21q-q may be absorbed in an identical term which
comes from X11q - q by simply redefining the corresponding coefficients.
Therefore, the partial derivatives for the function n may be written as

i

e =T""+Xna-q (13)
g—Z:—T;;p+X22P:P+X21Q'q, (.14)
%zt@m (16)

Emphasis should be made on the fact that the vanishing of e and ay; is per-
fectly consistent with kinetic theory and ordinary magnetohydrodynamics. Indeed,
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the resulting time evolution equations for the fluxes are a set of coupled equations
in which the homogeneous terms do not contain the mixed expressions q - dP/dt or
P :dq/dt.

The second assumption of the theory is introduced with the idea of providing
a method to compute the equations that govern the time evolution of the non
conserved variables. For this purpose, we assume that 7 satisfies a balance equation
of the form

dn

P +div], = oy, (17)

where, J;, and o, are flux and the source term associated with 7, and whose form
remains to be determined. We shall impose the restriction that in the case in which
the non conserved variables are irrelevant, Eq (17) must reduce to the entropy bal-
ance equation in LIT. It is only in this sense that 5 may be regarded as a “generalized
entropy”, but we shall avoid this misleading terminology.

The flux J,, is the most general vector that may be constructed in G. Therefore,
up to the second order in the R variables, we have that

Jn:ﬁlq"*' ﬂZq'Pa (18)
where 3; = (¢, p), 1 = 1,2. We choose

1

A= (19)

because as indicated above, J, must reduce to the entropy flux in LIT when R is
the void set.

Using Eqgs (6), (13-15) and (17-18) we reach the following expression for the
source term o, namely

1. : . i 1
oy =al—u xH+q-{-Xnqdivg - X};qdivu — Xy;qi-u x Ha

T d 1 .
+ Tcma-(} +gradf + B2 divP + P - grad 2}

d
+P: {—T-l gradu — X5Pp? divu + T"azzd—': + B2 grad q} . (20)

The theory gives us an alternative way to evaluate ay. Indeed, o, must be. the
most general scalar we may construct in the G space, that is

op=00+X1-q+ Xz:P. (21)

At this point, it is rather important to point out the way in which we are
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constructing our theory results in the omission of several parameters of relevance
to our system. Such parameters, by their nature not contained in our primitive
set of variables, may have an important role in our description of the system. In
our case, the external magnetic field exerts a magnetic force on our fluid. So we
must include ad hoc this effect in our formalism. This can be done using the closure
assumption [17], which considers parameters not belonging to the state variables in
the construction of ay,.

. Having in mind that o, must reduce to the local equilibrium entropy production
when the non conserved variables are irrelevant, we propose that

-1

. e - (22)
co

Xy =pni x H+ poq+ pi3P i x H+ piaq - P, (23)

X, = pyii(u x H) + pzoq(u x H) + p23P + p249q. (24)

Here, the terms associated with u x H and i x H are two such parameters of
paramount importance to keep our results at grips with both kinetic and electro-
magnetic theory.

If we introduce the expressions for a9, X; and Xs into Eq. (21), omitting for
simplicity non linear terms in the non conserved variables and we compare this
expression for o, with the one we get from the balance Eq. (17), we finally obtain
the following time evolution equations for q and P valid up to first order in the non
conserved variables, namely,

d . . .
d—? ={pi2q+ p11i x H+4 3P -1 x H+X{1qd1vu

+ X1 (i -u X H) q—grad;lf1 — BadivP — P - grad 2}, (25)
o

dP

.l =]
dt #Q’gg

{1123P + pari(u x H) + pzoq(u x H) + 77" gradu

+X2Pp?divu — frgradq}, (26)

where X!, = —p(X11 — p*X21).

The set of Egs. (25) and (26) together with Eqgs. (1) and (2) constitute the
main result of this paper. They form a complete set of differential equations for the
state variables which may in principle be solved under given initial and boundary
conditions, provided that we know explicit expressions for the so far undetermined
coefficients pij, Xij, @ij and fa. It should be emphasized that these coeflicients are
still space and time dependent functions though the conserved variables p and €.
Furthermore, their determination relies upon experiment or a microscopic model.
For our system under study, the second alternative is feasible since similar equations
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have been derived from kinetic theory. The determination of such coefficients will
be the subject of the following section.

3. Comparison with kinetic theory

Following the arguments presented in the previous section, we may now compare the
time evolution equations we have obtained for q and P, namely, Eqs. (25) and (26)
with those obtained from kinetic theory by Yang [15]. In his work Yang obtains
the following time evolution equations for q and P for an ionized gas as moment
equations of the Boltzmann equation, namely,

dq 2p 5p. 1. . 2 . 5 (p)
- =—7z—q—--=ixH--P.-ixH- -qdivu— —pgrad [ =
dt 3,uq 2p p 53 P8 p
L 7 p P 7
deP 2P grad (p)_p grad p 2qvgradu, (27)
dP
F e Ppy 2i(u x H) — 2pgradu — %gradq— 2P - grad u. (28)
7

where 1 is the viscosity coefficient. Both sets of Egs. (25)-(26) and (27)-(28) have
the same structure except for the terms X”(% -u x H)q and p22q(u x H), which
are absent in the kinetic results. It is important to point out the fact that similar
results have been obtained in other systems treated in EIT [10]. Thus, EIT gives a
more general description of the system.

Comparing both sets of Eqs. (25)-(26) and (27)-(28) we may perform a proper
identification of our coefficients with the corresponding kinetic quantities. This com-
parison of our results with those obtained via Grad’s moment method provides us
a kinetical theoretical justification of the use of EIT in this problem. In order to
accomplish this comparison, we shall consider as a first step what happens to our
equations when our system reduces to a simple fluid. In that case, Egs. (25) and (26)

reduce to

dq T 1

@~ e, )
dP i

gl {u23P + T~ ' gradu} . (30)

Next, we notice that these last two equations are of the type of the well known
Maxwell-Cattaneo relaxion equations [18-20] for these fluxes, i.e.

dg

= ~r71{q+ K grad T}, (31)
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dP

o ek s - 32
5 = {P —nygradu}, (32)
where 7 and 7, are the relaxation times for q and P respectively, A is the thermal
conductivity and 7, the viscosity. Examination of Egs. (20-39) allows us to identify
the unknown macroscopic coeflicients, namely,

»
oy | e 33
an T (33)
s oL, (34)
My
1 -
2 = 75 (35)
1
93 = . 36
"= (36)

Having relations (33-36) in mind and comparing now Egs. (25) and (26) with
Eqgs. (27) and (28), we determine that

5
m=~75 (37)
p
5
pi = —5p, (38)
T 1
= —— 3G
ms = o (39)
2 Ty
Ug] =) 40
21 T (40)
2p = 1ny. (41)

Finally, as we saw in Section 2, coefficients X1 and X2z depend on the coeffi-
cients a1 and a9z as it can be seen in relation (11) and (12).

Some interesting comments are now pertinent. As we proposed in Eq. (18), the
flux J,, was expressed in terms of the coefficients 3; = Bi(¢, p) i = 1,2, and we have
seen that 3y = r}- Furthermore, equation (37) indicates that 3, is a function of the
state variables p and p as assumed in our theory. Also, we obtain expressions for the
coefficients yu;; which appear in the definition of the source term a,. We may see
from relations (35), (36), (38-40) that these coeflicients are positive. This assertion
shows that in this case o, turns out to be positive definite which is not necessarily
a requirement of the theory.

To complete the description of our system, we may define a steady state de-
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scribed by the following conditions:

dq

Td—t = 0., (42)
dP

Tpa =], (43)

In this case we obtain the following constitutive equations for the steady state fluxes
qp and Py that is

Q=K {grad% — fi11i X H} ; (44)
Po = ny {—gradu — p3;Ti(u x H)}. (45)

Notice should be made of the fact that Eq. (44) for the heat flux is consistent
with the LIT heat flux for this system. This means that besides the usual Fourier
heat conduction there is an additional heat flux due to the electric current and the
magnetic field. This is known as the Ettinghausen effect [21]. In the constitutive
relation for the steady state stress tensor we have a new term, the tensor i(u x H).
Apparently, this result has not been thoroughly discussed in the literature.

4. Magnetohydrodynamic fluctuations in EIT

The purpose of this section is to compute the static correlation functions of the fluc-
tuations of the state variables around a conveniently defined steady state using the
standard Eisntein-Smoluchowski fluctuation theory [22-26]. This requires a number
of important remarks. In the first place, we shall assume that the mathematical
function n may be used in the same way as the entropy to define the probability for
a given state to prevail around a steady state [26-27].

The fluctuations of the state variables around the steady state will be denoted by

bz =z -z, (46)
where z( denotes the value of the variable z in the steady state, and z, its instan-
taneous value, stands here for any of the quantities ¢, p, q, P.

Under these assumptions, one may formally manipulate the Einstein-Smolu-

chowski equation by expanding n around the steady state to show that in this case
the probability w that a fluctuation around a steady state occurs is given by [24].

1
W = wg exp {—ﬁb"zn} (47)

where wy is a normalization constant. For our svstem. the nrobabilitv o i oiven b
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the following expressions, namely,

I 1 aT 09X
w~exp{—ﬁ [( 77 36+ e il * %)(56)

2r'p 10 X1 2
* (—p;{'— —23—(T p)+ B—Po ) (8p)

-1 T-1 =
4 ——a116q-6q + —agbP : 6P + (3 (ﬁ) qo) - §ebq
P p de p

() ol

From this last expression, introducing the steady state fluxes qg and Py defined
in Eqs. (44) and (45) we may finally evaluate the static correlation functions for our
variables, i.e.

L (1ar 98Xy -
(bebe) = k (FE =5 Qo %) ; (49)
1 d,,._ ZT_lp X2 =

ET2K

(6qibg;) = & 8ij, (51)
kTn,

(6Pijbem) = =E= (6ijbm + 6u1bym). (52)

P

It is interesting to see that the function for both the fluctuations in the heat
flux and in the stress tensor are the same as the ones obtained in LIT by Landau-
Lifshitz [23] for a simple fluid in the absence of a magnetic field. This means that the
existence of an external magnetic field does not effect the value of these correlation
functions in the case of an ionized fluid, a fact which seems not to he mentioned
in the literature. On the other hand, the correlation functions for the fluctuations
of the conserved variables have each an extra term if compared with the classical
results. These new terms are in both cases second order terms of the steady state
fluxes which include the external magnetic field. This implies that the influence of
the latter one is exerted only through the fluctuations of the energy and the density.
This also seems to be a new result.
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5. Conclusions

The main issue of this paper is to show that EIT is a suitable theory to obtain
the time evolution equations for the non conserved variables that are chosen to
describe the state of a thermodynamic non equilibrium state of a given system.
In particular, the case of an ionized fluid subject to an external magnetic field
is treated in full detail. The resulting evolution equations may be compared in a
satisfactory way with equations for the same quantities obtained from the thirteen
moment method solution to the Boltzmann equation. This comparison enables us
to associate the phenomenological coefficients we introduce in our theory with well
established kinetic quantities. By using an ad hoc extension of the standard Einstein-
Smoluchowski theory of thermodynamic fluctuations, we may devise a method which
allows us to obtain the static correlation functions for the state variables. The results
of this calculations show some features of these functions which to our knowledge
have not been mentioned in the literature.
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Resumen. Utilizando la termodindmica irreversible extendida, se ob-
tienen ecuaciones de evolucién temporal para el flujo de calor y el ten-
sor de esfuerzos en un fluido ionizado sujeto a un campo magnético
externo. Estas ecuaciones pueden ser comparadas con aquellas que se
obtienen a partir de la solucién de los trece momentos de la ecuacién de
Boltzmann. Esta comparacién proporciona expresiones explicitas para
los coeficientes fenomenoldgicos relevantes en términos de cantidades
moleculares. Se calculan ademds las funciones de correlacion estiticas
de las fluctuaciones de las variables de estado que describen al fluido.





