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Abstract. In this work we a.re con cerned with a kinetic description oC
a lIon.homogen('ous system. The system is composed by a. multi size
set of drop\ets irnmersed in a multicomponent mixture of gases. In the
preccding paper we studied this problem from a phenomenologicaJ point
of view, here wc assume both the droplets and the gases are described by
the corrcspondiJ,~ distribution functions. Those functions satisfy a mod-
ified Williams equation and the lloltzmann equation respectivcly. The
set oC equations are coupled through the interaction between droplets
and the gases in tite mixture. \Ve found that the droplet vaporization
rate is affeded by tile collision with the gas molecules. A force, caused by
tlle gas.droplet collisions acting on the droplets appears. We identify the
mass, rnomentuIIl alld energy sourccs, which were defined in a previous
phenomenological treatment in order to have the conservation equations
oC the system as a whole.

PACS, 47.55.Kf; 51.10.+y

1. Introduction

Spray vaporization and combustion have several important practical consequences
íor sorne industrial processes. This fact has been a strong motivation to improve the
knowledge oí spray charaderistics. The study about this problem has been done
mainly along lwo lincs: i) The experimental work has increased a lot sincc the lascr
technics were available, becausc those expcriments <tilo\\' a bcttcr observation oí size
and velocity dislributions of dToplets aJong the spray [1]. ii) Computing facilities
have also helpcd to sludy ane! predict the spray propertics [2].

According to some recent reviews [3,4,5], the theoretical aspects of spray be-
havior have been studied from diITerent points of vicw. For example, the isolated
dToplet vaporization, the internal motion in the droplets, sorne characleristics abollt
the local heat transfer, llave received a lot oC eITorts.

In contrast with thcse advancesl the approach based on distribution fundions
seem, to be underdeveloped. The e1..,,;cal work of Williams [61 established the
basic ideas to study a spray fram that point of view. Later Sirignano {7Jtook into
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accoullt the droplcts internal energy and he considereo its contribution to the kinetic
approach.

\Villiaflls a.ssurned valid the statistical dcscriptioll and he considered a rnulticli-
Inensional c1islribution Cunction which gives sorne information about size, velocity
and position of droplels as a fundion of time. He deriverl lhe kinctic ('<¡\Iation satis-
fieo by such a function. The \Villiams kinetic cquation considers the interaclion oC
droplets and gases through an external drag force acting on them. This a..'isurnption
allm\'s lo study lhe droplet cvolulioll illdependently of the gases, and drives tbat
approach lo a "Separaled Flow" vicw of tbe spray [:l].

In this work we are cOllccrne(1with the Silme prohlcm as \Villiams and Sirignano,
but we will describe the spray by rncans of N + 1 dislribution fllnctions, one of
thcrn roc the droplets and .V for the N.component mixture of gases. There "",'iJlbe
N + 1 kinctic equations strongly coupled through the ('ollision kcrnels, like in the
Boltzmanll t'qllation [8]. lIowc\'er, we will simplify lhose ('ollision terflls through
sOlne approxirnations, which we considcr valid for the pilrtic\llar spray problem.

The kinetic approach l('ads lo a set of equations for sorne stalistical averages,
which can be identified with the rnacroscopic local wHiables. The set of cquations
we obtained by lhis ITlethod is comparcd lo the phellomenological cquations we
derived in the preceding paper [9], Thc mass, mOIll('ntlltn amI cnergy SOIlfCCSare
also idenlificd.

In Seclion 2 we cstablish the kinelic tnodcl we ar<' inlcrested in, we also make
sorne approximations to obtain a modified kinetic equation for the droplets. In
Section 3 the general balance equatiolls are obtained while in Scction .1 and 5 we
take sorne parlicular cases fOI"the mixtllfc of gases and lIJe droplets respectivcly. At
last, in Section (i ••••.•e make a cornparison wilh the phellolJll'nological lheory aIld we
give sorne concluding remarks in Scclioll 7.

2. Kinetic model

In lhis seclion we will sketch the kinctic model w(' 115(' to study the spray. The
spray contains a mullicomponcnt mixlure oC gases ami a large numLer of Iiquid
droplets. Thcy are irnmersed in the gases and move with thcITl. \Ve assllrne lhe gas
species are dcscribed by the usual Boltzmann equation, ('ach gas component will
Le characlerized by tile distrihulioll fUllctioll f¡(ci,x,t), whefe C¡ is tIJc molecular
vclocity oC a lIlolecule oC the i-species with rnass mi, tht'o f¡(ci,x,t)dCidx gives us
the number of species-i moleculcs wilh \'elocity in the range (C¡, C¡ + dct) in the
volume clcrnent dx at tifIle t.

The kinctic equaliolls are:

a iJ a
atf¡(c"x,t) + c," ,,!.(Ci,x,t) + Fex'" a-Ji(c"x,t)

(,¡x C¡

N

= ¿J"(J,,J,)+ J,,¡(Ji,!d) i= ¡,""",N,(I)
j=l
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where Fext is the bulk external force per unit mass acting on the systcm, J¡j(Ji,Jj)
are the usual Boltzmann collision kerne1s, which take into account the binary in-
teraction between molecules of i, j species. The last term J¡d(Ji,!d) measures the
interaction bctween i-molecules and the droplets, it dcpends on the distribution
function for i-molecules Ji and the distribution function of droplets Jd' There are N
coupled equations like Eq. (1), because there are N chemicalspecies in the mixture.

The droplets are atomized in such a way that there are a 10t of them irnmersed
in the gas, they vaporize with a vaporization rate Rvap and the vapors become one
oC the species oC the gas. We will assurne the droplets are spherical of radius R and
move with velocity v. Thc droplet propertics are being dcscribed by a distribution
Cunction, so Jd(R, V, X, t)dRdvdx gives us the number oC droplets with radius in the
range (R, R + dR), velocity betwecn v and v + dv in the volume element dx at time
t. Thc kinetic equation we will assume to be valid is like the \Villiams' equation [6J

& & & .
&1!d(R, v, x, 1) + v . &xId( R, v, x, t) + &RIRvap!d(R, v, x, 1)1

& N
+ Fext. &vId(R,v,x,t)= ¿h(h!;)+ JddUd,fd), (2)

1=1

where Jdit!d, f¡) represents the interactioll belwcen lhe i-species in the gas and the
droplets, consequently the summal ion givcs liS lhe ('onlrihution oC all species. The
term Jdd(!d,!d) is the droplet-droplet inlcraction which we considcr negligible Cor
a dilute spray. In arder lo express the collision integrals in lerms oC the distribution
Cunctions we wilI Collowlhe kinctic theory ideas [8]. First of aH lhe coHision kcrncls
Jij are the usual ones,

Ji, = j[J,(c;,x,t)!,(cj,x,/) - !,(Ci, x, t)!,(Cj, x, t)j9"dr"dc, (3)

wherc ci, cj arc the velocities aftcr the collision, Ci, Cj arc the vclocilies before lhe
collision oC particles i, j, gij is tIJe magnilude of tlle relativc velocity and dril the
corrcsponding cross section. The distribulioll functiolls Ji, Jj satisCy Eq. (1), which
is couplcd with the kinetic cquation for thc droplcts. The droplcts affecl the gas
kinetic equation mainly through the coHision integral Jid(f¡,!d)' here we will assume
there is a binary illteraction hetw<-'(~na gi\.'; llloleClIlcand lile droplct. The dynamics
oC that interaction is given by a cross seetioll which we call dI'¡d, the vclocities after
the collision are c¡ and v', and the corrcsponding vclocitics before thc collision are
unprimcd, then,

Jid = jIJi(Ci,x,t)J¿(II',v',x,t)

-!;(c"x,t)J¿(R,v,x,/)]9;ddriddRdv, i= 1, ... ,N, (4)
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here R' is the droplet radius after the coHision. \Ve recall that there is no nucleation
nor coalescence oC the molecules on the dropIets, the change in the droplet radius
is caused by vaporization. We simplify the coHision integral in Eq. (4) by making
sorne assumptions about the interaction of the gas molecules and the droplet. First,
the droplet is very big compared with the molecule, the droplet distribution func-
tion is almost unaffected by one molecule collision, meaning that !d(R', v', x, t) ~
fd(R, v, x, t) in Eq. (4). On lhe olher hand lhe molecules ,utrer a big change and
we will assume ci == -C¡ so the molecule is refleded by the droplet. Taking ioto
account these assumptions, Eq. (4) can be written as follows

Jid(f;, fd) = J fd(R, v, x, t)

x [f,(-ci,x,t)-fi(Ci,x,t)]9,ddriddRdv, i= 1, ... ,N. (5)

Now we will discuss the collision integral Jdi(!d, I¡) which collects the effects of
the molecule collision with the droplet. The cross section for such a collision is drdi,
the relative velocity is 9di so

h = Jlfd(R', v',x,t)fi(C',x,t)

-fd(R,v,x,t)fi(C"x,t)]9didrdidc" i= 1, ... ,N. (6)

The radius of the droplet after the collision is calculated through the vapodza-
tion rate Rvap which can be obtained by means oC an independent model or from
experimental data, it can be written as

J.
'+'

lt = R +, Rvapdt = R + n(t, T), (7)

where R is the radius before lhe collision and T is a characteristic collision time.
The droplets velocity aCter coHision v', is calculated from a momentum balance.

The momentum change for a droplet is

(8)

where PL i, lhe liquid densily and (c.P)d is calculaled up lo tirsl order in n. The
change of momentum for the gas molecules is given by the momentum change oC
one molecule multiplied by V¡T, where Vi is the number of collisioos of molecules of
species i with the droplet per unit time.

According to the hypothesis about the momentum traosfer given prior to Eq. (5),
the change of momentum for a molecule is 2m¡Ci, therefo;c lhe momentum conser-
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vation gives us

I 30' 3 m¡V¡Tv;:::v--v+----c,
R 2 nnR3

\Vc substitute E<¡s. (7) and (!» into (6) ami we cxpand in Taylor series up lo
the first order to obtaill

[
3<> iJ

Jd,(h J,) = l11' - 12,)h( 11,v, x, 1)+ 11; ---¡¡v' Ovh(ll, v, x, t)

iJ ] 3 mj/liT [)+ "OIlI,(II,v,x,t) + 2npL/I,73i' ilvJ,¡(II,v,x,t), (10)

\\'heJ'(~ the quantities IJi, l'Ji aJl(1 "Y3i c1epending 011 Il, v (llld tile g¡lS properties are
giv('lI by

11o(R, v, {gas}) = J J,( -Ci, x, 1)9d,dl'd,dc"

12,(/I,v,{gas}) = J Ji(ci,x,t)gd,dl'd,dc"

73,(11, v, {gas}) = J CiJi( -Ci,x, t)!ld,dl'd,dc"

(11 )

( 12)

Tite)' contain tIle collisioll dynamics and tIJe properlies of tile gas. Substitution
of Eq. (10) in Eq. (2) allows a great simplification in tiJe "illdie cquation for lIJe
spray. j.c.

(14)

'1'0 oi>laill tIJis e<¡uatioll wc have dcfineJ pj ;:::3V1T/27rp¡, and assumed the spray
IS dilutt'd ('nough to llf'gkct lile intcractioll bctwet"n dropll'b, fl'pr<..'ScntcJ by the
("ol1i:-;ioll integral Jdd' Now it i:-; possible to look at tile lllodified equatioll ror tbe
."(Hay. Eq. (1.-1). in a differelll ",ay: the first t",o tefms are the usual olles in all
killl't ic equat ions. the third tl'flll gives all effectivc vaporizatioll rate

N

ilcff ;::: llv3P - o:L 11 j,

i=1

(15 )
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which is tile vaporization ratc fOl"an isolaled droplct modified by the collision with
the gas moleclIlcs. The fourlh tel"1Ilin Eq. (lit) is a very intcrcsting one because
it is givcn by t}¡e external blllk force Fext modified by collisions between lhe gas
molecules ami the droplets, it depends on the droplel c1Jaracteristics a..<;well as the
gas properties. \Ve hope the addit.ional tcrms in lhis force will render us a drag force

(16 )

Finally, the right hand side of thal equation is a linearized collision tcnn in
a \Villiams-like kinctic equation, which looks like a Bhat.nagar, Grass, Krook [10]
approximation for thc droplets, with a relaxation time giv('n by

The spray kinetic equations are thcn writtcn il!".

a a a. a -1
a/d + v. aJd + aR1Rerr!di + Ferr' aJd = -0 Id,

a a a N
at/; + c;' ax!; + Fext. av/; =L J;j(J;,!J)+

)=1

(17)

(18)

+ J !d[J;(-C;,x,t) - /;(c;,x, t)i9;ddr;ddRdv, (i = 1, ... ,N). (19)

Thcy are couplcd cqllations but the droplets distriblltion function only appears in
a linea,r way.

3. General balance equations

In order to obtain lhe balance equat.ioll for lIJe spray we nccd a definition for the
average quantitics. Let 9i( ej, x, t) be auy fUlIction of t.he spccies variables in the
gas, ils average given by

whcre

{?;(c"x,t)} = -!..JdC;/;(C;,X,I)<P'(C"X,I),
!l,

IIj:::; J dc¡f,(cj, x, f}

(20)

(21 )
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is thc number df'llsity for the i component in the mixture.
If w(' wó\nt to obtain tllC' an:,rage of a fundíon of the droplds variables

Ód( R. v, x. t). \\'(' will use the corresponding average

wherc

(Ó,,(H,v,x,I)) = (I~')j fd(R,v,x,I)Ó,,((R,v,x,t)rIv,

(N) = j !,,(R,v,x,l)rIv

(22)

is the IItllnbcr of droplcts of radius R in the vaJume dx al time 1.
\Vhcn the qllnlltity we él,reintcrcsted in does lIot dc¡wlld 011 lhe radills of the

droplcts, \Ve can also averélge o\'er them, thus oblaining lhe corresponding local
qllanlily, ¡.c.

whefe

((Ó,,)) = ((I~)) j fd(R, v,x,t)Ó,,(R, V,x, l)rIvrIH,

((N)) = j(N)rIR

(21)

(25)

is the number of droplets in dx at time t.
Thc general balance equalion for any physical variable associated with tIJe i-

component of the gas mixture is obtained multiplying Eq. (19) by the corresponding
fundion <PI(Cj, x, t) and integraling o\'er Cj, the result is

%t n;{ó;} + V. [n;{ó;} U + n;{CiÓ;}]- ni [{ %1Ó;} + {Ci . VÓ;} + Fext . {VCiÓ'}]

= ¿ j ÓiJi,Ud,)dc, + (("iÓi)), (26)
,~I

\vhere U is lhe hydrodynamic velocity of the whole system and it is givcn in terms
uf the gases vclocities lIJ,

U _ nu, + ((N)) ((v))
- n+((N)) , (27)

(28)
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The quantity ¡ti is given by

¡'i(R, v, {gas}) = J [J,( -C;, x, t) - !i(C;, x, t))giddr;d (30)

and it depends on the droplels' variables and the propcrties of the mixture.
On the other hand, the general balance cquation for any fundion of the droplets

variables is givcn by

& & &,
&t ((N){~d}) + ox . [(N}(v~d)l + &R[(N)(Rdr~d)J

- (N) [(%tÓd) + (:x .V~d) + (j¡eff~¡~d)(:v .~dFeff)]
= -(N){e-1Ód)' (31)

AH variables in this cqualions are fundions of X, t and the radius R of the droplets.

4. Balance equations in the mixture of gases

In this Scction wc will consider sorne special cases of the balance equations we wrote
in Section 3. \Ve bcgin with the mass cquation and to obtain it, we choose <Pi= mi
and substitutc in Eq. (26). The rcsult is given by

& N J&tP; + \7. (Pill;) = L' miJij(f;,Jj)dc; + m;((¡li)),
)=1

(32)

N
whcre the symbol L' IIlcans that lile lerm i = j is absent and Pi = nimio That

j=1

terrn is zera because lhe conservation of mass, momentum and energy is valid in a
i - i molecular collision

(33)

Eq. (32) can be written as a concentration balance equation ror i-species but
we do not tl('ed it explicitly.

To ohtain the momentum balance \\'e choDse <Pi= tn¡c¡ to sustitule in Eq. (26),
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thell

wiwre P ¡ is t1w PI"e'ssurc tellsor ddillrt\ as

In a silllilrtr WilY we olltilill lile clIt'rgy balallce equation. in that case Ó1 =
(1/'2)1I1,c; is the lot,,1 ('IH'rgy lH'CilIlSCwe assulIled the molecu!es havc no internal
c1rgrc('s of f,,('('c1om. '1'1](' lIlacroscopic '.;Uiilbl(' (,oIT<'Spollding 10 1hat func1 ion is giv£'n
hy

lI¡C¡ = J ~m¡rffi(ci,X))dci.

The balanC(' t'<¡Il,ltioIL 'V(~ohlilill is tlle following 01]('

wherc we haw~ deflned lile heal flux q.

(6)

AII balance equalions \\T cOllslmd.,d ItCI'(' an~ silllili\l" lo lhos£' Ils£'d in killf'lic
theory of gases, but lhe)' han' illl "ddiliolli\l SOU1T(' l{'rm comillg from lllf' illlrractioll
with the droplct immerscd in ,!I(' gilS mixlure.

5. Droplet balance equations

To study the droplds behavior we will tilke SOlllC pilrliclIlilf cases of lilf' genf'fal
balance cqualion givcn in Eq. (aU). First of all We' are intcl"Nted in llw llullllJCI"
of droplcts in a volumf' dx al lime t wilil radius hctwrrn R ami R + dll. Thal
infonnation is obtained by taking tPJ = 1 in El¡. (:19)

\Ve immediatt.'ly s('c that !.he IIl1lllht'f of dfoplet does not ohey a consrfwüion
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equation as one would expect, there are changcs caused by the efTective vaporiza-
tion rate, the efTedive force acting on the droplets ami the relaxation due to the
interaction with the gas molecules.

\Ve define the droplets mass density as

Pd(R, x, t) = ~KPLR3{N). (40)

The balance cquation is obtained by rnaking ~d = t1rPLR3 in Eq. (31), or
multiplying Eq. (39) by <Pd, since the average in velocities does not affect that
function,

Following with the schcrnc of balanc~ eqllations, \\'e no\\' construct the momen.
tum balance by taking 4>d= ~KPLR3v in Eq. (31)

%t (Pd(V)) + :x . IPd(v)(v) + Pd(VV)] = - grad (Pd (~2)) + PdFeff

+ Pd [-(v ¡{cff)rJ~ In(N) + ( v (:V . FCff) ) - (VS-')] , (42)

wlll're V = v - (v) ami VV Il1cans tracck'Ss VV tensor. Eq. (42) looks like an
IIsual Il10IlH'lll11Tllequatioll provided we can interpret lile tensor Pd(VV) as the
viscolls tCllsor and Pd(F2/3) as tile prcssure, we observe tllat both terms are in fact
the (orrc!atioll of the droplds vclocitics. The last thrN~ ter ros are the momentum
sOllrces also callsed by vaporization, the cffcctive force anl! •.daxation rcspectively.,

In a silllilitr way \\'(' obt.ain tll(' energy l'quation with a fllllction <Pd ::; ~1l"PLR3T

n n [(' )'iJt'd + iJx . I',,(v) + q" + 1'". (v)] = Pd ¡~-Ji,'ff rJ~ In(N)

( rJ v
2

) ( v
2

)]+ -. -F ff - _0-1
rJv2e 2 ' (43)

where Cd is the lolal cncrgy, CId the heat flux associated with the droplets and Pd
l.Il(' pressllI'c tensor, they <HC givefl by

'" = ~Pd((V)' + (v')),

(
1" )q,,=Pd TV ,

(44)

(45)
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. . (V')Pd = Pd(VV} + Pd ""3 l. (16)

Thc pressurc tensor writtcn here is the same we identificd in the morncntum
Eq. ('12), it i.c. it gi\'cs us the droplets velocity corrclation funetion. \Ve wrote it in
terrns of the conlrihutions coming from lhe symrnetric P¡Ht ami the isotropic onc,
to compare with the corrcsponding hydrostatie prCSSllfe and the \'iscolls parto

6. Comparison with the phenomenological theory

Now we compare the halallcc cquations \\"C obtaincd ill tlll~ last two s('ctions with
the corrcsponding 01\('$ in the rhenomenological tlicory in] dc\'clopcd to study this
kind of sy:s!.cms. first of aH, our kinctic !.rcatmcnt aHmvs \lS to idclltify the relevant
variables to be used and after\\'ilrds the mass, rnorneIltll1ll and encrgy sourees, in su eh
il \\'ay that \\'e ha\'c no\\' a kinetic cxpression for thcrn and wc kno\\' tla'ir origino On
the other hand. in the phCllOrIlCIl01ogical work \\'c assuOlcd tlle total systC'm oheys
the usual eonservatioIl equations, that assumption implying sorne restrictions on
the sourccs.

From the roint of vicw of kinetie theor)' it is not lI('ccssary to illlpose SIlCJ¡
restriclious, hut \\'e \\'il1 do it in arder to llave a complctl' ("omparisotl I>ct\\'(,(,11both
approaches. al Ieast for spray behavior. For the mass sourccs \Ve han'

X ¡v ,v
L L' J rn,Ji)(j" h)dci +L mi ((Pi))
1=1)=1 1=1

Thc first tcnn in Eq. (.17) is i<iclltical1y {'qua1 to zero hccallsc tJw rnass of lIlo1ecuJes
is iIlVariil.llt. in the i - j ('olJision, in faet the collisional ill\'ilrii\lIts satisr.y tiJe rollo\Ving
equatioIl

(18)

Tlle last terrll in Eq. ('17) can be silllplified by !n<,ans of Eq. (2,¡). tllcll
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In a similar way we obtained the rcstriction equations in the momentum and
encrgy balance, they are the following oncs:

t ((m;c¡¡,;)) + ((N)) \ \Pd [-(VÍlefr) aaRln(N) + \ v Uv .Ferr))
1=1

- (ve-1
)])) = O, (50)

(51)

for the momentum and energy sources respectiveIy.
A close comparison of the set of phenomeoological equations [9] aod the kinetic

ones, shows us thc role played by tite interactioo between the mixture of gases and
the droplets. This interaction is very important to study the behavior of a spray
and our kinetic model will allow us to calculate sorne of its characteristics.

7. Concluding remarks

In this work we studied a kinetic model for a spray, which is based 00 the Boltz.
mann and \Villiams equations, strongly coupled to take into account the interaction
betwccn the mixture of gases and the droplets. \Ve obtained a modified kinetic
cquation valid for the droplets which rendered us an effective vaporization rate and
an effective force acting on the droplets as well as a relaxation time. Those quantities
dcpcnd 00 tbe gas and droplets propertics, their calculation rcquiring a solution for
the distribution functions. The solution of the equations is far from being a trivial
one, we hope to solve them in an approximate way in a future work.

\Ve used the kinetic equations to obtain the mass, momcntum and energy bal-
ance equations for the mixture of gases and droplets. The corresponding sources \vere
identificd and \\-'ewrote the restrictions for them in order to have the conservation
of mass, energy and the balance equation for the momentum for the whole system,
as we did in the phenomenological theory developed to study this system.
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Resumen. En ('sU~ trabajo se d('sarrol\a la d('scripción cini,tira. de
UII sistema inhomogéll(,o. El sist('llla está constituido por un conjunto
de gotas de tamaños diferent('s y quc ('stáll inlllC'rsa.<;en una mczcla
tnll1ticomponcnte de gases. En un trabajo anterior l"'studiamos ('ste
problema desde el punto de vista fcnonl('llolúgico. aquí supollcmos
que tanto las gota.<; ("Omo los gas<'s ('stán d('scritos por funcion •.s de
distrihución. Dich •.•.<;fUlIciones satisfacen las ('cuacioll(,5 de \Villia.m.<;'/
de Boltzmann H's¡H'ctivamente. El cOlljlllltO d(' ('cuaciones se acoplan
mediallte la int('faffión entre las gotas y los ga.<;('.<;.EnfOntramos que la
razón d(' evaporafiólI s<' ve afectada por las colisioll(,s con las moh;culas
de los gases. Talllhi{'n aparc«~ una fuerza (¡u(' actua sobre las gotas,
causada por las colisioll(,s con ('1 gas. Se idc'lItifican Ia.<¡fll('lItes de
masa, Illom(,lllo y ('Il<'rg:ía qll(' fll('l"On dC'finid<ls PIl un tralallli(,llto
fellolTll'Il01ógico pn'vio. rOIl ('1 ohjpto de olll('l]('r las (,Cllaciollcs de
COIlS('f\'ación dd sist('Ill'" mmo un todo.




