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Abstract. AIl irreversible thermodynamic theory is developed in order
to study a non-Itomogcncous systcm, having a multisize set of droplets
illlilerscd in a Illulticomponent mixture of gases. Conservation and bal.
ance C'c¡uations are considered to be \'alid for the .••..hole system a.nd .••..e
derive the equations of lIlotiOIl for any gas component and for each class
of droplets c1assifit'd according to thcir sizc. The interactif)n between the
droplcts and tile gases is taken into account through mass, momentum
and enNgy sourccs in the corresponding balance cquations.

PACS: 47.55.Kf; 05.70.Lm

1. Introduction

Spray behavior is important in sorne industrial processes like hydrocarhon (-om-
bustion, food drying, pulverizing of SOlllC products, et.c., In this killd of processes
the spray is inmersed in a gas flo\\' thus provoking betw<'Cn spray and gas an in-
teraction through the mass, mOlllcntlllll and encrgy illterchanges, Tlwre exist in
the Iiterature [1,2J sorne approachcs to st.lldy sllch systems. l\lany of thefll consider
the spray (dispersed matter) and the gas flo\\' (continuullI) as independellt systems,
and introduce in a later stag(' SOIJlCcoun"nient approxilllations in order to take ioto
account the interactioll bch ••..ccll thclIl. Otiler .studies a.<¡sume that the spray and
the gas together form a uniforlll fluid in physical and chemical local equilibrium,
consequently the usual fluid mcchanics cquatiollS are the starting point of their
developlllents [3~5J.A charactel'istic of thcse last approaches is that they tend to
neglect the intcraction between the spray and tIJe gas, a crude approximation per se,
which is partially sol ved by introducing the dispersed maltcr properties bascd on the
behavior of all individual droplct {6-10]. In this \\'ork \\'e tr)' to take advantagc from
both approaches; we cOlIsider the spray <llld the gas as a olle continuous flJ('dia, but
we separate the gas flo\\' equatiolls fl'olll the dispen;;('d lIlaller equ<ltions. This is done
at the expense of introducing source tcrms into thc mass, morncntum and cnergy
equatiollS. Thcsc sourccs will be taken altcrnativdy frolJl a nUTl'erica! silllulation of
the problem based 011 tIJe propt'rties of individual dropkts, 01' from <lkindir thcory
trcatmcnt.
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From the point of view of irreversible thermodynamics, our approach contrasts
with sorne others in the literature [11,12], where the droplets and the gas are taken
separalely. Those papers do nol take a unified view of the system and the interaetion
is not takcn properly. lo fad, we consider as a starting paint tll(: balance equatians
for the whale system to emphasize OUT maio hypothesis, which is that the mixture
of gases togelher with tbe droplets are the system we are working with.

In Scetion 2 wc define the systcm charactcristics and introduce the notatioll lo
be used. In Seetion 3 we establish thc mass conservation, while in Scction .1 we do
it for the momentum. At last in Sections .5 and 6 \Ve discuss the energy balance
equations, and give sorne oonduding rcmarks.

2. Multisize-multicomponent systems

The system we are interested in this work consists of a two pllase inhomogenPOus
fluid, for example: i) mixtures oCgases in which there are droplets imnH'rsed in;
ii) a liquid carrying bubbles with it. In both cases \Ve distingllish a contiouurn phase
intcracting with a dispersed one. \Ve are spccially interested in a dispersed phase
forroed b)\a very largc number of droplets having a size distributioll. The initial size
distribution is detcrmined by external conditions, like the atomizcr characteristics.
As time elapses the droplets challge thcir size according to a \'aporization ratl~ and
the corresponding size distributioll also changes. The droplets are aH inmcrsed in
a Tnulticomponent mixture oC gases having a telIlperature <iistri!llltion and moving
with some velocity. Such a systclll is what we cal! a spray. In particular Cor the
hydrocarbons combuslion we ha\'l~ the following Illodd: i) The continuum phase is
a multicomponent mixture of nitrogen, oxygen and fucl vapors al a higlH'r tem-
perature than the Iiqllid fue! in thc droplcts. ii) As we said before the heat flux
induces vaporization of droplets, the vapors become a part of the continullm rilase,
but also the droplcts size decrease until they disappcar. \"!len the droplcts size
hecomes smaller there is also a change in the momcntum. mainly becausc the drag
force cxerted by the continuum changes according to the droplets' radius.

No\Vwe will define some tlscful quantitics in order to descrihe such a system.
First oC aH, the continuum phase is an inert mixture of 1'/ ga..<;cs,its dcnsity Pc(x. t)
depeoding on position and time and can be written in terms or the densities p.,(x. t)
oC lile sI)('cies i in the mixture

N

p,(x,t) = ¿p,(x,t).
.,=1

(1 )

The hydrodynamic velocity lIc(x, t) IS defined through ll)(' corresponding hy.
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drodynamic velocitics v")'(x, t) of the species 'Y

N

p,(x, t)u,(x, t) = L:>,(x, t)v,(x, t).
")'=1

An)' given property t/Jt:(X, t) oí thc continuum phase may be written as

N

p,(x, t).p,(x, t) = I:>,(x, t).p,(x, t),
")'=1

(2)

(3)

provided t/J is a linear íunction oí the hydrodynamic variables.
In the disperscd phasc thc number of droplets in a small macroscopic volume

element is very large, so we can c1assiíy them according to their size. The set oí
droplets with radius bctwecn Rk and Rk + ilRk are caBed "size-k'" and each "size-k'"
is characterized by sorne local thermodynamic propcrtics. The dispersed matter is
composed oí Al sets of droplets. Each size-k has a density Pk(X, t) defined as the
mass of droplets of sizc-k divided by the total volurne oí the system, so that the
dispersed phase density is given by

N

p,¡(x, t) = :L p,(x, t),
k=1

the hydrodynamic \'elocity

Al

Pd(X, t)u,¡(x, t) = :L p,(x, t)v,(x, t).
.1;=1

and any linear propcrty tPd is givcn by

.11

Pd(X, t).pd(X, t) = :L p,(x, t).p,(x, t).
.1;=1

(4)

(5)

(6)

Thc wholc system is characterized by the density P, the total hydrodynamic
velocity U and any property tP is given by :

p(x, t) = p,(x, t) + Pd(X, t),

p(x, t)U(x, t) = p,(x, t)u,(x, t) + Pd(X, t)Ud(X,t),

p(x, t).p(x, t) = p,(x, t).p,(x, t) + Pd(X, t).pd(X, t).

(7)

(8)

(9)

Finally we define the relative velocities Wk(X,t) for any sizc-k and w")'(x,t) for
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the 'Y component in the continuurn as follows

w,(x, t) = v,(x, t) - U(x, t),

w,(x, t) = v,(x, t) - U(x, t),

We inelude here the relationship

pU,p= LP'v,,p;+ LP'w;(,p-,p,)
i=l i=l

(10)

(11 )

(12)

because it is useful in sorne later calculations. Hereafter we will use the index i in
the summation symbol in order to shorten the equations, thus the terms from i = O
to i = M represent the size-k terms of the dispersed phase and the lerms from
i = M + 1 to i = Al + N represent the N components in the continuum phase.

3. Mass Conservation

As we said before, lhe systcm is formed by two kinds of continuous media, one
is represented by the mixture of gases, where we know lhe balance equations to
be written. The droplets arc also considered as a continuous media but it is not
a trivial matter to guess th~ corresponding balance equalions. To circumvcnt this
difficulty, we wil! take the systcm as a whole and wrile lhe usual conservation and
balance equations for it. In a further step and consistently with the definitions
given in Section 2, we wiII assume that the species and each sizc-k set properties are
additive. To undertake the validity oí this hypothesis in lhe equations of motion, we
will introduce sorne sources thcre, then we separate the equations for each species
and each size-k set of droplets.

We will begin with the well known mass conscrvation equation for lhe total
inhomogeneous systcm

~ + div(pU) = O. ( 13)

Direct substitution of Eqs. (1)- (8) iuto Eq. (13) and the introduction of the
source term allows liS to obtain the equations of motion for Pk and P-Y' after a
separation of each ter m in thc sllmmation namely,

~ p, + div(p, v,) = -q,'k,

:tP' + div(p,v,) = q,~,

(14 )

(15)

where 4Jr and 4Jr:,' are t.he mass sourccs for each sizc-k and cach componcnt respec-
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tively. The sourcc 4>~1is the mass rate oC spccies '"r added to the continuum phase
per unit volume, it is always positive because we assurncd only the existence oC
droplet vaporization. This fact eliminates condensation of species 1 into a droplet.
Then, 4>r:,' is the amount of mass which is being fed iuto the continuum phase. The
droplets in each size-k vaporizc and the fuel vapors go to cnrich the species 1so we
can write

M

4>'; == L tPr_¡,
k=1

( 16)

where 4>'k-.¡ gives us the mass contribution to species 1coming from sizc-k droplets.
\Vhen tlle eombustion reactions oceur it is neeessary to inelude in these sourees the
reaetion rate between different chemical species 1and l' for each rcaction

M L

4>';= L 4>'_7 + L 4>~7
k=1 ¡'=)

( 17)

here we have assumed that there are L independent chemical reactions and <p~¡ are
lhe corresponding rates.

The -<pr in Eq. (14) represents a mass sink for each size-k droplels, namely,
the mass lost in size-k produced maioly by vaporization. Thus, the mass of vapors
enters into the eontinuum phase and the droplets become smaller. \Vhen the size of
the droplets in size-k deereases to lhe range Rk_l they contri bute to size.(k - 1),
al the same time the set size.(k + 1) is loosing droplets which are going lo size-k as
well as to the vapor phase. Thus,

N M

4>. = L 4>h7 +L 4>",.
1=1 k'=1

(18)

The important terms in this cquation are: <Pk+l_k whieh gives us the mass
transferred from size.(k + 1) to size-k by the reduction in size of droplets, and
4>'k-.k_1 which is the mass lost by the size-k, it is proportional to the number of
droplets that after v.poriz.tion become of size-(k -1). In order to s.tisfy Eq. (13)
it is obvious tha! we must require that thcse sources are to be restricted by :

N M
L 4>~n- L 4>. = O
1=1 k=l

(19 )

Thc physical meaning of this equation is now very simple: tlle rate of mass lost
by the dispersed phase is fed into the continuum in such a way that the total mass
is conserved.
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4. Momentum balance equations

Following the same steps as in Section 3, we wil! assume the total momentum of
the system obeys the usual balance cquation given by

a .
alPU + dlv(pUU + Z) = pr, (20)

where Z is the total prcssure tensor. lIere, the pressure lensor is inlrodueed in the
same spiril as il is done in the usual theory, but we need an interpretation for it. To
be specif1c we want to exprcss it as a superposition of 1\•...0 tensors coming from the
gases and the droplets. This is an additional assumption which can be justif1ed by
means of analyzing the physical lOcaning of any pressure tensor. Any pressure tensor
measures lhe momentulO transport in t1lc systcm, but in our case the gases as well
as the droplcts transport lOOllwntulIl, giving rise lo a difrerent kind of contribution,
then

(21)

where P is the isotropic part of lIle pressure tensor and it will be interpreted as tite
usual hydrostatic prcssure for lhe whole system, I is lhe unit tensor, Ze is lhe usual
viseolls tensor for lhe mixture of gases. In contrast, the meaning of tite "viseous"
tensor ld is nol c1ear froIn a-phenomenologieal point of view, we introduce it he re in
the same spiril as is done in othcr works (11-12] and we allempt to give it a kinctic
interpretation elsewhere [13]. In fad we can say that it is somehow rclated to the
average correlation function of lhe relative veloeitics for the droplets.

Both tcnsors le and Zd can be written as

N

le = ¿Z.."
..,=1

JI

Zd= ¿h
1=1

(22)

Finally in Eq. (20) pr is the bulk external force, which can also be written
as a superposition of lhe bulk forces acting on cach spccies and eaeh size-k sel of
droplets.

pf = ¿p,f,.
i=O

(23)

Direct substitution of Eqs. (1 )-(8), (22) and (23) in Eq. (20) leads us to the
sought mornentum balance cquations, namely,
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The prcssurc gradienl affccts both the disperscd pha.';;cand the continuum phase,
thus contributing to aH cquations. Thc 13., and Ih phcnomenological coefficients
measure the cffect of this pressure gradicnt and they satisf,y the following condition

¿13, = 1.
i=-o

(26)

The momentum sources t/>i' and t/>; also satisfy a restriction condition similar to
Eq. (19) in order to maintain the validity of global momentum balance as indicated
in (20). Thcrefore,

Al N
¿IÓf - ¿IÓ; = O.
1:=1 .,=-1

(27)

Thesc sources can also be written a.'ia superposition of effects coming from the
corresponding phases

N Al
P","P ","PIÓ, = L IÓ,_, + LIÓ",.

.,=1 I;'=-I

(28)

(29)

Here 4>;_1; is the rate oC momentum per unit volume transferred from species i
to size-k and t/>f,1; is the rate oC momcntum density transfcrred from sire-k' droplets
lo sizc-k droplets.

5. Kinetic and potential energy balance

The kinetic energy balance equations are directly obtained from the momentum
equation upon taking the scalar product with the velocity. From Eq. (25) we obtain
that,

a (1 ') . [1 , Jat '2Pk VI; + dIV '2Pkvl;vl; - PI;WI;(Vk. WI;) + Vk .lk + PI;WI;WI;: VVI;

= Z, : Vv, - 13,v, . v p + p,v, . f, + v, . IÓf+ tvllÓ;;', (30)

This e<¡uation is valid ror cach size-k droplets set (k ::::::;1, ... , Al). The kinetic energy
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equation for the I species (1 = 1\ ... 1 N) is given by

Eqs. (30) and (31) assurne the validity of the rnass conservation and rnornentum
balance equation, but they contain no othcr additional hypothcsis. Notice should
be made oí the íact that in tIJcse cquations tIJe momentum and mass sources are
added to the usual kinetic energy sources as we couId expect to be the case.

lt is also uscful to have the balance cql1ations for the square<1 rclative velocitYI
since it represents in a crude way the dispersion of the velocities with respcct to the
hydrodynamic velocity of the system. Tltose cquations are obtained in a straight-
forward way by taking the dilTerence bctwecn Eqs. (20) and (25L tiJen ,••..c take the
scalar produd with W.l; or w'P

and for the components

+w, . [diV (Z, - P; Z) + Z . V (pp' ) ]

;w,' [-¡J,VI'+p,(f,-f)-.p;' -(U-~w,).p~]. (33)

TIJe balance equation for the total kinetic cncrgy is obtainrd by adding the
cquations over al! the specics I and al! size.k sets of droplcts in the systcTlI. The
rcsult is thc well known kinctic cnergy cquation

In arder to derive the potcntial cnergy balance cquation wc first assume that
aH the, bulk forces acting on the system are derivrd from time in<!epcndent scalar
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functions representing the potential energy per unit mass, namely,

(35)

The total bulk force can Le ,written as

(36)

where ¡p denotes the total potential energy. lf we now take the time derivative of
pep we obtain that

a N M
atP'P + div(pU\?) = -pf. U - L \?i\" . (p,w,) + L \?,</J'{'+ L \?,</J'[', (37)

1=0 "Y=1 1=)

which is the sought balance equation for the potential energy density pep.

6. Energy conservation

The total energy E of the system we are studying is a supcrposition oC the kinetic,
potential and internal elwrgies, namely,

pE = 1pU' + PI" + pe, (38)

wltere e is the internal clwrgy per unit mass. The total encrgy flux J E is oefined as

JE = peU + z. U + q+ LP,W;\?;,
i=o

(39)

where peU represents the convective energy flow, Z. U is the mechanical work, q is
the heat flux and the last tcrm is produced by the diffusion fluxes P¡W¡. \Ve assume
that the total energy is a conservcd quantity, so it satisfies a continuity equation

~pE + divh = O (40)

Direcl subslilulion of Eqs. (38), (39), (34) and (37) in Eq. (40) allows us lo
write a balance equation for the internal cncrgy in our system

a M N
atpe + div(peU + q) = -Z : VU + L p;w,' r, + L \?,</J'['+ L \?,</J';'. (41)

1=0 1=1 1'=1

According to the weH cstahlishcd framework for irreversible thcrmodynam.
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ies [14]' we are allowed lo rccognize Eq. (41) as the local form of the first law
of thermodynamics. Thal framework also eontains the local equilibrium hypothcsis,
which we wiU use here to derive the balance equations, of the enlropy atHl the
cnthalpy of the system.

The local equilibrium assumption is quantified by the Gibbs relationship written
in the Lagrangian SystclIl, narncly,

"D.< De DI" D Pi
1Di = DI + P Dt p - L Iti DIp'

1=0

(12)

where .-'"is the sEccifi~ cntropy,. T the local t~ropcrature, ¡ti .are lh~ lo~al e~emical
poten ti al s and ID == ~ + U. \' IS lIJe Lagranglan or substantlal denvatlve. 1 he rest
of the sYlTlbolshave ",lr('(ldy bf't'I1 defined.

From lhe ma..<;sCOllservatioll (1m) the internal encrgy balance equations \Ve obtain
an entropy balance cquation whieh can be written in the following forro:

f)
') ps + divJ,;:: (7,
<l

where

is the entropy fiow, and

N

<7 = q.'V G) - Z: 'VU - ~¿[(~,+",,)9~+P,W,' (T'Vi -r,)]
)'=1

N

+ ~ ¿ [(1" + ",,)9, - P,w.' (T'VI~ - r,)]
k=l

(43)

(4'1 )

(45 )

is the entropy source, or entropy production.
The entropy flux has a eonvcctive tcrm, a contribution of the heat flux and

the diffusive fluxes. The entropy souree has the same eharaclcristics as that for a
simple fluid, hut the llIass sour(l~S <jJ't and 4>;" aplH'ar in it. \Vhen there are chemical
reaetions in the system, lbe mass sources Inultiplied by the cheroical poten ti al give
us the product of the corrcsponding affillily of the rcaction and the reaction rateo

At last wc write lhe cnthalpy balance equation becausc it is specially useful
when the comhustion rcaclions are taking place. \Ve start with the con\'cntional
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thermodynamical relationship, namely

Dh _ TDs 1 DP
¡¡¡- m+pDt' (46)

whcre h is lhe specific enthalpy. Eq. (46) is a straightforward consequence of the
local equilibrium assumplion. Now we cxpress lhe cnthalpy as the superposition of
enthalpies for the sizc-k sets of the droplets and the spccies in the continuum phase.
After sorne cumbcrsome algebra we obtain the enthalpy equation for the size.k,
namely,

D 1 D P 1 1" T [ 1 ]--(p,h,) = 13,- - -(/'tw,). (TV- - f,) - -V. -(q, - PtI"w,)Di p Dt p T p T

T 1 11m h+ -q,. V- - -z. :VU - -(/'. - 'P,)q,. + q,., (47)P T p p

and the enthalpy balance equation for each ')'-species,

In Eqs. (47) and (48) lhe qualllilies q,~and q,~are lhe enlhalpy sources arising
from thc interaction betwcen the droplcts and the specics of the gas mixture. They
satisfy a restriction cquation similar to the ones satisficd by the mass and momentum
sources, namely,

7. Concluding remarks

Al N

¿>~+¿>~=0.
.1;=1 1=1

(49)

The cquations wc have constructed in tilis work are va.lid for the spray system,
which is composcd of a multicomponcnt mixture of gases and Al sets of droplets
having different sizc:l. The equatiolls are consistent with thc general schemc of the
usual irreversible thcrmodynamic thcory. Accordingly the mass, momentum and
energy balance equations for tbe wholc system are taken as a starting point foc the
development oC our treatment. Tite corresponding equations for one species oC the
mixture or a size-k set oC droplets are obtained from the general equations by the
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inlroduction of lhe sources, \Vhich are Ilot kllown from a phenomenological point of
view.

Alternatively, it is possible to take nnothcr way to arrive lo the same cqllations
of motion; i.e. \Ve take the balance equaliolls of lhe system as a whole, the equations
of motion of the mixture of gases, which in fact are \",'ell known, and we separate the
equations for the dispersed phase by mean s of the introdllction of the sources, which
mcasure the interaction between the gases ami the droplets, so the introduction of
the sourees is the price wc paid lo separale thc equations,

In order to havc an expression for thcse sources, we have to take sorne rnodels
about the vaporizalion rale and lhe drag force acting on the droplets, sorne of
thesc rnodels are wcll known in lhe litcrature [l5}, here we are not con cerned with a
particular model, so \Ve can not calclllale those tcrms. In lhe following paper [13], we
give them a kinelic inlerpretalion as weH as an cxpression in terms of distribution
fundions.

The energy equations we constructcd here are not aH necessary in a practica!
problem, the leading special conditions indicate lhe relevant variables and then the
eqllations to be considered.

\Ve ernphasizc that the balance equatiolls are Ilot c10sed and we have to add
the constitutive equations for the fluxt..'S and thc equations of state, as it is done in
aHY usual thermodynarnic theory [14]. As we said hefore, the applicability of these
equations is a very broad one, it goes fmm (,Olllbllstion chemistry lo drying of food.
It is c1ear that the constitutive equatiolls alld thc equations of state are specific of
the problem we are interested in. Our treatmcnt tries to he a general one and we
do not want lo particularize it with additional assumptions concerning a specific
situation.

At last, we notice lhat our set of cl1uations can also be used to study other
systems like polidisperse solutions. Thcre we also have a size distribution ror lhe
particles inmerscd in a solvent. bul thcre is no vaporization, in such a way thal the
equations can be significanlly simplified. lt is obvious that the equations nf'cessary
to c10se the set, win be \'ery differcnt from the case where the particles vapori7..c.

Acknowledgments

We acknowledge Pro£. Carda.Colín ami S.f..1.T. De la Selva for frllitflll discussions
about this work.

References

1. e.M. Faeth, Prog. Energy Combusto 5ci.9 (1983) 1.
2. \V.A. Sirignano, Prog. Energy Combusto Sci.9 (1983) 291.
3. 1L\V. Thiring and M.P . .Kewby, .¡Ih Symposium 00 Combustion. WiIlia.ms and

Wilkins, Ballimore (1953) p.i89.
4. A.J. Shearer, JI. Tamura and G.M. Faeth, J. o/ Energy 3 (1979) 79.
5. C.I'. Mao, G.A. Szekely and G.M. Faeth, J. o/ Energy 4 (1980) 8.



Irreversible Therrnodynamics For Spray /Jehavior 447

6. G.A.E. Godsave,.tlh Symposiurn on Combustion. \Villiams and \Vilkins, Daltimore
(1953) p.813.

7. P. Eisenklam, S.A. Arunachalam, J.A. \Veston, 11th Symp. Orl Combustion. Pittsburg
Penn. (1967) p.715.

8. E.G. Masdin, M.IV. Thiring, J. Inst. Fuel35 (1961) 251.
9. K. Kobayasi, 5th Symposium 00 Combustion. Rcinhold, New York (1955) p.141.
10. G.A. Agoston, H. \Vise, W.A. Rosser, 6th Symposium 00 Combustion. Reinhold New

York (1956) p.708.
11. IV.T. Sha, S.L. 500, Int. J. lleat /'j Mass Thm,jer 21 (1978) 1581.
12. S.L. 500, Fluid Dynamies oj Multiphase Systems. B1aisdell (1967).
13. J.R. Varela, R.M. Velasco, Kinetic Equations for Spray Behavior Rev. Mer. Fis. 35

(1989) 448.
14. S.R. De Groot, P. Mazur, Non-Equilibrium Thermodynamics. North lIo11and (1962).
15. A.B. lIedley, A.S.M. Nuruzzaman, G.F. Martin, J. los. Fuel, 44 (1971) 38.

Resumen. En este trabajo se estudia la termodinámica irreversible
para un sistema ¡nhomogéneo formado por un gran número de gotas
inmersas en una mezcla multicomponcnte de gases. Se considera que
las ecuaciones de conservación y balance son válidas para el sistema
completo, ello permite escribir ecuaciones de balance para las variables
correspondientes a los gases y a las gotas, que a su vez se clasifican de
acuerdo a su tamaño. La interacción entre gotas y gases se toma en
cuenta mediante la inclusión de fuentes de masa, momento y energía en
las ecuaciones de balance.




