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Abstract. An irreversible thermodynamic theory is developed in order
to study a non-homogeneous system, having a multisize set of droplets
inmersed in a multicomponent mixture of gases. Conservation and bal-
ance equations are considered to be valid for the whole system and we
derive the equations of motion for any gas component and for each class
of droplets classified according to their size. The interaction between the
droplets and the gases is taken into account through mass, momentum
and energy sources in the corresponding balance equations.

PACS: 47.55.Kf; 05.70.Lm

1. Introduction

Spray behavior is important in some industrial processes like hydrocarbon com-
bustion, food drying, pulverizing of some products, etc.. In this kind of processes
the spray is inmersed in a gas flow thus provoking between spray and gas an in-
teraction through the mass, momentum and energy interchanges. There exist in
the literature [1,2] some approaches to study such systems. Many of them consider
the spray (dispersed matter) and the gas flow (continuum) as independent systems,
and introduce in a later stage some convenient approximations in order to take into
account the interaction between them. Other studies assume that the spray and
the gas together form a uniform fluid in physical and chemical local equilibrium,
consequently the usual fluid mechanics equations are the starting point of their
developments [3-5]. A characteristic of these last approaches is that they tend to
neglect the interaction between the spray and the gas, a crude approximation per se,
which is partially solved by introducing the dispersed matter properties based on the
behavior of an individual droplet [6-10]. In this work we try to take advantage from
both approaches; we consider the spray and the gas as a one continuous media, but
we separate the gas flow equations from the dispersed matter equations. This is done
at the expense of introducing source terms into the mass, momentum and energy
equations. These sources will be taken alternatively from a numerical simulation of
the problem based on the properties of individual droplets, or from a kinetic theory
treatment.



436 J.R. Varela and R.M. Velasco

From the point of view of irreversible thermodynamics, our approach contrasts
with some others in the literature [11,12], where the droplets and the gas are taken
separately. Those papers do not take a unified view of the system and the interaction
is not taken properly. In fact, we consider as a starting point the balance equations
for the whole system to emphasize our main hypothesis, which is that the mixture
of gases together with the droplets are the system we are working with.

In Section 2 we define the system characteristics and introduce the notation to
be used. In Section 3 we establish the mass conservation, while in Section 4 we do
it for the momentum. At last in Sections 5 and 6 we discuss the energy balance
equations, and give some concluding remarks.

2. Multisize-multicomponent systems

The system we are interested in this work consists of a two phase inhomogeneous
fluid, for example: i) mixtures of gases in which there are droplets immersed in;
ii) a liquid carrying bubbles with it. In both cases we distinguish a continuum phase
interacting with a dispersed one. We are specially interested in a dispersed phase
formed by a very large number of droplets having a size distribution. The initial size
distribution is determined by external conditions, like the atomizer characteristics.
As time elapses the droplets change their size according to a vaporization rate and
the corresponding size distribution also changes. The droplets are all inmersed in
a multicomponent mixture of gases having a temperature distribution and moving
with some velocity. Such a system is what we call a spray. In particular for the
hydrocarbons combustion we have the following model: i) The continuum phase is
a multicomponent mixture of nitrogen, oxygen and fuel vapors at a higher tem-
perature than the liquid fuel in the droplets. ii) As we said before the heat flux
induces vaporization of droplets, the vapors become a part of the continuum phase,
but also the droplets size decrease until they disappear. When the droplets size
becomes smaller there is also a change in the momentum, mainly because the drag
force exerted by the continuum changes according to the droplets’ radius.

Now we will define some useful quantities in order to describe such a system.
First of all, the continuum phase is an inert mixture of N gases, its density p.(x,t)
depending on position and time and can be written in terms of the densities p+(x,1)
of the species v in the mixture

N
pelx,t) = ) py(x:1). (1)
=1

The hydrodynamic velocity uc(x,t) is defined through the corresponding hy-
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drodynamic velocities v (x,t) of the species vy

pe(X, t)uc(x,t Zp.,(x v, (x,t). (2)

r=1

Any given property .(x,t) of the continuum phase may be written as

N
PC(x’t)wc(x’t) = Zp,(x,t)w.,(x,t), (3)
=]

provided 1 is a linear function of the hydrodynamic variables.

In the dispersed phase the number of droplets in a small macroscopic volume
element is very large, so we can classify them according to their size. The set of
droplets with radius between Ry and Ry + ARy are called “size-k” and each “size-k”
is characterized by some local thermodynamic properties. The dispersed matter is
composed of M sets of droplets. Each size-k has a density pi(x,t) defined as the
mass of droplets of size-k divided by the total volume of the system, so that the
dispersed phase density is given by

N
= Zpk(xat)’ (4)
k=1
the hydrodynamic velocity
M
pa(x, ua(x,t) = Y pr(x,)vi(x, t). (5)
k=1
and any linear property vy is given by
M
Pa(X, )%a(x,8) = 3 pr(X, )y (x, t). (6)
k=1

The whole system is characterized by the density p, the total hydrodynamic
velocity U and any property v is given by :

p(xvt) = pc(x!t) + pd(X, t)a (7)
p(x,t)U(x,t) = pe(x, t)uc(x,t) + pa(x, t)ug(x,t), (8)
p(X, t)Y(x,t ) = pe(x t)pe(x,t) + pa(x,t)a(x,t). (9)

Finally we define the relative velocities wy(x,t) for any size-k and w(x,t) for
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the 4 component in the continuum as follows

wi(x,t) = vi(x,1) — U(x,1), (10)
wy(x,1) = vy(x,t) — U(x,1), (11)

We include here the relationship

PUY =D pivithi + Y piwi(t — 1) (12)
=1 =1

because it is useful in some later calculations. Hereafter we will use the index 7 in
the summation symbol in order to shorten the equations, thus the terms from 7 = 0
to © = M represent the size-k terms of the dispersed phase and the terms from
t=M+1to:=M+ N represent the N components in the continuum phase.

3. Mass Conservation

As we said before, the system is formed by two kinds of continuous media, one
is represented by the mixture of gases, where we know the balance equations to
be written. The droplets are also considered as a continuous media but it is not
a trivial matter to guess the corresponding balance equations. To circumvent this
difficulty, we will take the system as a whole and write the usual conservation and
balance equations for it. In a further step and consistently with the definitions
given in Section 2, we will assume that the species and each size-k set properties are
additive. To undertake the validity of this hypothesis in the equations of motion, we
will introduce some sources there, then we separate the equations for each species
and each size-k set of droplets.

We will begin with the well known mass conservation equation for the total
inhomogeneous system

dp ; B
B + div(pU) = 0. (13)

Direct substitution of Eqs. (1)- (8) into Eq. (13) and the introduction of the
source term allows us to obtain the equations of motion for p; and p,, after a
separation of each term in the summation namely,

ad )
5Pk + divierve) = —éf, (14)

a . m
5:P7 + div(pyvy) = 67, (15)

where ¢7* and ¢T' are the mass sources for each size-k and each component respec-
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tively. The source ¢ is the mass rate of species ¥ added to the continuum phase
per unit volume, it is always positive because we assumed only the existence of
droplet vaporization. This fact eliminates condensation of species v into a droplet.
Then, ¢7' is the amount of mass which is being fed into the continuum phase. The
droplets in each size-k vaporize and the fuel vapors go to enrich the species ¥ so we
can write

M
gr=> dr.., (16)
k=1

where ¢}, gives us the mass contribution to species 4 coming from size-k droplets.
When the combustion reactions occur it is necessary to include in these sources the
reaction rate between different chemical species 4 and 4' for each reaction

M L
o7 =D Bt D 9T, (1)
k=1 =1

here we have assumed that there are L independent chemical reactions and ¢, are
the corresponding rates.

The —¢}* in Eq. (14) represents a mass sink for each size-k droplets, namely,
the mass lost in size-k produced mainly by vaporization. Thus, the mass of vapors
enters into the continuum phase and the droplets become smaller. When the size of
the droplets in size-k decreases to the range Ry_, they contribute to size-(k — 1),
at the same time the set size-(k 4 1) is loosing droplets which are going to size-k as
well as to the vapor phase. Thus,

N M
=t ¢l (18)
=1

=1

The important terms in this equation are: #r41—1 which gives us the mass
transferred from size-(k + 1) to size-k by the reduction in size of droplets, and
#¢"_x_y which is the mass lost by the size-k, it is proportional to the number of
droplets that after vaporization become of size-(k — 1). In order to satisfy Eq. (13)
it is obvious that we must require that these sources are to be restricted by :

N M
Yoy = ér=0 (19)
=] k=1

The physical meaning of this equation is now very simple: the rate of mass lost
by the dispersed phase is fed into the continuum in such a way that the total mass
is conserved.
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4. Momentum balance equations

Following the same steps as in Section 3, we will assume the total momentum of
the system obeys the usual balance equation given by

%pU +div(pUU + Z) = pf, (20)

where Z is the total pressure tensor. Here, the pressure tensor is introduced in the
same spirit as it is done in the usual theory, but we need an interpretation for it. To
be specific we want to express it as a superposition of two tensors coming from the
gases and the droplets. This is an additional assumption which can be justified by
means of analyzing the physical meaning of any pressure tensor. Any pressure tensor
measures the momentum transport in the system, but in our case the gases as well
as the droplets transport momentum, giving rise to a different kind of contribution,
then

I=Pl+1.+1,, (21)

where P is the isotropic part of the pressure tensor and it will be interpreted as the
usual hydrostatic pressure for the whole system, [ is the unit tensor, Z is the usual
viscous tensor for the mixture of gases. In contrast, the meaning of the “viscous”
tensor Z is not clear from a phenomenological point of view, we introduce it here in
the same spirit as is done in other works [11-12] and we attempt to give it a kinetic
interpretation elsewhere [13]. In fact we can say that it is somehow related to the
average correlation function of the relative velocities for the droplets.

Both tensors Z. and Z4 can be written as

N M
=) 1, Li=) L (22)
r=1 k=1

Finally in Eq. (20) pf is the bulk external force, which can also be written
as a superposition of the bulk forces acting on each species and each size-k set of
droplets.

of = Z pifi. (23)
1=0

Direct substitution of Eqs. (1)-(8), (22) and (23) in Eq. (20) leads us to the
sought momentum balance equations, namely,

d :
a(f’v"v) + div(py vy vy = pyWawy + Iy) + 3, VP — pyfy = —4551 (24)
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a :
a(pkvk} +div(pevive — prwiwg + L) + i VP — pfy = ¢f (25)
The pressure gradient affects both the dispersed phase and the continuum phase,

thus contributing to all equations. The 3, and f§; phenomenological coefficients
measure the effect of this pressure gradient and they satisfy the following condition

Z,@. =1. (26)

The momentum sources ¢f and 45,}: also satisfy a restriction condition similar to
Eq. (19) in order to maintain the validity of global momentum balance as indicated
in (20). Therefore,

M N
Y- ¢ =0 @7)
k=1 =1

These sources can also be written as a superposition of effects coming from the
corresponding phases

M

6 =D 64 (28)
k=1
N M

$= 0+ bl (29)
=1 k=1

Here ¢f——k is the rate of momentum per unit volume transferred from species v

to size-k and ¢f5k is the rate of momentum density transferred from size-&' droplets
to size-k droplets.

5. Kinetic and potential energy balance

The kinetic energy balance equations are directly obtained from the momentum
equation upon taking the scalar product with the velocity. From Eq. (25) we obtain
that,

ad .
37 (2Pkvk) +div [Forvivi — pewi (Ve - i) + Vi Ti + prwawy 1 Vv

=Tk : Vv = Bevi- VP + ppvi - fi + vi - oF + LoZop, (30)

This equation is valid for each size-k droplets set (k=1,...,M). The kinetic energy
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equation for the v species (y = 1,...,N) is given by

a .
5 (1,0703,) + div [%P'r”g‘(? — pyWo(Vy - Wy) + vy L] + py Wy Wy : Vvy

P
=Ty Vg — Byvy - VP 4 pyvy £y — vy - 3 — J0367. (31)

Eqgs. (30) and (31) assume the validity of the mass conservation and momentum
balance equation, but they contain no other additional hypothesis. Notice should
be made of the fact that in these equations the momentum and mass sources are
added to the usual kinetic energy sources as we could expect to be the case.

It is also useful to have the balance equations for the squared relative velocity,
since it represents in a crude way the dispersion of the velocities with respect to the
hydrodynamic velocity of the system. Those equations are obtained in a straight-
forward way by taking the difference between Egs. (20) and (25), then we take the
scalar product with wy or w,,

a 1 2 0 1 2 | e i
& (§pkwk) + div [apkwkU] — swip div(peU) + pewiwy vu

a
+wg - [div (z,t = ”—“1) 419 (ﬂ)]
p p
= Wg - [*ﬁkVP + (i — ) + 6 + (U= 3wi) tﬂ"] (32)

and for the components

a . ;
5 (lp.,wg) + div [%p.,wiU] - -lz-w?r div(pyU) + pywywy : VU

+wy - [div (1., — %l) +Z-V (%)]
= wy BT+ pally — )= 8] = (U= wa) 87| (33)

The balance equation for the total kinetic energy is obtained by adding the
equations over all the species v and all size-k sets of droplets in the system. The
result is the well known kinetic energy equation

%(%902) +div(3pUPU+U-7)=U-VP+pU-f+T:VU.  (34)

* In order to derive the potential energy balance equation we first assume that
all the bulk forces acting on the system are derived from time independent scalar
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functions representing the potential energy per unit mass, namely,
fr = =V, fy = —Ve,. (35)
The total bulk force can be written as
P
pf = —ch,9+pr,-? (;), (36)
i=0

where ¢ denotes the total potential energy. If we now take the time derivative of
py we obtain that

N M
a . m m
7:P% T div(pUp) = —pf - U =Y ",V - (piw;) + Y oy + > sl (37)
1=0 r=1 k=1

which is the sought balance equation for the potential energy density pe.

6. Energy conservation

The total energy E of the system we are studying is a superposition of the kinetic,
potential and internal energies, namely,

PE = 3pU% + pp + pe, (38)

where e is the internal energy per unit mass. The total energy flux Jg is defined as
Je=peU+T-U+q+ ) piwip, (39)
1=0

where peU represents the convective energy flow, Z - U is the mechanical work, qis
the heat flux and the last term is produced by the diffusion fluxes p;w;. We assume
that the total energy is a conserved quantity, so it satisfies a continuity equation

d
PE+divip =0 (40)

Direct substitution of Eqs. (38), (39), (34) and (37) in Eq. (40) allows us to
write a balance equation for the internal energy in our system

M N

a ;

aPet div(peU +q) = -Z : VU + Zp,'w.- i+ thﬁg‘ + ZW7¢T' (41)
k=1

1=0 ¥=1

According to the well established framework for irreversible thermodynam-
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ics [14], we are allowed to recognize Eq. (41) as the local form of the first law
of thermodynamics. That framework also contains the local equilibrium hypothesis,
which we will use here to derive the balance equations, of the entropy and the
enthalpy of the system.

The local equilibrium assumption is quantified by the Gibbs relationship written
in the Lagrangian system, namely,

Ds De D1 D pi
s o8 P e B 12
Dt~ Di T Dip 2 i, (42}

i=0

where s is the specific entropy, T the local temperature, u; are the local chemical
potentials and 75; = ’c% +U.V is the Lagrangian or substantial derivative. The rest
of the symbols have alrcady been defined.

From the mass conservation and the internal energy balance equations we obtain
an entropy balance equation which can be written in the following form:

ggps—i-divJs =g, (43)

where

1
J, = psU+ T (q = Z{, Pi#lwi) (44)
1=

is the entropy flow, and
1 1 g I
=01 5 = e . —— m & .._‘r ——
o=q-V (T) Z:vVU T TE=1 [(;L, +0y) O3 + Py Wy (TV T f.,)]

+ % i:] [(F‘k + k) OF — Pk - (TVMT} - fk)] 8

is the entropy source, or entropy production.

The entropy flux has a convective term, a contribution of the heat flux and
the diffusive fluxes. The entropy source has the same characteristics as that for a
simple fluid, but the mass sources ¢ and ¢7' appear in it. When there are chemical
reactions in the system, the mass sources multiplied by the chemical potential give
us the product of the corresponding affinity of the reaction and the reaction rate.

At last we write the enthalpy balance equation because it is specially useful
when the combustion reactions are taking place. We start with the conventional
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thermodynamical relationship, namely

Dh Ds 1DP
Dt _TDt+th’ (46)
where h is the specific enthalpy. Eq. (46) is a straightforward consequence of the
local equilibrium assumption. Now we express the enthalpy as the superposition of
enthalpies for the size-k sets of the droplets and the species in the continuum phase.
After some cumbersome algebra we obtain the enthalpy equation for the size-k,
namely,

D1 . DP 1 Lk i 1
a;(mhk) = Bk D p(ﬂk“’k) (TVT fi) - pV- [T(Qk—ﬂk#kwk)]
i 11, 1 - . ik
+ Pl VT Plk-VU p(uk er)oE +dE,  (47)

and the enthalpy balance equation for each v-species,

D1 DpP 1 i /4 1
E;(thv) =bBrp; ~ ;(vaw) : (TV% -f)- ;V' [?(Ch % Pvﬂvwv)]
T o1 1 1 I
- Vo~ ;l., VU + ;(ﬂ-; — )oY +dy.  (48)

In Eqs. (47) and (48) the quantities qbi‘ and 45# are the enthalpy sources arising
from the interaction between the droplets and the species of the gas mixture. They
satisfy a restriction equation similar to the ones satisfied by the mass and momentum
sources, namely,

M N
Dokt dh=0. (19)
k=1 =1

7. Concluding remarks

The equations we have constructed in this work are valid for the spray system,
which is composed of a multicomponent mixture of gases and M sets of droplets
having different sizes. The equations are consistent with the general scheme of the
usual irreversible thermodynamic theory. Accordingly the mass, momentum and
energy balance equations for the whole system are taken as a starting point for the
development of our treatment. The corresponding equations for one species of the
mixture or a size-k set of droplets are obtained from the general equations by the
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introduction of the sources, which are not known from a phenomenological point of
view.

Alternatively, it is possible to take another way to arrive to the same equations
of motion; i.e. we take the balance equations of the system as a whole, the equations
of motion of the mixture of gases, which in fact are well known, and we separate the
equations for the dispersed phase by means of the introduction of the sources, which
measure the interaction between the gases and the droplets, so the introduction of
the sources is the price we paid to separate the equations.

In order to have an expression for these sources, we have to take some models
about the vaporization rate and the drag force acting on the droplets, some of
these models are well known in the literature [15], here we are not concerned with a
particular model, so we can not calculate those terms. In the following paper [13], we
give them a kinetic interpretation as well as an expression in terms of distribution
functions.

The energy equations we constructed here are not all necessary in a practical
problem, the leading special conditions indicate the relevant variables and then the
equations to be considered.

We emphasize that the balance equations are not closed and we have to add
the constitutive equations for the fluxes and the equations of state, as it is done in
any usual thermodynamic theory [14]. As we said before, the applicability of these
equations is a very broad one, it goes from combustion chemistry to drying of food.
It is clear that the constitutive equations and the equations of state are specific of
the problem we are interested in. Our treatment tries to be a general one and we
do not want to particularize it with additional assumptions concerning a specific
situation.

At last, we notice that our set of equations can also be used to study other
systems like polidisperse solutions. There we also have a size distribution for the
particles inmersed in a solvent, but there is no vaporization, in such a way that the
equations can be significantly simplified. It is obvious that the equations necessary
to close the set, will be very different from the case where the particles vaporize.
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Resumen. En este trabajo se estudia la termodindmica irreversible
para un sistema inhomogéneo formado por un gran nimero de gotas
inmersas en una mezcla multicomponente de gases. Se considera que
las ecuaciones de conservacién y balance son validas para el sistema
completo, ello permite escribir ecuaciones de balance para las variables
correspondientes a los gases y a las gotas, que a su vez se clasifican de
acuerdo a su tamaifio. La interaccién entre gotas y gases se toma en
cuenta mediante la inclusién de fuentes de masa, momento y energia en
las ecuaciones de balance.





