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Abstract. In this work we are concerned with a kinetic description of
a non-homogeneous system. The system is composed by a multi size
set of droplets immersed in a multicomponent mixture of gases. In the
preceding paper we studied this problem from a phenomenological point
of view, here we assume both the droplets and the gases are described by
the corresponding distribution functions. Those functions satisfy a mod-
ified Williams equation and the Boltzmann equation respectively. The
set of equations are coupled through the interaction between droplets
and the gases in the mixture. We found that the droplet vaporization
rate is affected by the collision with the gas molecules. A force, caused by
the gas-droplet collisions acting on the droplets appears. We identify the
mass, momentum and energy sources, which were defined in a previous
phenomenological treatment in order to have the conservation equations
of the system as a whole.

PACS: 47.55.Kf; 51.10.+y

1. Introduction

Spray vaporization and combustion have several important practical consequences
for some industrial processes. This fact has been a strong motivation to improve the
knowledge of spray characteristics. The study about this problem has been done
mainly along two lines: i) The experimental work has increased a lot since the laser
technics were available, because those experiments allow a better observation of size
and velocity distributions of droplets along the spray [1], 7)) Computing facilities
have also helped to study and predict the spray properties [2].

According to some recent reviews [3,4,5], the theoretical aspects of spray be-
havior have been studied from different points of view. For example, the isolated
droplet vaporization, the internal motion in the droplets, some characteristics about
the local heat transfer, have received a lot of efforts.

In contrast with these advances, the approach based on distribution functions
seems to be underdeveloped. The classical work of Williams [6] established the
basic ideas to study a spray from that point of view. Later Sirignano [7] took into
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account the droplets internal energy and he considered its contribution to the kinetic
approach.

Williams assumed valid the statistical description and he considered a multidi-
mensional distribution function which gives some information about size, velocity
and position of droplets as a function of time. He derived the kinetic equation satis-
fied by such a function. The Williams kinetic equation considers the interaction of
droplets and gases through an external drag force acting on them. This assumption
allows to study the droplet evolution independently of the gases, and drives that
approach to a "Separated Flow” view of the spray [3).

In this work we are concerned with the same problem as Williams and Sirignano,
but we will describe the spray by means of N + 1 distribution functions, one of
them for the droplets and N for the N-component mixture of gases. There will be
N + 1 kinetic equations strongly coupled through the collision kernels, like in the
Boltzmann equation [8]. However, we will simplify those collision terms through
some approximations, which we consider valid for the particular spray problem.

The kinetic approach leads to a set of equations for some statistical averages,
which can be identified with the macroscopic local variables. The set of equations
we obtained by this method is compared to the phenomenological equations we
derived in the preceding paper [9]. The mass, momentum and ENEergy SOurces are
also identified.

In Section 2 we establish the kinetic model we are interested in, we also make
some approximations to obtain a modified kinetic equation for the droplets. In
Section 3 the general balance equations are obtained while in Section 4 and 5 we
take some particular cases for the mixture of gases and the droplets respectively. At
last, in Section 6 we make a comparison with the phenomenological theory and we
give some concluding remarks in Section 7.

2. Kinetic model

In this section we will sketch the kinetic model we use to study the spray. The
spray contains a multicomponent mixture of gases and a large number of liquid
droplets. They are immersed in the gases and move with them. We assume the gas
species are described by the usual Boltzmann equation, each gas component will
be characterized by the distribution function filei,x, 1), where ¢; is the molecular
velocity of a molecule of the i-species with mass mi, then fi(e;,x,1)dc;dx gives us
the number of species-i molecules with velocity in the range (c;,¢; + de;) in the
volume element dx at time ¢.

The kinetic equations are:

Pa

ad a a
“a—tf:(cnxst) C 2 Fd a—xfr(chxst) + Fexy - a—c'_fi(ciaxJ)

N
=D Jilfo i)+ Jufifa) i=1,...,N,(1)
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where Foyt is the bulk external force per unit mass acting on the system, Jii(fi, fi)
are the usual Boltzmann collision kernels, which take into account the binary in-
teraction between molecules of ,j species. The last term Ji4(fi, f¢) measures the
interaction between i-molecules and the droplets, it depends on the distribution
function for i-molecules f; and the distribution function of droplets fs. There are N
coupled equations like Eq. (1), because there are N' chemical species in the mixture.

The droplets are atomized in such a way that there are a lot of them immersed
in the gas, they vaporize with a vaporization rate Ryap and the vapors become one
of the species of the gas. We will assume the droplets are spherical of radius R and
move with velocity v. The droplet properties are being described by a distribution
function, so f4(R,V,x,t)dRdvdx gives us the number of droplets with radius in the
range (R, R+ dR), velocity between v and v +dv in the volume element dx at time
t. The kinetic equation we will assume to be valid is like the Williams’ equation [6]

7] d o
afd(R,v,x, H+v- b—xfd(R,v,x,t) + ﬁ[Rvapfd(R,v,x,t)]

N
st e falBov60) = 3 Jalfa SO+ Jualfas S, (2)

=1

where Jd.'tfd, fi) represents the interaction between the i-species in the gas and the
droplets, consequently the summation gives us the contribution of all species. The
term Jga(f4, fa) is the droplet-droplet interaction which we consider negligible for
a dilute spray. In order to express the collision integrals in terms of the distribution
functions we will follow the kinetic theory ideas [8]. First of all the collision kernels
Jij are the usual ones,

Jij = /[f,‘(c’,-,X,i)fj(C;,X,i) — files, xat)fj(cj,x,t)]g.'jdrijdcj' (3)

where ¢}, c; are the velocities after the collision, ¢;,¢; are the velocities before the
collision of particles 4, j, gij is the magnitude of the relative velocity and dT';; the
corresponding cross section. The distribution functions f;, f; satisfy Eq. (1), which
is coupled with the kinetic equation for the droplets. The droplets affect the gas
kinetic equation mainly through the collision integral Jia(fi, fa), here we will assume
there is a binary interaction between a gas molecule and the droplet. The dynamics
of that interaction is given by a cross section which we call dT';4, the velocities after
the collision are ¢} and v/, and the corresponding velocities before the collision are

unprimed, then,

M=fMMmMMRMmﬂ

— filei,x, 1) fa(R, v, %, t)]gigdTigdRdv, i=1,....N, (4)
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here R' is the droplet radius after the collision. We recall that there is no nucleation
nor coalescence of the molecules on the droplets, the change in the droplet radius
is caused by vaporization. We simplify the collision integral in Eq. (4) by making
some assumptions about the interaction of the gas molecules and the droplet. First,
the droplet is very big compared with the molecule, the droplet distribution func-
tion is almost unaffected by one molecule collision, meaning that f3(R',v',x,t) =
fa(R,v,x,t) in Eq. (4). On the other hand the molecules suffer a big change and
we will assume ¢, = —c; so the molecule is reflected by the droplet. Taking into
account these assumptions, Eq. (4) can be written as follows

Kallda)= ]fd(R,V: x, )

X [f.'(—c,-,x,t) - _ﬂ(c,-,x,t)]g,-ddl",',ngdv, t=1,...,N. (5)

Now we will discuss the collision integral Jy;( f4, fi) which collects the effects of
the molecule collision with the droplet. The cross section for such a collision is dI'g;,
the relative velocity is gg; so

i = ] alR V%, 8)fi(e %, 1)
- fd(RJ V:x)t)-ﬁ(cisxat)]gdidl—‘didci’ = 17- 5N (6)

The radius of the droplet after the collision is calculated through the vaporiza-
tion rate Rvap which can be obtained by means of an independent model or from
experimental data, it can be written as

t+r
== R ‘{'“/ Rvapdt = R + a(t, T), (7)
t

where R is the radius before the collision and 7 is a characteristic collision time.

The droplets velocity after collision v/, is calculated from a momentum balance.
The momentum change for a droplet is

4 4
(AP)y = gprRa(v’ —-v)+ gvrpLR2av', (8)

where py is the liquid density and (AP)y is calculated up to first order in a. The
change of momentum for the gas molecules is given by the momentum change of
one molecule multiplied by v;r, where v; is the number of collisions of molecules of
species ¢ with the droplet per unit time.

According to the hypothesis about the momentum transfer given prior to Eq. (5),
the change of momentum for a molecule is 2m;c;, therefore the momentum conser-
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vation gives us

F 30V 3 mivit 5
B R 2rp 3

(9)

We substitute Eqs. (7) and (9) into (6) and we expand in Taylor series up to
the first order to obtain

o a
DT Iy - {—%v D Jal Ry, %,1)

3 miyT

d
+ (’ﬁfd(‘,?-\r»xa t)] =

i
xor R By ; 10
QWpLR373' -()vfri(R,V‘x,t), (10)

where the quantities v1;,72; and 93; depending on R, v and the gas properties are
given by

sl Brv ) = / Fit—ciy %, HgadCadcs, (1)
v2i( R, v, {gas}) = ]f:‘(chx,i)ymdf‘didcu (12)
yail R, v, {gas}) = j it 2 By, (13)

They contain the collision dynamics and the properties of the gas. Substitution
of Eq. (10) in Eq. (2) allows a great simplification in the kinetic equation for the
spray, t.e.

2w 2 s 2 [ a3 mte] + [Fo + 3wl
It d e d R vap — & T )ld ext I=l“fl| R

=1
f a . g
- ; ﬂsmm.] : (.)_Vfd = ;(’h, —vi)fa— fa (ﬁﬂ ;w) (14)

To obtain this equation we have defined 3; = 3v,7/27py, and assumed the spray
is diluted enough to neglect the interaction between droplets, represented by the
collision integral Jgz. Now it is possible to look at the modified equation for the
spray. Eq. (14), in a different way: the first two terms are the usual ones in all
kinetic equations, the third term gives an effective vaporization rate

N
Ref = Ryap — @ Z‘Yh‘w (15)

1=1
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which is the vaporization rate for an isolated droplet modified by the collision with
the gas molecules. The fourth term in Eq. (14) is a very interesting one because
it is given by the external bulk force Feyy modified by collisions between the gas

molecules and the droplets, it depends on the droplet characteristics as well as the
gas properties. We hope the additional terms in this force will render us a drag force

N N
3a 1
Fef = Fext + g 73:’EV = F E Bimivsi, (16)
i=1 1=1

Finally, the right hand side of that equation is a linearized collision term in
a Williams-like kinetic equation, which looks like a Bhatnagar, Gross, Krook [10]
approximation for the droplets, with a relaxation time given by

. N 5 N
O~ (R, v, {gas}) = _2(71‘-72*)+ﬁ a) |, (17)
] 1=1

t=1

The spray kinetic equations are then written as

9 9. a .. 9.

afd +v- afa + ﬁ[ﬁeﬁfd] + Fefr b;fd =—-07" f4, (18)
a i) 9, &

5fi i g fit Fext: Eff = ; Jii(fi, fi)+

+ffd[fi(—cz‘,x=i)“f.'(C:',X,i)]geddeddeV, (i=1,...,N). (19)

They are coupled equations but the droplets distribution function only appears in
a linear way.

3. General balance equations

In order to obtain the balance equation for the spray we need a definition for the
average quantities. Let ¢i(c;,x,t) be any function of the species variables in the
gas, its average given by

(ewx)) = = [ dewfiCessx iteix, ), (20)

‘2

where

s f{fC,‘f,‘(C,‘,X,i) (21)
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is the number density for the ¢ component in the mixture.

If we want to obtain the average of a function of the droplets variables
6q(R,v,x,t), we will use the corresponding average

{¢a(R,v,x,t)} = ﬁ/f,g(R,v,x,t)qbd((R,v,x,t)dv, (22)
where
(N) = /fd(ﬁ,v,x,t)dv (23)

is the number of droplets of radius R in the volume dx at time {.

When the quantity we are interested in does not depend on the radius of the
droplets, we can also average over them, thus obtaining the corresponding local
quantity, i.e.

1
((qu)) = Wffd(R,v,x,t)¢d(R,v,x,t)dvdR, (24)
where
() = [v)ar (25)

is the number of droplets in dx at time t.

The general balance equation for any physical variable associated with the -
component of the gas mixture is obtained multiplying Eq. (19) by the corresponding
function ¢;(c;,x,t) and integrating over c;, the result is

d
aﬂi{ﬁbi} + V- [ni{i}U + ni{cigi}] — ny [{%9’5:‘} +{ci-Vdi} + Fext - {Ve,; 01}
= 3 [ el e+ (i), (26)

where U is the hydrodynamic velocity of the whole system and it is given in terms
of the gases velocities uy,

oy 4 (V) ()
U=—"smm

(27)

1 N
u, = ;Zn,-uj, (28)
=1
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o,
u; = — [ c¢;filcj,x,t)dej, (29)

ny

The quantity g, is given by

o e ) = j Dil—es 2,8 = fileix, aadlia (30)

and it depends on the droplets’ variables and the properties of the mixture.
On the other hand, the general balance equation for any function of the droplets
variables is given by

SUNYBa)) + - ENYV6a)] + 3 lN) R

K > < V¢d> % <Reff%¢d> <a% : ¢dFefr>]
= —(N)(07 ¢u). (31)

All variables in this equations are functions of x, and the radius R of the droplets.

4. Balance equations in the mixture of gases

In this Section we will consider some special cases of the balance equations we wrote
in Section 3. We begin with the mass equation and to obtain it, we choose ¢; = m;
and substitute in Eq. (26). The result is given by

gz,ﬂ: + V- (piu;) = /m,J,J(f,, Fi)dei + mi ({1u) (32)

N

where the symbol Y ' means that the term i = j is absent and p; = n;m;. That
i=1

term is zero because the conservation of mass, momentum and energy is valid in a

i — 7 molecular collision
m;
/J:‘:‘(fiafi) e dej= 0 (33)

ﬁm,c.-

Eq. (32) can be written as a concentration balance equation for i-species but
we do not need it explicitly.
To obtain the momentum balance we choose ¢; = m;c; to sustitute in Eq. (26),
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then

; N
%mu, + V- [pi(u;U + Un; —UU) +P] = pFexi+ ) ' f Jimicide; + ((micips)) ,
=1

(34)

where P; is the pressure tensor defined as
P; = _/"?eCics‘fr(Ci,x,i)dCi- (35)

In a similar way we obtain the energy balance equation, in that case ¢; =
2 . .
(1/2)mc; is the total energy because we assumed the molecules have no internal
degrees of freedom. The macroscopic variable corresponding to that function is given
by

ne; = /%m,‘c?f,(c;,x, )de;. (36)
The balance equation we obtain is the following one
) N
Fliet V:[peU+ql= Z / ik Jiy (fi, e + ({3micius)) (37)
i=1
where we have defined the heat flux q;
1 o . o
= sm,'c;‘c,'f,'tc,',x, t)de;, (38)

All balance equations we constructed here are similar to those used in kinetic
theory of gases, but they have an additional source term coming from the interaction
with the droplet immersed in the gas mixture.

5. Droplet balance equations

To study the droplets behavior we will take some particular cases of the general
balance equation given in Eq. (39). First of all we are interested in the number
of droplets in a volume dx at time t with radius between R and R + dR. That
information is obtained by taking ¢4 = 1 in Eq. (39)

510 + ZN) ) = = e N Fe) + V) [( - Far) = (7). )

We immediately see that the number of droplet does not obey a conservation



Kinetic equations for spray behavior 457

equation as one would expect, there are changes caused by the effective vaporiza-
tion rate, the effective force acting on the droplets and the relaxation due to the
interaction with the gas molecules.

We define the droplets mass density as

pa(R,x,t) = $7p R N). (40)

The balance equation is obtained by making ¢g = %ij_r,ﬁ‘.3 in Eq. (31), or
multiplying Eq. (39) by ¢4, since the average in velocities does not affect that
function,

104+ 44 = i [~ + (B - 1. @

Following with the scheme of balance equations, we now construct the momen-
tum balance by taking ¢, = %prR3v in Eq. (31)

’ - 2
A0+ It + a0 = g (pa (V) 4 i

+ pa [ﬁ(v[‘x’cn)a%ln{!\f) + <v (% . Fefr)> £ (ve-')J . (42)

where V.= v — (v) and VV means traceless VV tensor. Eq. (42) looks like an
usual momentum equation provided we can interpret the tensor pd(VV) as the
viscous tensor and pg(V?/3) as the pressure, we observe that both terms are in fact
the correlation of the droplets velocities. The last three terms are the momentum
sources also caused by vaporization, the effective force and relaxation respectively.

In a similar way we obtain the energy equation with a function ¢y = %WpLR:i%
7] J vl . 4
o Ey il 57 " IP . = —R —'] N
gt g lealv) +ai+ Py - (v)] M[<2 cﬁ>aR n(N)

R

where €4 is the total energy, qq the heat flux associated with the droplets and Py
the pressure tensor, they are given by

ea = 3pa((v)* + (v%)), (44)

V2
qa = pd< 2 v> ’ (45)
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.. V2
Py = pa(VV) +pa <T> 1. (46)

The pressure tensor written here is the same we identified in the momentum
Eq. (42), it i.e. it gives us the droplets velocity correlation function. We wrote it in
terms of the contributions coming from the symmetric part and the isotropic one,

to compare with the corresponding hydrostatic pressure and the viscous part.

6. Comparison with the phenomenological theory

Now we compare the balance equations we obtained in the Jast two sections with
the corresponding ones in the phenomenological theory [9] developed to study this
kind of systems. First of all, our kinetic treatment allows us to identify the relevant
variables to be used and afterwards the mass, momentum and energy sources, in such
a way that we have now a kinetic expression for them and we know their origin. On
the other hand, in the phenomenological work we assumed the total system obeys
the usual conservation equations, that assumption implying some restrictions on
the sources.

From the point of view of kinetic theory it is not necessary to impose such
restrictions, but we will do it in order to have a complete comparison between both
approaches, at least for spray behavior. For the mass sources we have

N N N
ZZ'/me-fiJ(fs,fj)dCi+Zmi((#i))
i=1

i=1 j=1

2 /pd [—%(Reﬁ) + <%-Feﬂ> = (e-’)] dR=0. (47)

The first term in Eq. (47) is identically equal to zero because the mass of molecules

is invariant in the i —j collision, in fact the collisional invariants satisfy the following
equation

N N my
S0 [ | e ) duts e =o. (48)
i=1 j=1 ° Fmict

The last term in Eq. (47) can be simplified by means of Eq. (24), then

S (i) + () ({na]-5gten + (5% Fer) - ©])) =0 o

1=1



Kinetic equations for spray behavior 459

In a similar way we obtained the restriction equations in the momentum and
energy balance, they are the following ones:

5~ e + (00 { (p [~tvit) G ) + (v (2 - Ber)

=1
- (VG“)]>> =10, (50)

é((%mic?m)) + ((N)) <<pd [<"2—ZRE_.H> %ln(N) + <% : "’2_2Feff)>

R

for the momentum and energy sources respectively.

A close comparison of the set of phenomenological equations [9] and the kinetic
ones, shows us the role played by the interaction between the mixture of gases and
the droplets. This interaction is very important to study the behavior of a spray
and our kinetic model will allow us to calculate some of its characteristics.

7. Concluding remarks

In this work we studied a kinetic model for a spray, which is based on the Boltz-
mann and Williams equations, strongly coupled to take into account the interaction
between the mixture of gases and the droplets. We obtained a modified kinetic
equation valid for the droplets which rendered us an effective vaporization rate and
an effective force acting on the droplets as well as a relaxation time. Those quantities
depend on the gas and droplets properties, their calculation requiring a solution for
the distribution functions. The solution of the equations is far from being a trivial
one, we hope to solve them in an approximate way in a future work.

We used the kinetic equations to obtain the mass, momentum and energy bal-
ance equations for the mixture of gases and droplets. The corresponding sources were
identified and we wrote the restrictions for them in order to have the conservation
of mass, energy and the balance equation for the momentum for the whole system,
as we did in the phenomenological theory developed to study this system.
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Resumen. En este trabajo se desarrolla la descripcién cinética de
un sistema inhomogénco. El sistema estd constituido por un conjunto
de gotas de tamaifios diferentes y que estin inmersas en una mezcla
multicomponente de gases. En un trabajo anterior estudiamos este
problema desde el punto de vista fenomenoldgico, aqui suponemos
que tanto las gotas como los gases estan descritos por funciones de
distribucién. Dichas funciones satisfacen las ecuaciones de Williams y
de Boltzmann respectivamente. El conjunto de ecuaciones se acoplan
mediante la interaccién entre las gotas y los gases. Encontramos que la
razén de evaporacién se ve afectada por las colisiones con las moléculas
de los gases. También aparece una fuerza que actua sobre las gotas,
causada por las colisiones con el gas. Se identifican las fuentes de
masa, momento y energia que fueron definidas en un tratamiento
fenomenolégico previo, con el objeto de obtener las ecuaciones de
conservacion del sistema como un todo.





