Instrumentacidn Revista Mezicana de Fisica 35 No. 3(1989) 489-499

A method for high precision normalization
of cross sections
E.F. Aguilera® J.J. Vega® E. Martinez

Instituto Nacional de Investigaciones Nucleares, Departamento del Acelerador,
Apartado postal 18-1027, Mézico D.F.

J.J. Kolata** and A. Morsad**
University of Notre Dame, Physies Department, Notre Dame. In. 46556
(Recibido el 29 de noviembre de 1988; aceptado el 3 de abril de 1989)

Abstract. A method is devised in which a minimum of three monitors
must be used to eliminate the dependence on equipment-alignment and
beam focusing conditions in normalizing cross sections. A 4-monitor
system is designed which in addition allows us to account for the pos-
sible error sources. As an example of the technique, an analysis of a
series of experimental data is made. A typical precision of 1% in the
corresponding normalization factors was obtained. The superiority over
methods using 1 or 2 monitors is demonstrated theoretically and illus-
trated experimentally.

PACS: 29.90.+r; 25.70.-2

1. Introduction

The measurement of nuclear reaction cross sections is probably the main way to ob-
tain experimental information about nuclei. The more precise a measurement is, the
higher will be its probability of making a relevant contribution to the understanding
of the studied phenomenon. It is thus important to have a good means of minimizing
errors in the measurement of quantities such as integrated beam intensity, @, and
target thickness, t, which affect the absolute normalization of the cross section.
For a wide range of systems and energies, reaction cross sections can be nor-
malized by measuring, simultaneously with the reaction products of interest, the
elastic yield at some forward angle where Coulomb scattering is certain to dominate.
Comparison with Rutherford formula gives then the desired normalization. The
usefulness of this method, in which the product @t is directly determined, has been
recognized for a long time [1,2] and is particularly suitable for measuring heavy-ion
induced reactions, for which the technique of charge collection for measuring Q
is usually unreliable. In case that the energies of interest are above the Coulomb
barrier, the method can still be used to get a relative normalization if a high-Z
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FiGURE 1. Experimental arrangement.

clement is added to the target [3]. In a related application, angular distributions
of elastic scattering in heavy targets have been used to check the alignment of the
experimental arrangement [4].

One or, at most, two fixed-angle detectors are normally used to monitor the
beam for nermalization purposes. As we show here, the fast variation of the Ruther-
ford cross section at small angles makes the results obtained with such configura-
tions strongly dependent on equipment-alignment and beam-focusing conditions,
especially for the most widely used case of one single detector. We report in this
work on a simple system of four fixed-angle monitors which eliminates this strong
dependence and, with the help of a computer code, permits substantial improvement
in the determination of the normalizing factor (1. Experimental results obtained
for a variety of combinations projectil-target at different energies are presented.

2. Experimental method

The experimental device consists of four Silicon surface-barrier (SSB) detectors
placed symmetrically at Om = 15° with respect to the nominal beam direction
(Fig. 1). The four detector holder is a rigid frame designed in such a way that
even an error of 0.5° in the building tools would produce an error of less than 0.1°
in 0. For each detector, a 0.71 mm collimator placed at 51 mm from the target
center defines the corresponding solid angle. The whole frame can be horizontally
rotated around the target and must be optically aligned with the beam-line axis.
Two collimators in front of the target are used to define the beam, which is focused
by minimizing the current in the first collimator and simultancously maximizing it
at a beam collector placed behind the target. By following this procedure several
times while observing a quartz crystal placed in the heam path, we were able to
estjmate the uncertainty in the beam location on the target.

This device has been used in a recoil velocity spectrometer to normalize data for
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projectile target target process laboratory
thickness measured energies
(g/cm?) (MeV)
A 0Ge 587 FUSION 72,73,... .85
27Al 2Ge 565 FUSION 68,69,...,85
Al TGe 226 FUSION 68,69,....85
2TAL 6Ge 386 FUSION 67,68,...,85
a2 58Nj 187 FUSION 100.33
edle| ] 187 FUSION 94,95, ..,108
S0 SONj 220 FUSION 93,94,...,108
gl 62Nj 63 FUSION 91,92,...,108
@l 84N 160 FUSION 89,90,...,108
S1Br SON; 220 ELASTIC 42,45
103Rh SONi 220 ELASTIC 36,39,42

TABLE 1. Experiments performed using the normalization method described in this work.

elastic scattering and sub-barrier fusion measurements for several systems [5,6]. The
results obtained for the normalization of these data will be analyzed in Section 4.
The experiments, described in Table I, were performed with beams from the 3-stage
accelerator at the University of Notre Dame. The target thicknesses reported in Ta-
ble I were obtained in a separate experiment by measuring sub-Coulomb scattering
of 10 beams on each target and were used only for energy loss calculations.

The elastic scattering of Br and Rh was measured at the spectrometer angle
6 = 10°. For all the experiments, several fixed-energy measurements were made for
some of the energies listed in Table I, either because an angular distribution was
being measured or because the transmission of the spectrometer was being studied.
All these data points will be included in the analysis of Section 4.

3. Theoretical analysis

For scattering of a projectile of energy £ at an angle # in the laboratory reference
system, the Rutherford cross section can be written as

Z_,,dez] : (1 + 4% cos26)(1 — 4% sin? 0)~1/2 4 2y cosf (1)

0) = (1 + )2
CTR( ) ( +7} [ 1E Sin4 (9+Sin~l(7sin9)) !

2

where v = (A,/A;) and Zpt, Apt are the atomic and mass numbers of projectile
and target, respectively,

We choose a coordinate system in which the target center is at the origin; the z-
axis points in the nominal beam direction (the geometric axis of the beam-line) and
the 2y plane coincides with the plane of the target, the y-axis pointing downwards
(Fig. 2). The scattering angle, 6;, into the i*h monitor, located at point (i ¥ 2m s
depends on the coordinates (70,y0) of the beam spot on the target, and on the
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FIGURE 2. Coordinate system used. M; defines the position of the i*h monitor and S determines
the position of the beam spot on the target. The auxiliary line L, parallel to the z-axis,
is drawn to define the beam direction, (8o, ¥o)-

direction (g, o) of the beam, through the expression

0i(x0,y0,00,0) =

_1 [(&i — xo) sin 8 cos o + (y: — yo) sin By sinpy + zm cos O
[(zi — x0)% + (3 — wo)® + 22]1/? '

Cos

On the other hand, if Y; is the yield of particles elastically scattered into monitor
i, the experimental cross section is given by
Y, .
GCXP(Qtsﬂf) = Q—“i’ (})

where ), is the solid angle seen by the monitor at the beam spot position. Calling
A; the area of the corresponding collimator, ©; can be expressed as

oy — zo) + yilyi —yo) + :rzn

Rilzo.vo)=Ail=5—F 2. ——. (1)
(22 4 y2 + 22) [ — 20)2 + (yi — wo)? + 23, P2
For the case of dominant Coulomb scattering, we thus have
Uexp(Qt,Q"(.’C(j,yﬂ)) = aﬂ(oi(xﬂv ?!0190»%)))- (5]

Clearly, at least five detectors are necessary in order to solve for all the un-
knowns. Although this can be done (7], we will show here that for the range of
0o values of interest, it is suflicient to assume 0o = 0° since any departure from
this value can be compensated for by a shift in (zo,0), the Qt value remaining
essentially unchanged. This would tell us that, in principle, three detectors should
be enough to determine Qf. However, as we will show later, it is convenicnt to
use a fourth detector in order to have a reliable determination of the associated
uncertainty. With this in mind, we will analyze from the beginning the casc of four
detectors, which includes also the 3-detector case.
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FIGURE 3. (Up) Ratio of calculated to hypothetical Q¢ as a function of the beam inclination.
Yields at the monitors were numerically generated for 1%3Rh + ®°Ni at 39 MeV with
Zo, Yo, Po and Qt equal to 0,0,30° and 100 mb—?, respectively. (Down) Beam spot
shifting, d, that our method uses to compensate for the beam inclination o

In order to show that the assumption 0y = 0 gives a good approximation, we
have made a numerical simulation of different conditions of the incident beam.
Yields are generated for each of the 4 monitors described in Section 2 by assuming
hypothetical values for Qt, zo, yo, 6o, @o, and using formulas (1) to (5). These
yields are then taken as “experimental” values and used to establish equation (5)
with #p = 0° (which also causes @y to disappear) for each monitor. These equations
are simultaneously solved for zg, yo, @ and this last quantity is compared to the
hypothetical value of Qt.

We actually solved, for each hypothetical beam, four 3-equation systems, each
one corresponding to a different triplet of successive monitors (Fig. 1) and took the
mean, Qtg, of the four Q¢ values so obtained as the final result; zo and Yo were also
determined in this way. The corresponding sample standard deviation, s, is taken as
an estimation for the error at this stage. Note that this way of estimating the error
makes sense only for four (or more) detectors and one can expect that s will be a
measure of the goodness of our approximation. In addition, for actual experimental
data, s will also include the effects of possible unknown error sources. In fact, this
is the main reason for our using 4 monitors instead of 3. The treatment of errors
for experimental data will be discussed in detail later. The procedure described is
carried out by means of the code DETECT, which uses the method of Ref. (8] for
solving systems of non-linear equations.

The upper part of Fig. 3 shows, for a typical case, the ratios of calculated to
hypothetical Q¢ as a function of ). We see that even a beam inclination as large as
5° is compensated for with good precision in this method, the deviation in @1 being
of only 0.5% for this case. Furthermore, the actual values are always well within
the error bars so that our method safely takes into account possible deviations due
to beam inclination effects. The lower part of Fig. 3 shows the shift, d, from the
original to the calculated beam spot position, which the method has to assume in
order to compensate for the given beam inclination. It is interesting to note that,
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FIGURE 4. Comparison of @t ratios (calculated to hypothetical) generated from 1, 2 or 4 detectors,
as a function of the beam inclination, for the same case of Fig. 3. The subindex 7, ij
or 0 in Qt indicates that the Qt values were determined using monitor i, monitors 1
and j or the four monitors, respectively.
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FIGURE 5. Comparison of Qt ratios (calculated to hypothetical), obtained from 1, 2 or 4 detectors,
as a function of the distance beam spot-origin. The simulation corresponds to the same
system of Fig. 3, but here fp = 0 and the beam spot was moved along the zo = yo
line toward monitor 1. The labeling of curves is the same as in Fig. 4.

even though the hypothetical values zg, yo, wo Were all varied, this plot remained
unchanged for all cases studied. This seems to indicate that for a given 0p the
compensating shift is always the same, no matter what the beam spot position or
the azimuthal direction of the beam. The orientation of the shift, of course, changes
with these parameters.

To discuss the case of three detectors, we first note that, as mentioned before,
there is no way of assigning error bars to the corresponding points in I'ig. 3 (not
shown). However, the calculated results are still very close to the hypothetical Q¢
(the maximum deviation is only 1.7% for fg = 5°).

The power of the 4-monitor method is further illustrated in Figs. 4 and 5,
where a comparison is made with the results when using only one or two monitors.
In Fig. 4 the beam inclination is varied, while all other parameters are kept fixed.
The superiority of the 4-monitor method is quite obvious in this figure, specially for
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large 0g. For a reasonably well aligned system, however, we wouldn’t expect beam
inclinations larger than about 0.2° or 0.3°. If we assume that the combined effect
of the chamber alignment and detector alignment could give a maximum angular
error of 0.5°, this would produce an uncertainty of about 14% in the normalization
if only one monitor was used. By doing the alignment very carefully, though, it is
feasible to reduce appreciably this uncertainty.

More uncontrollable is the effect of a shift in the beam spot position with respect
to the center of the target, which is illustrated in Fig. 5. By following the procedure
described in Section 2, we estimated that our focusing method (which we consider
a good method), can locate the beam at the target with an uncertainty of about +1
mm. According to Fig.5, this would produce a maximum error of about 36% or 6%
in the normalization if only one or two detectors were used, respectively. For higher
shifts, these errors grow up very steeply while the 4-monitor method gives always
exact results.

As for the 3-detector case, the corresponding curves in Figs. 4 and 5 are essen-
tially the same as the ones corresponding to Qtp, the 4-detector calculation. So, the
conclusions drawn in the two previous paragraphs for the 4-detector method are
also valid for three detectors.

Summarizing, the generalized use of one or two monitor systems can not ac-
count for the effects of beam inclination or beam spot shifting. This shortcoming is
overcome by using three detectors. By adding a fourth detector, we can estimate the
absolute uncertainty in @¢, including the effects of unknown error sources. Accord-
ingly, in the analysis of experimental data we will restrict ourselves to the 4-monitor
method and will compare only with the 1 and 2 detector results.

4. Analysis of experimental results

Before presenting the experimental results, a few words must be said about the
corresponding analysis. Energy loss in the target was taken into account by using
in (1) the average energy weighted by the Rutherford cross section. Explicitly,

In(Ei/Ey)
E=Bbm gy =
where F; is the lab bombarding energy and Ej is the beam energy after traversing
the target, calculated according to Ref. 9.

As for the error analysis, we already showed that the standard deviation, s,
corresponding to four determinations, properly accounts for errors coming from a
possible beam inclination. The errors coming {rom counting statistics, however, are
not well treated in s since the method always looks for the pair (zg,yg) that better
solves equations (5) (with 69 = 0) and this could in some cases compensate for
statistical deviations in the yields, so underestimating the corresponding error.

In order to further investigate this, we studied the statistical behavior of the
method by generating 10000 cuartets of random numbers distributed according to



496 E.F. Aguilera et al.

Qt +s.d. 100.00 + 0.18
F4sd. 0.16 +£0.12
g4sd. 0.18 + 0.00

TaBLE II. Statistics of results from DETECT for a simulation of 10000 cases with statistical yields
generated out from the hypothetical beam parameters o = yo = 6o = 0 and Qt = 100
mb~=1. All quantities (defined in the text) are given in mb=!.

a Gaussian around a mean yield of 78620, with a width equal to the square root of
this number. This yield was calculated, in the way previously described, for 103Rh
+ 80Ni at 39 MeV by assuming zq = yo = 8p = 0 and Q¢ = 100 mb~1. Each cuartet
was then used as an input for DETECT and the respective values of @ and s were
calculated.

The corresponding averages and standard deviations are presented in the first
and second lines of Table IL. Since the only source of error in these synthetic data
comes from counting statistics, the large spread in s confirms our assertion that
the statistical error is not well treated in s. This error may be estimated from the
standard deviation of the mean yield, ¥, by the expression

R B -

(NY)1/2 (Z?LJ Yi)uz’

where N is the number of detectors, 4 in this case. This quantity was also calculated
for each case and the corresponding average and standard deviation is given in the
last line of Table II. Comparison with the first line shows that this is indeed a good
estimation.

By assuming a maximum beam inclination of 0.3°, which is actually an overes-
timation for our experimental set-up, we were able to estimate an upper bound for
the error due to this effect. To this end, we simulated beams at 0.3° for some typical
systems from Table I, taking the minimum and maximum energies indicated for each
case. The beam spot position was taken either at the origin or at d = 2 mm from
it and o was varied from 0° to 45° for each case, using always @t = 10 mb~!. The
calculated error, s, proved to be essentially independent of the particular system
and energy, with a weak dependence on g and a stronger dependence on d. The
maximum error, corresponding to zg = yo = 1.414 mm and o = 45°, was of only
0.05%.

By quadratically adding this to e from (7), we obtain an estimation for the error
in Qt that includes effects from both, counting statistics and beam inclination. The
maximum between this and the s calculated from the experimental data, which
might include effects from other error sources not treated explicitly, was finally
taken as the experimental error, 6Qt.

In applying our normalization method to the experiments of Table I, we must be
cautious since some of the energies there indicated are slightly above the Coulomb
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system No. £ Yo 5Qt 5Qt 5Qt
runs (mm) (mm) 4 det. 2 det. 1 det.

(%) (%) (%)
AL+ MGe* 26 —2.67+0.32 —0.60+0.15 0.95 30.51 47.42
2TAl + 2Ge* 34 —2.66+0.15 —.042 4+ 0.31 0.54 25.32 54.43
AL 4+ T4Ge” 31 —3.05+40.33 -0.67+0.24 1.21 40.38 53.47
7Al + T6Ge” 28 —2.76 +0.19 -0.57+0.26 0.73 30.88 50.49
35C1 + 58Nj 32 —0.34 4+ 0.21 —0.82+0.21 0.99 4.94 20.51
976 439N 83 —0.8140.70 —0.18 £ 0.40 0.74 3.38 19.44
37CI + 8ON;j 28 —0.12 4+ 0.62 —0.25 4+ 0.54 0.81 2.85 16.75
37C1 + 3N 33 —0.77+0.22 —0.43+0.26 1.81 3.79 2191
37Cl + ®Ni 52 —-0.93 +0.92 —0.16 +0.41 1.38 5.22 24.65
S1Br 4 SONj 30 —0.63+0.05 —0.54 4+ 0.30 0.79 337 28.41
103Rh + SONj 52 —0.96 +£0.16 -0.20 £ 0.28 0.49 3.46 28.18

* The monitor frame was slightly rotated with respect to the beam.

TaBLE I11. Statistics of experimental results for the systems of Table I. Tp, ¥, are the average
coordinates of the beam spot. the last 3 columns give the average error in Q! as
obtained from 4, 2 or 1 detector, respectively.

Barrier. However, optical model calculations indicate that the corresponding de-
viations from Rutherford scattering are negligible and therefore we will apply our
method to all cases without any further consideration.

The main features of the normalization procedure for the experiments of Table |
are summarized in Table III. All quantities here refer to an average over the total
number of runs measured for each experiment. With the exception of the 37Cl +
S8.84Nj systems, whose respective measurements were made in separate occasions, all
the runs for each system were measured during the same experimental session, with
the same alignment and similar focusing conditions. The rather small spread ob-
tained for z and y, indicates that with our focusing method we can actually locate
the beam on target with more precision (2 0.4 mm) than the I mm estimated with
the quartz viewer. The sample standard deviation for the four determinations of
and yo, calculated for each experimental run, was typically of the order of 10~2 mm,
which shows the consistency of the method. The rather large negative values of z
obtained for the Al + Ge systems are mostly due to a slight misalignment of the
monitors which we actually noticed on opening up the chamber after completing
the experiments.

The fifth column of Table IIT gives the typical error in Qt obtained for each
system. The low values obtained, of the order of 1%, illustrate the high precision of
the method. Notice that the mentioned misalignment for the Al + Ge experiments
had no effect here, the corresponding errors being comparable to the rest. It is
worth mentioning that, for the vast majority of experimental runs, the dominant
error was the standard deviation associated to the four determinations (one for each
triplet of monitors), which we have called s, rather than the error calculated from
the combined effects of counting statistics plus beam inclination (see paragraph
below (7)). Thus, our usage of a fourth detector turns out to be essential for the
uncertainty determination.
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For the purpose of comparison, columns 6 and 7 give the typical maximum
errors for the case of using 2 or 1 detector, respectively. These errors were estimated
from the corresponding deviations with respect to Qty , the 4-detector result, and
represent the maximum of the averages obtained for monitors (1,3) and (2,4), or 1
and 2, respectively. As expected, for the Al + Ge experiments both methods give
large errors, which in addition differ from each other, within the same column, by
up to 15% or 5% for the l-detector or the 2-detector method, respectively. This
provides experimental evidence that these methods, in contrast to ours, are highly
sensitive to alignment and/or focusing conditions, as predicted in Section 3. For
the remaining systems, the two-detector method gives pretty good results, with a
maximum error of about 5% while the one-detector calculation still gives too large
errors. The superiority of the four-detector method is evident for all cases.

Summarizing, the analysis of a large sample of experimental data allows us to
conclude that, using our particular design of a 4-monitor system, the method typi-
cally gives 1% precision in the normalization factor, independently of the particular
conditions of equipment alignment and beam focusing.

5. Conclusions

A 4-monitor system and an associate computing code have been designed to de-
termine the normalizing factor, @t, in the measurement of nuclear cross sections.
A detailed numerical simulation was made which shows that, in principle, three
detectors suffice to deduce @t with good precision, even though five parameters need
to be determined in the most general situation. In practice, a 3-monitor system can
be used and it will give much better results than using only one or two monitors,
but an independent way of estimating the uncertainty must then be devised. We
used a fourth detector, which allowed us to obtain a reliable estimation for this
uncertainty. It was theoretically proved that, in contrast to the usual method where
only one monitor (or the less usual one with two monitors) is used, our method gives
results which are stable to variations in the equipment-alignment or beam-focusing
conditions.

The gained stability is clearly displayed by the statistics of experimental data
presented in Table III, where the errors corresponding to the 1 and 2 monitor
methods are excessively large for the first 4 systems, while those corresponding to
four monitors remain always around 1%. As the table shows, the typical precision
of our system is about 23 (4) times better than that of the 1 (2)-monitor method
under reasonably good alignment conditions.

The method developed here is not limited to the field of nuclear physics but can
also be applied, for instance, to the measurement of atomic cross sections. All that
is needed is for the bombarding energy not to exceed too much the corresponding
nuclear Coulomb barrier.
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Resumen. Scided un método en el cual al menos tres monitores deben
ser usados para eliminar la dependencia de las condiciones de alineacion
del equipo y de enfoque del haz en la normalizacién de secciones eficaces.
Se diseiié un sistema de 4 monitores el cual ademas permite tomar en
cuenta las posibles fuentes de error. Como un ejemplo de la técnica, se
hizo un andlisis de una serie de datos experimentales . Se obtuve una
precisién tipica de 1% en los correspondientes factores de normalizacién.
La superioridad sobre métodos que usan 1 o 2 monitores se demuestra
tedricamente y se ilustra experimentalmente.





