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Abstract. This paper reviews the current status of our understanding
of traccr-diffusion phenomena in coJloidal suspensions. This is the most
direct observation of the Drownian motion executed by labeUed Brow.
nian partic!('s interacting with the rest of colloidal particles in a sus-
pensiono The fundamental description of this phenomenon constitutes
today one of the most relevant problems in the process of understanding
the dynamic properties of this important c!ass of complex ftuids, from
the experimental and theoreticaJ perspective of physical researclt This
papee describes the recent devclopments in the extension of the clas-
sical tbeory of Brownian motion and its application to the description
of the effects of direct and hydrodynamic interactions among colloidaJ
partic1es. As a result, a coherent picture has emerged in which the
agreement between theory and experiment has the degree of qualitative
and quantitative accuracy expected from more mature fields of physics.
The moral of the paper is that the use of well pstablished concepts
of statistical physics, assisted by modero experimental techniqtlf'l'i, ar(~
contributing to transform complex fluids into a more amiable c1ass of
materials from tile point of view of the physicist.

PACS: OS.40.+j, OS.70.Lo, 47.1S.Po

1. lntroduction

Thc stlldy oC complex fluids constitutes today olle of the most relevant and novel
fields of rcsearch in matcrials scicllce and cngiut'cring. For cornplcx fluids wc re-
f{'f to fluid systcms, whose most important propcrties (thermodynamic, transport,
rhcological, etc.) derive from a wcll-dcfined spatial and -temporal slructure al the
:Hlpramolccular level, i.e., intcnncdiate betwccn the molecular and the macroscopic
scale [1-4]. Exarnplcs oC such matcrials are rolloidal dispersions, oc sois (forrncd
by finely disperscd solids in liquids), macromolecular, polyelectrolyte, and micellar

'Sorne a<;peets of this paper were prest'nted in a plcnary l{,cture delivered by the second author at
lhe XXXI Annual :..tecting of the .\I('xican Physical Society, in Monterrey, Uuevo León, Mexico.
(Ocl.oher, 1988).
'Also al Depart.alllf'nto de Ciencias I)ásicas, Universidad Autónoma ~1etropolitana, Unidad Az.
capotzalco, México, D.F.
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solutions, rnicrocmulsions, etc. In these matcrials, a large number of different mi-
crostructures can be formed, such as colloidal liquids and col!oidal crystals, fractal
aggregates, microdroplcts, vesic1cs, bicontinuous phases, filamentary and porous
structures, etc. l\lany industrial and comercial products, both natural amI artificial,
involve in their processing, or in their final form, this typc of materials. Among such
products, one could mention Coods, like milk, many pharmacellticals, cosmetics,
paints, petrochemicals, fertilizers, and polymeric and plastic materials.

In spite oC their apparent diversity, therc is a less apparent but important unifor-
mity, among the various c1asses of complcx Auids, namcly, in the general approaches
employcd in their experimental and tht.-'Oreticalstudy. This is more obvious wlwn we
consider the physical and chcmical mcthods employcd to probe their supramolecular
structure and dynarnics [1-5]. Thus, physical techniques such as static and dynamic
light scaHering, small-angle x-ray and Ileutran scattering, cte., have been devised
or adapted to study each particular type oC complex fiuids. The attituuc, however,
is always the sarue, namely, one expects to cxplain the less detailed, macroscopic
bchaviour oCthese materials, in terms of cffective interaction forces acting at the
supra molecular leve], and of the microstructural properties that such intcractions
induce.

On the otber hand, the study of Brm','nian motion, as pionecrcd by Einstein
[6]' Srnoluchowsky [7] and Langcvin [8], among others, constitutes one of thc rnost
prolifie contributions to sciencc. Thus, a large nllmber oC tht.-'Oriesdescribing Auc-
tuatio.ns and random propcrtics oC systems constitute today important and active
fields of contemporary sciencc, whose lineagc may be traced back to the work oC
those meno Among such living and healthy hcirs oC the c1assical theory of Brm•...nian
motion, one could mcntion the mathcmatical thcory of stochastic processes, the
irrcvcrsible~thermodynamic thcory of f1uctuations witIt its miriad of applications in
physics and chemistry, ami the thcory of noise and its applications in engineering
ami scicnce. In particular, the theoretical underst.anding of thc dynamic properties
of L"ornplexfiuids constitutes anothcr concrete cxample of an active field of statistical
physics, whosc genealogy traces back to the c1assical theory oCBrownian motion.
Thus, generalizations of the classical theory to describe the random motion of ran-
dom slIffaces in a bicont.inuolls microeIllubion, the Brownian motion oCa particlc
within the filamentary matrix of a gel, or tile irreversible trayectories leading to thc
Cormation of fractal aggrcgatcs in an unstable colloid, could be typical examples oC
thc qucstions awaiting the devclopment ami gencralization oC the thcory of nrownian
motion

1
airned at undcrstanding COITlplcxfiuids fram a fundamental pcrspcctive.

One of thc most common structurcs formed by complex flllids is that of a sus-
pension, i.e., a sel oC well-dcfincd entities, generically tcrmcd macroparticles (such
as rnacromolcculcs, micellcs, microdroplcts, smal! pieccs of solid material, cte.),
suspended in a continuolls nllid ¡¡IJase (tlJe solvcnt). The Browllian lTlotiOIlof each
macroparticle in a concentrated sllspcnsion is, of coursc, highly corrclated with thc
motioll of many other particlcs w¡th which it coHiclesand intcrac.ts by means of direct
and hydrodynamic forces [5-9]. \Ve caH dircct intcractiolls the c.onscrvative forces
bct.wccn particlcs, sllch as cit'ctrostat.ic, van der \Vaals, hard-sphcre, etc., which may
he descrihcd by an interaction potclltial functioTl. Dircct forces are responsible for a
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local average ordering of the macroparticles around any one of them considered fixed.
The function descrihing this local order represents the microstructllf'lll information
of the suspension, and is determined, at thermodynamic equilibrium, solcly by the
direct interaction forces.

IIydrodynamic interadions, on the other hand, are the vclocity-dependeot, 000-

conservative forces that each macroparticle experiences, due to the local vclocity
field of the solvent1 constantly periurbed by the motion oC al! the other particles
[10,11]. Although these forces do not affect any equilibrium (structural or thermo-
dynamic) property, thcir effeets show quite drarnaiieally in the transport propertics
of concentrated suspensions.

The Cundamentalllnderstanding of suspensions involves the establishing oC a pre-
cise relationship among the concept of Coreesbetween macroparticles, suprarnolecu-
lar microstrueture, and thcrmodynamic and transport propertics. Clearly, the stlldy
of the Brownian motioll in concentrated suspensions constitutes an important aspect
oí this general program, and it is the main purpose oC this paper to review the
current status oí our understanding oC a particular class or phenornena, namcly,
oí the self-diffusion properties of suspcnsions. As we shall scc, a coherent and
precise descriptioo of the main effeets affecting the Brownian motion in concen-
trated suspensions ha-<;emerged rather recently, at least when dcaling with clean
and well-defined model systcms, both experimentally and thcoretically .•We wouId
like to conclude, as a eonsequcnce, that in this paree! of thc study oC complex fluids,
physies has provided the dcgree of qualitative and quantitativc llnderstanding which
is common to other mature area-<;of physical rescarch, and that those other aspeets
oC eomplex flllids which rcmain to be understood, eonstitutes a genuine frontier of
modero physies.

In most of this work, we shall have in mind sllspensions oC spherical macropar-
ticlcs of a single type (i.e., monodispersc). \Ve shall first discuss the properties
oC dilute suspensions of highly charged colloidal partides in water. In this case,
the effedive pair potentialu(r) dcscribing tbe elcctrostatic repulsive Coreesbetween
macroparticles may be reprcscnted by a screcncd Coulomb potential. This is a rather
long-ranged potential cornpared to the hard-sphere repulsion associated to the ac+
tual physical diameter a oC the particles. Thus, although the suspension rnay be
highly dilute with rcspcd to the volume fraction occupied by the macroparticles,
the electrostatic forces strongly correlate the positions and the motion oC aH the
suspended particlcs. For such systcms, hydrodynamic interactions are negligiblc.
Furthcrmore, their static structural properties are by now wcll understood, and the
agrecment between tbeory and cxperiment may be said to be satisCactory, as it is
discussed and illllstrated in sCftion 2. Thus, thcsc systems will serve to illustrate
the approaeh employcJ in thc study of complex fluids.

\Vith the structural problem assumcd understood, one rnay procecd to the dis-
cussion of the dynamic propertics. In section 3 we discuss and illustratc the dif+
fcrenee between collcctive- and sclf-diffusion pbenornena. Self.diffusion is the dircct
experimental observation of the Ilrownian motion of individual macroparticles, and
the Test oC the paper ceIlters on that subject. Scction 1 provides a simple, intuitive
picturc of one of the main [catures oC llrownian motion in concentrated suspension

1
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Damely, the existence of well-separated time-scales defioed by tll(' effects of the
direct ioteractions. In section 5 we iIlustrate the current status of our understanding
of sclf.diffusion experiments performed in highly correlalcd. hut hydrodynamically
dilute suspensions, in tcrms of two well-establishcd theorics.

Unfortunatcly, the considcration of hydrodynamic intcractions demand cxtco-
sioos of thosc two theorctical approaches, which at least from a practical puint of
view, scem excccdingly complicated. Thus, in section 6 we describe a 1hird the ..
oretical formalism to tbe description of self.diffusioo phenomena bascd 00 general
principies of thc linear irreversible thermodynamic tlleory of f1l1ctuations [12.1 :11. 1t5
application to tlle theory of Browoian motion io highly corrclated suspcnsions cor¡-
stitutes a simple examplc of the idca of contraction of tbe dcscriptioll, also cxplained
and il1ustrate(! in tbat section. This results, in our casc, in a gcneralizeo Langevin
equation for a lracer Brownian partide that diffuscs in a suspclIsion of many other
strongly corrclated colloidal partides (Eq. (18)). Although the general restllts thus
derivcd Icad in a particular case, lo one of the theories disclIsscd in scction 4, it
lends itsdf to ratber siTllpl~ exlensions to incorporate the dfecls of hydrodynamic
interactions. Scction 6 contains a rather detailed ami clclJ1clltary derivation of the
main results of this thcory, as wcll as the description of a more formal dcrivation. A
more pragmatic reader may accept the main reslllts of tile tllt'ory. namcly, Eqs. (36)
and (37), and proceed to their applications in tbe subsequt'nt seetions.

Scctioll 7 descrilws the application of this tllf'ory to tile illlnprdation of self-
diffusion cxperimcnts in conccntraled hard-spherc like suspcnsioJls. TIH'se system:s
are tbe oppositc extreme froIO tbe eleetrostatically correlated systems disclIssed in
section -1, in lhe scnsc that tbe direel interactions are hard-sphcre (and benee, short-
ranged) rather tban scr('cnN! (hut much longer ranged) mulolllhic interactions. ami
in that hydrodynamic interactions constitute a most important fcature, affecting
sclf-diffusion in aH time-regimcs.

Seelioll 8 addresscs a rather different effect. Considering chfllynl Brownian par-
lieles al injiflilt dilution, another source of friction must be eOllsidt'wd, nalllCly. the
frictioo on tile particle fiue to its interaction with tlle (oullterions aJl(1 the otber
small ions of the supporting solution. This is a rather small dTcet (ompawd lo
tlla1 of the direct interactions with other Brownian partides, but its features can
be clearly observed expcrimentally in the limit of extrcmely dillllc stlspcnsions. In
section 8, we describe the application of the same general results of section 6 lo this
problcm, wit" the intention to illustrate the power of the IIwthod. Finally, M,ctioll
9 summarizes bricf1y tbe rnain aspects of this paper, and discllss(,s tlw perspedive
for progress ill this (¡cid.

2. Static structure of suspensions

In the stud,Y of suspensiolls. lhe ver)' first problern is tlll' de\t'rmillatioll of tlw
local average microstructure arollnd cach suspended partide. In comparison, for
crystalirw matf'fials, this micro5tructurc may he dderlllillcd diwctly from lh{' oh-
scrvatioll of tlU'ir Bragp; diffrartion pattcfOs. ThllS, the ph)'sic.'ó of c.ry:o>talin(' :o>olids
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FIGURE 1. Radial distribution runction or a salt-rree aqu("ous suspension at room temperature
or highly charged polystyrene partides or charge Q, hard-sphere diameter (7, number
concentration n, and volume rraction .:>(= :11""(1'3/6), which interact through the DLVO
potential in Eq. (1) with a screl'ning length .••-1 = 11.49(1'. The dots are computer
simulation (Monte Cario) data, and the salid lille is a theoretical ealculation ba.sed on
the rcsealed mean spherical approximation. The corresponding static structure ractors
fit the experimental results in a llJanllf't illllsl ral('d in fig. 2 ror a similar sample., using
Q as the only fitting parametf't. (Figure reprodllced rrom rer. [l8}).

has focusscd lraditionally on other phenomcna, such as the electronic properties of
those malcrials. A similarly privilegcd condition is not shared by complex fluids, and
Bot cven by ordinary (atomic and molecular) liquids. Here, the ordef(><i,long-ranged
periodic struclurc of a solid is replaced by an average, short-ranged, local struclure,
whose dclermination is the yer)' first rclevant and fundamental task in their study.
The quantity containing this rriicrostruclural information of a liquid is the so-callcd
radial distriblltion function g(r). This funclion, times the bulk nl\mber densily n,
givcs the average local density of particles around a givcn particle fixed at r = O.
lt vanishcs in a rcgion centered around r = O, since the very presence of the fixed
particle cxcludcs other particlcs, from such a regioo. At long distances, g(r) -+ 1,
indicating lhc loss of the order induced by the central particle. The general features
of g(r) are ilustrated in Fig. 1, where the radial distribution function of a suspen-
sion of bighly chargcd polystyrene sphcres in water is plotted. As it happcns, the
developrnent of the theory of simple liquids dllring tIJe last three decades generatcd
a wealth of theorctical and experimental techniqlles to determine the structural
properties of liquids [14]. During the presenl dccade, the study of sllspensions has
bcncfitted d¡rectIy from sueh progress. This is duc to the fortunate analogy bctween
a colloidal sllspension and a simple liquid [15], in which lhe colloidal particles play
lile role of tile JTIolecules in an ordinary liquid, lhe solvcnt replaces the vacuum,
and lhe efTective forces betwecn macroparticles replacc the intermolecular forces.
Thc radial distribution function in Fig. 1 corrcsponds to a system of charged ro!-
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FIGURE 2. Direct cornparison between experiment (crosses), computer sirnlllations (dots) and
theor)" (salid ¡¡ne) for the static structure factor S(k) of a similar sarnple as in fig. lo
Ql\lC and Qft~tSA are the values of the charge Q employed in the Monte Carla and
in the theoretical calculations, respectively, and were chosen to fit the hight of lhe
main peak of the experimental S(k), this being the 001)" pararncter, oot deterrnined
accuratcly otherwise by independent experimental rneasurements. (Figure reprodllced
from ref. [18]).

loidal particles of hard-sphere diamctcr (j. chargc Q, and nurnber concentration Tl

whieh interaet via an effectivc pairwise potcntial modcllcd by a hard-sphere plus
a repulsive sereened Coulomb potential. Its spccifie form is the so-caBed DLVO
(Derjaguin-Landau- Vcn",'cy-Overbcek) potential, writt.cn as [16,17]

Q2e- .••(r-cr)

u(r) = ((1 + K<7/2)'r r><7 (1 )

where ( is thc dicledric const.ant of thc solvcnt and fi, is thc Debj'c scrccning pa-
rameter, which describes the charge-screening due to t.he count.erions and olher
cledrolyte ious in the solulion. The dots in Fig. 1 correspond to comput.er simula-
tions [or this moJel systern, ami the solid line corrcsponds to theoretical rcsults [18]'
bascd on the use of thc "rescaled mean spherical approximation" [19,20]. This is
aboul the simplest, non trivial statistical thermodynamic schcllle to ealculate g(1')
given the pair poteniialu(r).

A quantity closely rC!atcd to g(1') is thc static structure factor S(k), dcfined as

S(!.) = 1 + n J <13r[9(r) _lJeib. (2)

.Just as neutron ane! x-ray scattcring measures dircetly the static structure factor
S(k) of simple liquids, st.atic light scattering, or x-ray or ncutron scattcring al
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small.angles, may lead lo the experimental d<'lermination of S(k) for a colloidal
slIslwnsion [1~2].This exp('rilllentally.delermil1~,d S(k) 01' g(r) may be comparcd
directly with theorctical results like those in Fig. 1, and one such comparison is
i\lllst ra.ted in Fig. 2. This is the statíe strueture factor of a system similar 1,0that in
Fig. l. This comparisoll illustratcs lhe degree of accllracy of the current t1lt'oretical
preciictions. as compareci with comput.er anu real experimental data [18]. Of course,
<JIU' shollld 110tbe Idt with the impression that aH the basic problems rderring to the
static strllctllre of dispersions ha\'c bcen sol\'cd with thc saITlCdegrce of aceuracy. In
f<-let.this is currcntly one of tl](' most acti\'e aspects of lhe sludy of susp •.nsions. and
of cOlllplex f1uids in general. 1I0we\'er, fm the pllrposcs of the prcscnt discllssion,
kt liS assume lhat the dcscriplion of the stalic properlics is 110longcr a problcm.
so that we can focuss our attention in olher propert.il.'S of colloidal suspellsions.
Fmlherrnorc, ,,,'e shall ilcl.lI<lllyaim al cxplaining somc of thosc propcrtics in t.(~rITls,
precise1y, of the cquilibrium static strueturc repn'S('Ilt.ed by g(r) alld S(k),

3, "Collective" versus "self" diffusion

Brownian motion and diffllsion are two intimatt-Iy related concepts, particularly
wll<'1Irefcríng to highly dilute suspcnsions, \Vc might say that diffusioll is the
eollective, macroscopic superposition of the Brownian mol ion of many individual
colloidal partides, Thc most familiar difflision process is that described by the
ordinary diffusion equatioIl,

iJ,,(r, t) o
--0- = D,"'",,(r,I),,,1 (3)

wherf' n(r,t) is the installtalll'OIlS conccntralioll of col1oidal particlcs al posltlOIl r,
This diffllsion phcnomefloll is rderrcd lo as "COlll'cti\'l'" diffusion. sincc it describes
lhe relaxation of a ('olh.cti\'c variable. The corresponding dilfusion coefficicnt, De,
is knowll as the "collfdivc" diffu,<.;ioll cocjJicicllt.

Quite a different dilfusion cocfficient charaderizcs more directly the concept of
Brownian molion. The eX¡Wrilllcntal observation of the random motion of individual
partic1es must in\'olve lhe rccording of some averaged time-dependent individual
property. such as the meall squared displaceIllelll, ((.6.r(t))z), 01' lhe velocily auto-
corrclation functioll (V(t), V(O)) of individual Brownian parlicles, 1t is w('11known
that al sufficiently long times, lhe mean squared displacement ináeases linearly
with time, and the proportionality constant defines another difTusion coeíTicient,
according to the follO\\'ing l'xprcssion

J) = l' [{(M(I))2)].• t..!!~ Gt (4 )

The dilTusion coefficicTlt.IJ.~lhlls dcfincd is callpe! t.11('"",dJ-diffllsion" cocffici('ni.
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The distinction between collective and self-diffusion coefficients would be purel}'
academic if we were to restrict ourselves to infiniteIy dilute suspensions, as the classi-
cal theory of I3rownian motion [6-8] does. In the absencc of intcractions betwccn the
Hrownian particles, both diffusion coefficients converge to a common value, which
we shall denote as DO, and \•...hich is related to the hydrodynamic friction coefficient
(0 by Einstein's relation. Thus, in the limit n -jo O, we have that

According to this result, the measurement of De in an ordinary concentration-
gradient experiment, in an extremcly dilutc suspcnsion, leads to an cstimate of
(0. The subsequent use of Stokes formula for tbc friction coefTicient of a spherical
particle, (O = 3r.1]G (with TI being the viscosity of the pure solvent), a]lows a simple
determination of the colloidal particlc diametcr G. In fact, particle sizing is one of
the most popular practical applications of the c1assical th(X)ry of Brownian motion,
although thc actual meaSllfcment of tile diffusion coefficient is carried out nowadays
more practically by means of Dynarnic Light Scattering (DI,S). In these experiments
olle measurcs the intermediate scattering funct.ion, F( k, t), defined as [5]

F(k,l) = ~(8n(k,t)8n(-k,O)), (6)

which is the Fouricr transform of the van llave function of th~ macrofIuid [1.1], i.e.,
6n(k, 1) is the spatial Fourier transform of the ficld of illstalltaneous concentration
fIuctuat.ions 8n(r,l) == n(r,l) -n, and the angular brackcts indicate cqllilibrium en-
samble average. Ir the therma l fiuctllations also ohey the collcctive diffusion equation
in Eq. (3), it is then a simple cxcercisc (5ec scction 6) to show that F(k,l) is given
by

(7)

where we have used the rael that F(k,O) = S(!-) [l~l-Actual1y, with DLS ane is not
restricted to probe only tile relaxation of concentration f1uctuations of macroscopic
sizc ("'" 1 mm) and over macroscopic times (t '" 1 sec). Qne can also probe [.5] the
collective diffusion bchaviollf in the lcngth scalc clown to the mean intcrpartic!e
distance betwccn the suspended particles n-1jJ (corresponding to the wave-vector
Á'max = 2r.nl/3, where the main peak of S(k) is locatcd), and within time scales
comparable to the diffusion time TI == 10-2n -2/3 / DO that t.akes a particle to diffuse
a small fraction ('" 10-2) of Sllch mean distaJ1Cf'.Clearly, this faet is irrelevant whetl
extremcly dilutp suspcnsiolls are considcrcd, since TI -jo oc, as n -jo O, and Eq. (7)
hold5 with D.~givcll by Eq. (tí) for aH times. This is, howcver, no longer tbe case
when the interactions hctw('cn colloidal particlcs are not negligible, slIch as for the
systcms in Figs. 1 ami 2. In t.his case, t.he collect.i\'c difTusion coefficicnt De actually
becorncs a spatially and t.emporally non-local kernel, and tbe collective diffusion
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FIGURE 3. (a) /nVU'Sf co!lectiv(' diffusion cocfficient (in units of DO), as a function of the ¡onic
strenglh / of the supporting ~Iution (/ = E:= ,IZ¡ 12n" wher(' Z¡ is the valenlCe of the
elcdrolyte ions of species i. wh06e bulk numbet concentration is ni), fOt a. Nohition of
gangliüt>ide micel1es at fixed concentration. The salid line is ti. theoretilCaJ tciult based
on Eq. (7), within the n:\c approximation for 5(0) for the DLVO potential. (Repr<>-
duced fram rt>f.¡21.aj). (h) Self-diffusion coefficient in units of DO for ti. suspension of
polystyrene spheres at fixed concentration, as a function of / (expressed in terms oC
the inverse Deby" sctN'ning length ,.. ;:;: (47fe2/jckBT)I/1 and thf" tracer's diameter
0") (data taken from ter. (21.b)). The salid and dashed curves are theoretical results
explained in sf'ctioll 5

equation no\\" f('ads, in geJ)f'ral [9]'

¡¡8,;~;,t) = _l' dt' J d3r' D(e - e'; t - t')8n(e', t').

Thus, F(k, t) is t!lell givell by

F(k, t) = X(k, t)S(k)

(8)

(9)

where \(k. t) is lhe spatial Fourier transform of the propagator, or Grecn's functioo,
of the general ("ollf'ctive dilfusion cquation in Eq. (8). Clearly, Eqs. (3) and (7), with
f.:'q.(5). are the fr('('.dilTusioll particular case of Eqs. (8) and (9). Another well-known
general limitillg expression of Eq. (9) is its short-time approximation, which is given
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(ignoring hydrodynamic intcractions) by (5)

(l/Ti ~ !). ( 10)

This approximation is also cxact {9J in the so-cal1cd "'hydrodynamic" limit
l

obtaincd
letting k -4 O ane! l -4 00, with J..,2t rcmaining constant. In this limit, we rccovcr
Eqs. (:3) illld (7), hut with !Je given not by its fH'C-diffusion limit, Eq. (5), but by
tll(' general rt'SlIlt [!l,9]

D, = D'/S(O)

= D' (U(JI') ,
Un {'

(11)

\vlll'rt~the s('('()nd lille mi\kes use of the "compressibility" equation of the theory of
I¡quid, [I~], whirh ,lille, thill 5(0) = !/(u(JI'/Ull)p, where (J = !/klJ7', and P is
the OS1Ilotic prt'SSlire of the suspcnsion.

In Fig. :J we reproduce tile results of thc llleaSllfPlIlcrlt of De and !J., in systcms
similar to those in Figs. l and 2. lIere, the systclJI is kcpt at constant concentration,
hut tite Debyc screl'lling If'ngt.h 11;-1 is varicd by varying tile iOllic strcngth of the
supporting solutiotl. Increasing 11; increases the screcning, and the effccts of the
interactiolls 1)(,(,(HIl(' 1('55 illlportant. As a result, the syst(,rTl becorncs more non-
interacting, (¡.c., (iJfJl'/Dn)¡3 -4 1), and De tcnds to its frcc-diffllsion value [Jo (Fig.
:J.a). This Figure also shows thc hchaviour of tIJe self-diffusion coefficient O." which
also approadlPs [Jo as the interactions bccorne less important (Fig. :l.b). Fig. 3
illustrates the fad that De incrcac;es and D~ dccrcases as a result of the intNactions
hetweell the Brownian partidcs. The bchaviour of De only rcflccts the depcnd('ncc of
the thcrmodynamic factor in Eq. (11), and mar thcn be cOIlsidcrcd wdl understood
[21.a]. In fact, the solid line in Fig. 1.a is a theofetical calculation bascd on the
fiNe approximation [141 for tlw DLVO pair potcntial in Eq. (1). Tbe qualitative
and qU<llltitativc IIlldcrsl<lnding of the behaviour of !Jj, on the othef hand, is the
subject of intcn~e currellt rcs('arch, and is oue of the aims of the thcory of Rrownian
motioll, as \Ve now disclIss.

4. Direct interactions and self-diffusion: facts and intuitive picture

Conventional dynalllir: light scat.tering rneasures the collcctive intcrmcdiate scattcr-
ing fllllctioll, Eq. (6). ImagiJl(', hmvcvcr, that undcr certaill cirCllmstallccs, tile va.st
majorit,Y of tile i>éll'tic!eswef(' not to cnntribute to the scat.t.ering (as \\'0111<1 happen,
for cxample, if tbeir rt'Íraclion index matchcs that of the sllJlportillg solvent), but
that the remaining small fraction diffcr in their optical properties (hut in no other
rcspect) from that majority. Tilen, light would be scattcrcd only hy litis subsd
of lahellcd particlcs, cach of which virtually newr cncounters another lab('lkd, or
"tracer", partide. This would he a typical se!f-, or traccr-diffusion cxperirnent. in



!JrOlrni(ln fIlotion in complex jluids... 527

"E J <p' 27 lO".u i (J=84nm

''"~
ti>-"-
~ 0.3

/'

<; aL
o 05 10

t(msec]

FlGtRE 4. Mean-squared displacerncnt ((0.1"(t»2) of a tracer partidc in the suspcnsion in Fig. 2.
The noisy curve is the experimental result, the black squares are computer simulatiólls
(Brownian dynamics), and the open squares and cirdes are theoretical results ohtained
froID the two theories described in section 6. The dashed straight line is the fH't,-
diffusion result. (Reproduced froro ref. 118]).

which thc measured property is the sclf-dillÚSiOT! prYJl'agalor, defined as {&-9]

(12)

where ~r(l) is the displacement, during a time intcrval t, of a tracer particlc.
Thus, sclC-difTusion experiments measure directly the gencrating Cunction of the
prohability distribution oC the random variable ~r(t), and this determines, alllong
other things, the mean squared displaccment and thc sclf-diffusion coefficient of that
tracer particle interacting with many other identical particlcs. Fig. 3 is an example
of the experimental results which roay be obtained with this, or similar~ lechniques
applicd lo dilule suspensions oC highly chargcd particlcs. This figure also serves lo
illustrale that the degeneracy oC the Crcc-difTusionlimit, in which De = D, = DO, is
clearly broken by the presencc oC direct interactions. Explaining why D, < DO, and
predieting the cxtent of this deviation, is one of the goals of thc theory of Brownia.n
rnotioll of rnany coupled Brownian particles. lIowever, as said abavc, dynarnic ligbt
scattering also providcs the time depcuden<.:eof qualltities such as ((~r(l)?). Thus,
Fig.4: illustrates a typical signal of all experimental output (solid, noisy curve) for
this quantity [18] for tbe sample whase static structure factor is plotted in Fig. 2.
This Figure exhibits the differencc between the mean squared displacement in that
sample, and the corresponding result for free difTusion, i.c., ((~r(t))2) = 6f)°t
(d~hcd Hile). It is immediatcly c1ear from this compari!'ion that the main effcct
of the direet interactions is a departurc from the free-diffusion behaviour, which
becomcs more apparcnt as time incrca!'ics, but which is negligible at ver)' short
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times. Let us notice, first of aH, that lhe time scale of the Figure (t '" 1 msec) is far
aboye the typical time Tn assodated to the relaxation of the macroparticle veiocity,
Tn = (o/J¡,f (where Mis the mass of the particle), which may be estimated to be
around 10-7 sec, for the conditions of that sample. Thus, during the times recoTded
in the experiment, t ;:}> TIJ, and hcnce, in this time seale, the motion of the particles
is PUTely diffüsive. However, in this diffusive regime, only at very short times the
mean squared displaeement behaves as if it were free diffusion, Sueh short-time
regime corresponds to the times in which the traccr diffuses freely in the essentially
stalic field produced by its virtually imrnobile neighbors, who have had not enough
time lo change their colleetive configuration around the tracer. As time ellapses,
the dynamic effects of lhe intera,ctions (i.e" of the "collisions") wilh its ncighbors
cummulate, pr~venting the tracer from diffusing as fast as if it weTe diffusing freely.
Thus, the interaetions of the tracer with its neighhors define another typieal time,
which we .denote by TI, and which rnay be defined as the time it takes lhe tracer
to diffuse a small fradion, say one hundredth, of the mean interparticle spacing
n-t/3. Thus, a simple estimate of TI is given by TI = 1O-2/(DOn2/3L which in our
example yields TI :::::2 msee. For times much longer than TI (far outside the scale
of the Figure), the mean squared displacernent once again ¡nereases lineady wilh
time, but now with a different, smaller slope. Thus, as a direct conscqucnce of the
interactions, we are foreed to define two self-diffusion coeffieients, one associated to
the short-time regime,

D: :; Iim ((M(I))'),,-o 61 (13 )

(where t ---> Omeans l/TI <K.1, bul slill tlTB > 1), and anolher [or lhe asymplolic,
long.time behaviour, defined just as in the previous section, (see Eq. (4))

Df = lim ((2.r(I))').
t-oo 6t (14 )

Here, of eourse, t ---to 00 means t/TI ;:}> 1. In lhe prcscnt case, where no hydrodynamic
interactions are involved, D; is identical to the frcc-diffusion coeffieient, DO, and
is independent of the dircct interaetions, whereas Df is always smaller than DO,
due precisely to the direct interactions, The experimental rcsults for D, in Fig. 3.b
correspond, of course, to D;.

Tú gain a beltcT intuitive understanding of the differcnce between D; and Df,
let us consider the thought experiment illustrated in Fig. 5, Imagine that instead
of observing direetly the Brownian motioo of tracer particles, we could measure
the friction force felt by a given particle when we force it to move at a constant
veloeity V through the suspension. Depending on the time- and length-seale of
this experiment we would measurc a different frietion eoeffieient. For the condition
illust~ated in Fig, 5.a, in whieh the particle has not had enough time to collide
with other particles, the only frietional forces are those of the solvcnt, J.e., at short
times, the external force FeJ.:tneeded to move the particle w¡th velocity V is givcn by
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FIGURE 5. Schematic illustration of the motion of a tracer partide mo\!ing at constant vclocity
V through a sllsp('nsion of colloidal particles of Ilumber concentration 11, and mean
intcrparticle st'paration l = n-1/3. The three figures describe the same motiotl, but in
thrce dilTerent time and spaec seales" In (a), the traeer has sulTered a displaeement (/Í."),
whieh is mueh smalJer than the mean interparticle spacing l. Thus, in this time-scale,
the elTecLof direet "collisions" with the other partides is still ncgligible, and the force
Fut needed to pul! the tracer at constant \!elocity Vis given by Fut = (5V, where
(s is the h)"drodynamie friction coefficient al shorl times. In (b), lhe particle has
moved over a distan ce <1<6) comparable to t, and the efreet of collisions start to become
appreciable. In (e), the displaeement cJ<c)is mueh larger than t, and the force nceded
to pull the tracer at tlle samc veloeily V is given by rxt = ((s + .6.()V, where .6.(V
is the additional fridion force needed to push the other partides out of the way of the
traccr.

Fext ::: (5V where (8 is just the hydrodynamic [riction coefficient, given in our case
(where we are ignoring hydrodynamic interactions) by its Stokes value, (8 = (0. In
the oposite rcgillle, Fig. 5.c, the tracer particle has had many encounters with its
[ellow particl<.-'S.This produces an additional friction [orce tJ.F = (tJ.()V, bcsides the
lIydrodynamic frictioll FS ::: (5V. Thus, in this time. amI spa.ce-regime tlle external
force we would !leed to apply on the particle to move it at cOllstant velocity V is
now givCIl by F{'xt = ((8 + tJ.()V, and this defines a long4time frictioll cocfficient,

(15 )

The conditiolls illustrated in Fig. 5.b then describes the transltlon regllne [rom
short.timcs to long-timcs, and corresponds to the regime exhibited in Fig. 4. Thus,
a complete picturc of scJr.diffusion or self-friction should describe lhe build-up
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of lhe frictional dfects of lhe direcl inleractions, and should start wilh a pllrdy
hydrodynamic shorl-time friction cocfficicnt (s (alld a corr£'sponc!ing short-lime
~'£'lf-dilTusion eoeflici('nl D; = k8T/(s), and ('nd up with a IOllg lime frictioll
codfieienl (1. = (, + D.( (and a corrcsponding long-time self-dilTusiotl codfieient
uf = ,'¡¡T/(L).

Th£' formal theoretical IInd('rstanding oC this dynamic ph£'1l01lWIlOIl was con-
structed within tlH' lasl lt~fl y('ars, following ess('ntially a syst('matic applicatioll of
eorrcspolldillg t1H'orl'tical developrnents in the dynamies oC simple li<¡llids. lIow('H'r.
it was ollly within the la"l fivc years that a precisc quantitativc pict.llfc l'llIerged,
whiel! k,d to l!J('oreticai f('sult.s in excellcnt agr('cnwnt wit.h tlle ('x¡U'rimcnt.al mea-
SUfelTll'nts. TIH' stale oC the art conccrning such comparison is illuslrat.cd in Fig.
:~ alld .1, where computer sillluiation data and theoretieal f('slllts <1[(' also illc1uded.
The followillg st,ction conlaills a description oC the theorctira! developmcnts which
1ecl lo those f!'sult.s.

5. Tneory of self-diffusion

The dassical tlH'ory of Browniall lIlotion is besl deseriLed by tlw ordinary Langevin
cqualion for a Cf('('ly-ciiffIlSillg t.racer particle [8]

JldV(t) = -('V(t) + f(I).
dt

(16)

wíl{'re f(t) is a Gaussian. purely random force. represcnting the t!wrmal fillctuations
oC tlw hydrodynarnic Corces 01' the particle. The stationarity of the equilibriulIl state
dClIlands that the friction coerrieicnt (0 be rciated with the correlatioll CUllctioll of
f(i) according lo the fiuctuation-dissipation rclation

(j,(t)f}(O)) = k¡¡T('28(t)8;j (i,j = 1,2,:l). ( 17)

Ir the tract'r I'<utide does nol dilfuse [r('('ly, but is interactillg with tTlallY other
diffllsing particlcs in lhe su.spcnsion. one wOllld expcct, following the intllitivc pie-
lure introduced in the previoll.s section. that bcsidf's lhe hydrodynalllic friction afld
ralldom tCflIIS, the direct interactiolls \•...illlcad to ¡Ul addilional [rictioll terlll alld a
corrcspollding fillctuating force, so lhat Eq. (IG) will be tTlodilicd to read

lV(t) l'.11-' - = -("'V(I) + fS(t) - dt'i;.((t -t')V(I') + F(t),
di o

(18 )

w!Jere ~((t) is fllllt'ITlory-fllllctioll-likc Criction describing tllt' bllild-Ilp oC Ihe dfec1s
oC lhe direct illtl'factiolls of tll(' tracer with its Ill'ighhors, and F(t) f('pn'Sl'nts the
corresponding ralldolll force, gcncrated by the inslantancous df'partmc oC the distri-
butioll oC IIcighbors fl'OlII its eqllilihriurn radial dislribution Tlg(r). 111 the Collowillg
.scclioll wc providc a d('rivalioll oC lhe gcncralized Langevin Ec¡. (18), which Icads,
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"pon \\'cll-drr.ned approximalions, lo cxplicil expressions for ~((t) in terms of the
df('ctive pair potential of lhe dir('et interactjons and of LiJeeC"]uilibriumstruclural
qllalltities g{r) and S(k).

Once il(( t) is deterlllillccI, otiJer rclevant propcrties descrihing sclf.diffusion ma)'
be calculated. For cxample, tln: Laplace transform of tiJe vdocity alltocorrelatioll
fuudioll C(I) = (V(I). V(O))/:l, dellotl'd as C(z), is givl'lI by

c-"(V(t) . V(O)} = . k/JT
((5 + "'((z))' ( 19)

whcrc il((z) is the Laplace transform of il«(t), aoel where wc !lave ncglected z/z/J
(with Z[J == .\1/(5) in the denolllinator of the right-hand sidc. This corresponds, in
lhe timc-domain, to the neglcct of terrns of order (TR/t) anr! bighcr, as it should be
dOlle if we \\'ish to describe ollly lhe motion of tile tracer pa,rticic in the diffusive
rcgime. Frorn C(t) one can e(lsily ealclllate the rncan-squared djsplacement, since
tlwy are related by IllCélnSof tile following equatioll

(("'1'(1))')/61 = l dt'(1 -1'lt)C(t'). (20)

Clearly, combining Eqs. (20), (19), and the definition of D,!' In Eq. (14), we have
that the long-time sclf-diffusioTl coefficjent can be written a.<;

nt. = r'" dl'C(I') = !'/lT (21)'Jo í' + "'í'

wilere

"'( ="'(0) =J.~di "'(( 1). (22)

t\ still more general program to describe sclf.difrusion could aim aL Lhe ealcu-
lation of the self-diffusion propagator ¡;:,(J.:,t) dcfined in Eq. (12). The pionccring
work of Ackerson [22], PlIsey alld Tough [6.23], !Iess a",1 !'leill 19], and others,
followed this rotlte, starting frolll a IlIcsoscopic dynamical desniptioTl of the eoupled
Orowlliatl motion of N colloidal particles, provi<icd by tile N-partidc Smoluchowski,
La.ngevin, and Fokker~Plallck ('<¡llatioIlS [2.1,25]. 111c10sc ¡\IIé1logywith similar de-
vclopments in simple liqllids, tIJey applied well ('stahlisil('d st.éltistical mechanieal
formalisrns sueh as projector operators [22], short.tinw CXPé\I1SiOllS[6], and linear re-
sponse theory [9]. As a result, tile)' showed that F$(k. t) satisfies a nH'mory.ftlnction
equation, written, neglecting hydrodYIIamie interacliolls, as

iJF,(k, t)
iJl -;.' /)' F.(k,/) + 1.' .\1(;',1 -I')r.(k, I')dl'. (2:1)
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Thus, the aim of those thcories is to ealculate the mernory function Af(k, t). From
Al(k, t), al1 the previously deAned self-diffusion propcrties follow, sincc .1\1 (k, t) lS
sueh that its Laplace transform M(k, z) is related L'>((z) by [26J

r M(k, z) = L'>((z)
,~ k2D' (' + L'>((z)"

(24 )

Although these statistieal mechanical approaches lead to formally cxaet cxpressions
for .\1(k,t) and Ó,((t), their actual applieation rcquires the int.roduct.ion of approx-
imations. The most successfull approximatc rcsults of this type are lhe modc-mode
coupling approximation inlroduced by Jless and Klein [9], and tiJe exponcntial-
mcmory approximation introduced by Arauz-Lara [26-aO]. TiJe first is a systernatic
lranslation of analogous mode-modc coupling theorics of simple liquids, and leads
to lhe following rclationship between Ó,((t), F,,(k,t), and the cullccfivc intermediate
seattering funelion F(k,l) (Eq. (6))

nk1JT J 1 [ kh(k) ]2 ,
L'>((I) = 3(h).1 d k 1 +nh(k) F(k,I)¡',(k,I), (25)

in which 1+nh(k) = 5(k) is the static slructurc factor of the bulk suspension. As we
shall C1xplainin tiJe following section, tbis rcsult can also be derived in an alternativc
manner, \\'hich allows its extension to more general situations. To rnake Eq. (25)
more tractable, the short-timc approximation for F(k, t), Eq. (10), is introduced,
and Fs(k, t) is approximated cither by its short.-time limit,

or by its long-time exprcssion

F (k 1) = e"v',., , , (26)

(27)

The use of Eqs. (25), (10), aud (26) leads lo an explieit expression for L'>((I) in
lerms solely of S(k). Sueh an approximation has bccn labelled M~ICl [26]. The
use of Eqs. (27) and (10) in Eq. (25) leads to an exprcssioTl for D,((t) in tcrms of
5(k), D°, and D;-. This exprcssion, when employed in Eqs. (22) ami (21), leads
to an independent, implicit cquation for (/Ji'IDO), which must be solved before
one can ealculate Ó,((t). This second approximate schcme to Gl.lclllate sclf~diffllsion
is labelled M:-'lC2. The only input rcqllircd in the Illltllcric<tl applicatioll oC these
approximations is lhen 5( k) and f)0. Sincc S( k) has hcen determined experimenta]]y
and theoretically for the systcm in Fig. 2, the ca1culatioll of the TIlC'tHlsqllared
displacernent ((ó,r(t))2) is now straight.forward. The 1ll1lIH'ricalr(,slIlts, witiJin the
r.IMC2 schcrne, are displ¡¡yed in Fig. '1. Similarly, Fig. :3.b displays the resuls of
the MMC2 approximation for lJ.f for tbe conditiolls of that Figllff~.
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Thc other approach which has bcen quite slIcc('sfully applied lo the interpreta-
tion of sclf-dirfusioll measurelrlf'llts was suggested by Arauz-Lara [2iJ. It is ba."ed 011
tile dcrivalioll of exact condit.ions for lhe initial vallle of the memory function ,\/( J..., t)
<tlld ils first timc-dcrivative. Tlws(' exact conditiolls were employcd to determine
tile amplitude and the dccay constant of lhe mernory funclion, modcllcd by a single
exponential fllnctioTl [29). This leads to approximatc cxpressions Cor,\f(k, t), ti((t),
((tir(t)f), and f)~',in tcrms of {)O, and of certain integrals involving lhe pair po-
l<'lltial 11(1'), tl](' radial dist.rilmtioll CUllction g(1'), and tile threc'par1.ic!e distribllt.ioll
fllllclioll g(3)(rl,r2,rJ) [I,t]. Negkcting tcrllls proportiollal to g(J)(rt,f2,r3). Icads
to an l'xplicit expressions for thos(' dynamica! properties in {('rllls only of g(r). Such
approximat(' sdll'TlIe is referrcd to as the singll'.exponcntial approximation. and il
has also bt''C1l applicJ to the sp;tellls and condilioTls in Figs, :J.b and 4, where il is
labelled SEXI'.

As it is e!t'é\[ from the colllpilI'isOIl in Figs. ;Lh and 4, both IJwtltods to describe
sdC.diffusion ill terms of tlle struclural properlit':S Icad, lIpon lile judiciollS and
\\'ell.definpd approximation!' inn)!ved. to a slIccesfllll comparison with experimental
¡¡lid computcr silllulated resllll.s. This is particularly lIIeritoriolls ("()I]sidering lhe fael
th"t no fitting paramplcrs are ¡llvolved in tlll' (olH'clions lH'tween ((tir(t))2) and
Ihe slatic st.rudural prolH'rl.i('s provided by tlll's{' t\H'ories. '1'1111..•, we lIla)' cOllclllde
that lhe til('ory oC Browniall JIlotion has bccll ('xll'nd('d to provide a qu;lit.ative
alld quantilali\"(' ulld<'l"standing of lhe cff('cts of dirccl in!f'ractiolls in SllSPCIISiollS
of h¡gh1y c!largf'd particlcs, wil('r(' hydrodynamic. interactions arp J1egligible.

This oplilllistic c1aim is qnit(' fair. as it can 1)('jlldged by !.II/' (omparison in Figs.
:~,h and ,1. i\'('\'crtheless, the I]('(,d arises to cxtcnd tll(' rangc of aplicahilily of these
tllf'ories 1.0 dl'scrihe additiollill inleraction forn's w!tich also affeet s('lf-<!i[[lIsioll in
syslpllls úthP!' t.ltan e!cclrost;ltically corrclated syslf'llls. In fact, a.lrcildy \\'ith charged
IlIilnoparticl('s in the limil of infillil(' dilutioll, allother srnall f"idional efreet is ap-
paren!. du(' to tll(' e1ectrie illl('raclions with the sCf'('('ning ionic ¡¡trnosphere. all eff('ct
rdf'rred lo as ('I('cl rolyl(' friet iOIl. UlIfortunatply no sI raight Corward ('xtcnsion of tite
llll'ori(~ disCllS!'(,(1 in this s('clion, lo descrilU' tbis dl'ct, s('('ms possible. Similar!y,
t !tt' dcst..:riptioll of the coupleti (,rf('cts of din'ct illld hydrodyniulIic illtcractiolls Cor
('on("('t1trate(1 SIISIH'llsioIlS '<;('('IIISlo he a fonni(lahll' task, if approached along tll<'
lilws of ti\(' Ilwori('s l"eCcfl"(,dlo I)('fol'{'. Thus, tlwl"e is roolll for ¡¡11('l"Ilative th('or('t-
ical descriptiollS which allo\\' 11](' ('xtensioll of IIU' I'(,slllts aho\'(' lo descrilw these
i1dditional frictioll ('[[('cts, Tlw follo\\'ing scctiolls re\'iew tlu' tlH'oretical methods
('lllplo ..•.rd rall]('r recenlly for s\le\¡ purposc, allll ils spccific allplicatiolls and reslllls
il[(' illllslrakd iJl s('ctions 7 and 8.

6. Self-diffusion revisited: the generalized Langevin equation

" healltiful g('IH'ra!izatioll of lbe fundamental i(!f'as of tlle dassical tlH'ory of Brow-
Ilian TIlolion mil)' h(, fotllld in Onsager and r..lilehl\l(l irrcvcrsibll' t!lennod)'nami(;
lheory of f1uc!\latiolls P1J. \Vithin Ihis SdIf'IIH', th(' ordinary Lang('vin eqllatioll,
Eq. (IG), is just Ihe simpl('sl I'xillllple of a f1uctllatioll phenOllll'1I01l cast as él Gallss-
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ian !\larkov stochastic process geIlcrat.cd by a lin('ar stochastic differential cquation.
\Vithin this spirit, we can construct a Langevin-type eqllation to describe the instan-
taneolls randorn dcpartures froTll its equilibrium value, of the local concentration
n(r, t) of colloidal particles in a sllspension. In the previous scction, when we said
that n(r, t) satisfies the diffusion cqllation, we were actually rdering to the average
value (n(r, t)), whose valuc at t1wrmodynarnic equilibrium is just the hulk num-
ber conccntration n for a homogeTlf'Oussllspcnsion. The inst.antancous f1uctllations
arotlnd this average, denoted as

8n(r, t) = n(r, t) - ", (28)

satisfies, according to the irreversible t.hcrmodynamic tllf'ory of f1uctllations, a sto-
chastic version of the diffusion equation, which in its simplcst form rcads [12]

iJ8n(r, t) o ,
) = [)c'v"8,,(r,t) - \' 'Jdir(r,t).
el

(29)

This cquation says tbat tbe f1uctuations tend to rclax to its equilibrium value
(8n(r,t)} :;::;O following the samc rclaxation la\\' as the average (n(r,t)}. This is
described by the first term on t.he right.hand sidc of Eq. (2~J), \\'hich is the analog
of the _(OV(t) terrn in the ordinary Langevin eqllation, Eq. (16). But just as the
spont~neous hydrodynamic f1uctuations of tII(' supporting solvent give rise to the
random force f(t) on au isolated Bro\\'nian particle, it produces random diffusive
f1uxes jdif(r, t) of particles in the suspensioIl, ami this is rcprcsentcd by the last
term in Eq. (29). Thcse randoJl1 diffusive f1uxcs give Eq. (28) the character of a
stochastic diJJusioTl cquation. Fllfthcrrnore, just as f(t) in Eq. (16) is assumcd to be
a Gaussian, 6-corrc!atf'd noise, we also assurnc - V-jdif(r, t) to have those propcrtics,
amI as a conseqllcnce of the stationarity of the cquilibrium state, its correlation
function is aIso reIated with the transport coclTicient of the rclaxation term (i.e.,
with De) by él fluctuation-dissipation rclatioll, which reads [12]

((\' . jdóf(r, t))(\'. jdif(r', t'))) = 28(t - t')D,n\';8(r - r'), (30)

where h(r - r') is the Dirac delta f\lndion.
A simple applicatioll of Eq. (29) is the derivation of Eq. (7), which follows

aftcr taking the Fourier transforrn of Eq. (29), ITlultiplying hy bn( -k, O), taking the
equilihriurn average, and using the raet that lill(r, O) is statistically independent of
the random f1uxes jdif(r, t). :\Iore generally, colkdive f1l1etuations are describcd by
Eq. (29). but with the diffusivc rclaxatioll terrn DeV2ón(r, t) replaccd by a spatially
and temporally non-local kernel, as in Eq. (8). This I('ads to tbe geHf'ral r('sult in
Eq. (9).

Let \lS now use these ideas to derive thf' generalized Langevin equation in
Eq. (18). As we said before, in sclf-diffusioncxpcrirnents. the Brownian motion
of a very small fradion of suspended particles is rccordcd, ami each of these tracer
particles ma)' be rcgarded as diffusing ill<!epcndellt.ly of the othf'r tracers, while
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illteracting wit.h the rnany un-lalH'lbl particles in the slIspclIsion. ThIlS, the stide of
this system ma)' Iw feprescIIted by an equilibrium cllsamhh~ of idcntical systellls cach
containing lIlaIlY idcntical partic!es plus a single traccr particle. Let the stat(' of this
sy~;;tem be describcd by the vclocity V(t) of the traccr, and the local cOllcelltration
r/(r, t) of the othcr colloidal particles, around the tracer. Thc vcctor position r in
'1'( r. t) is refcrn'd to lhc (~cnter of the tracer, and the prime is a reminder of this fact.
In thcrmodynamic equilihriutTl, the average valuc of V(l) is (V(t)) = O, and the
<tverage of n'(r, 1), which we shall dellol.l~ by 1le<l(r), is just tlgTe("), \vhere !rre(1') is
tlle radial distri1>lltioll funct.ioll of tite rolloidal partic\('s aro11lld the tracee. In prin-
cipie, standard st.atistical therrnodynalllic theories [I.q lIlay be us('d to delermine
91'C(r), givcIl the pair polcntial un;(") of the forn' between the tracer and any of
lll(' other colloidal particles, along with the pair potenti.al ltcc(r) of the colloidal
particles. Of courS(', if the trac('f is also identical lo the [('st of suspended particles,
¡.r., if uTc(r) = I/ce(r) = u(r), tlH'1I !/Tc(r) is just the radial distriblltioll fUllction
g(,') of the SIlS¡H'IISioll, illl objcct aln'ady disclIssec\ alld illustrat('d in sectioll 2.

Ld 11S IIOW writc' a geIlera!ized Langevin ('qu<'lt.ion for l.h(' stochastir vector
whosc compoll('nts are V (1) and e571/(r, t)]. According to llw ppneral principlt,s of the
irreversible thcrmodynamic tlicory [11,:1l,a2]. this n'dor si\lisfif's a linear Li\llgevin-
lype equation, i,f., V(t) and e5n'(r,t) :-;atisfy t\\"o couph'd stochastic difT('fcntial
eqllation. Thc first of thclTl is jusI a Lallgevin equatioll for the lracer [:n] ..

dY(I) 5 5 J' ,M--;¡¡- = -( 1'(1) + r. (1)+ d ,.[';7wrc(I')]hn (r,I). (:ll)

'!'he last !crm is an rrf/ct Incchanical coupling bdw('(,1l V(t) and bn/(r. t), 11 i:-;just
the total force J (¡J1'[\'uTc(r)],!'(r, t) cxcrlcd OH the trarer by the other particlcs
in~l.antancously di~lrihllted according lo ,,/(r,l). Sincc ll'(r,t) = lleq(,-) + bll'(r,t).
and because of tite radial symllletry of 1l(''1(r), ollly the dl'parlllres lin'(r,t) from
'1('(1(1') contribllk lo tltis force. 'rhe otill'r two lerllls in Eq. (:0) rcpre~eJlt l.lw force
of lbe solvent Ol! llH' tracer, which contri!>lltes with a dissipativf' lerm, -("V(t), plus
a rorn'sponding Call~siall,li~correlal('d I1llrt.uating forn'. \\'ilh lhe pro[wr ddillilion
of (5. which will 1)(' giwI\ 1H'low, Eq. PI) is exacl.

The timc-cvollltioll eqllalion for 1i1l'(r.t) cOlIstitntc's tiH' ~('rond linear slochastic
c'quation for tIH' vector [V(t).bll'(r. t)], and has llw gl'lH'ral form [a1]

(J1i1l(r,l) I ("11] f' 'J :1' I / I I I , IiJl = ';7" (1') 'Y(I)- Jo di ""¡)(r,r;I-I)hn(r,I)-';7.j.Ii¡(r.I).

(;12)
The linear terlll in V(I) is all exacl (hut lincarized) sln'allling term, dllc' lo the
fact lhat the \'c'ctor r in bll'(r,t) i~ referrcd lo tiJe ('('ntf'r of the tr<'lCt'r (which
rnows with velocity V(t)). Thc 1Ilf'lllOry l('fm in Eq. (;~:n is tlll' most general fonu
of tlw callc'di\"!' difrllSioll equatioll (SI,,(' Eq. (8)), as dl'SnilH'd frolll 1.1]('rdel'l'llce
frillllf.' of tlw tran'!'. Tlle lasl "'fIlI rl'pn's(,lI\.s ti\(' (,OIT('~POIl<lillg randolll III1X('s.
'I'hIlS, Eqs. (:n) ilnd (:I~)conslillll(' 11](' lIlost. gf'tll'ral ~locha~tic linear ('quillioll for
1111'n'c!or [V(f).fm(r./)]. (In prillciph,. lile' dissipillin' j"rm -('V(t) siJOllll1 also
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involve mernory, reprcscnting the finite dec.ay tiTIle of the hydrodynalllic modes of
the solvent. Such decay time is, however, much too sma,lI in the diffusive ft'gime of
interest. here, and hence, a constant friction c.oC'fTicicnt (5 sufficC's).

So far, Eqs. (31) and (:!2) are exad, although (5 ami f)'(r, r'; t - t') han' not
bcen yet specified. \Ve could proceed further ai this level of geT}('rality. Neverthelcss,
let us replace at this point D'(r, r'; t - t') by its simplest approximation, namely,

D'(r, r';1 -1') = -28(1-1')fJc'v'8(r - r'j,

\••..hich allows us to ""'fite Eq. (:J2) as

D8n'(r, 1) ~ [~",q(,_jl V() 1) " '( ) ~ -, ( )-- -_ v . t + cV~{m r,t - v 'Jdif r,t.
DI

(33)

(34)

This rnCilns that we llave assumed t.hat the diffusivc rclaxation of hn/(r,l) is
descrihed by the samc la\\' as tI\{' bulk collecti\'l' fiuctuatiolls in Eq. (2~»), and tbat
the random nllxcs are lTlodelled as the Gallssiiln, b~corrclillcd fiuct.uating fiuxes
cxplaincd in the context of that e<juation, whic.h is rccovercd if WC'sd V(t) = O
in Eq. (:H). This assllmplioll is a rcasollable simplificatioll, ¡tlthough it involves a
rathe~ crllde dcscription of the dYllamics oC bn'(r, 1). lIowever, we int.roduce it here
only to illustratc t.he proccdurf' that. fol\ows.

Let us no\\' apply the idea of contractioll of Ihe dC'script.ioIl [12,:12,:J.t], which
in this example arnounts lo solving Eq. (:5'1) for Dn(r, f) in t.erms of V(t), and
sllbstituting the: resll1t in tlw last t.erm of Eq. (:H). This climinat.es lin/(r,t), leading
to a dosed eqllation for V(l) that has the strllC\.llfC' <UloIlIln,d in Eq. (18). 1\1oth-
ematically, Eq. (34) is jusi arl inhomogencous ordinary dilTusion t'qllation, whosc
solution can be writtell as

811(r,l) = l' di' J d".'x'(r,r';1 - I')[V",,'''(,.')I- V(I)

+ l' di' J d',.\'(r, r'; 1 - 1')[- V' - j',,;r(r', I)J

+ J d',.\(r,r';1)811(r,0),

whcre x'(r, r/;1- t') is t.he col\(,ctiv(' diffllSioll propilgator,

x' (r, r'; 1)= (üD,I)-'/' ('xp[ -( r - r')' 1I D,I],

(:11 )

i.e., it is the solutioIl of 1.1)(' hOIllOgl'I](,OllS diffusioIl ('quiltiotl w]¡ose illit.ial coIldit.ion



[Jrolt',¡jn.n motion in compla fluid$... 537

]S \'(r,r';O) = .5(r,r'). SlIhstillltillg Eq. (35);11 Ec¡. (31), wc ohta;n

MdV(t) = -('V(t) + fS(t) - !'dt'i'>((t - t')V(t') + F(t), (:17)
ill L

wlwre t.11f'memory-fullctiolJ tcrm derivcs froIn the first t.erm on lhe r.h.s. of Eq, (:15),
anl! whc'rc wc han' ddined lile time-dependent frictiotl ti((l) as

i'>((t) = -j Jd'r J d'r'[V'IlTc(t)]. \'(r,r';t)[V"",q(r')). (:l8)

1'he othcr tcrms, wilich deriw from the secon.! ¡-¡nd third tcrrns of the r.h,s. of
Eq. (:J,5), ¡-¡re lincar on the randorn variablcs -\7. j,lir(r,l) and bnl(r,O), r('spec:.
livel)', and han~ 1)(,(,1lgrollped in the last t.erm, 1"(/), of Eq. (:n), This is, hence, a
ranclom force, which originales froln the spontallCOIlS deparlllfcs of the distribution
of colloidal particlcs arollnd Ilw lraeer from its rildial equilibrium average neq(r).
Equations (:Ji) ami (:lS) cOllstitllte the mosl fundamental rcsults of the' theory
pfC'sented here. ami in tll(' following we claborate furlher on SOIne aspects of its
derivation and generillity.

TIIC' deri\'alioll ahm'f' is a simple exereise of Ihe idea of "contraction of the
(h-sCTiption". in which tlt(' ail1l is lo establish a cOllIu'ctioll betwecn two pllC'rlomello-
logiraJ Icvels of description of Ihe sarne fiuctualioll piu'nolTJcnon, which differ ollly
in their degrC'e of dl'l..lil [:12,:l'l]. 1'h1ls, wc slartt'd \vith a syslem of two cOllpled
f'e¡ualiolls of rnolioll for 1.111'stalt' variables V(I) and iSn'(r,f), cast as a j\larkov
stochast.ic proccss. '!'his eOllslilut('s tile non-contracted dcsuiption. In c1iminating
¿¡,,'(r, t). \\'c havc carri(,d out tlH' cOlltractioll procedure. This rC'su1ted in a Lange\'in
('quat ion for V( 1) aloll(" \\'hich C'xhibits rIleInory as a cotlsequcflcc of the contraction.
In principlc. howc\'C'r. liw lIon-contracted dcsniption itself should he non-local in
time as inJicatcd in Eq. (20). since it could be viewed as the rcsult oC a primar)'
('olltractioIl from a lIallliltonian [evd of dcscript.ion ¡:~5].Such considcratioIls are im-
portan!" si[l("c thc dYII<llJlirs of Ihe f1l1cluations in lile local (once'nlration of colloiclal
partides is kl10WIl t.o illVolv(' 1lH'lllory cffccts [5,!)] of tbe type in Eqs, (:12) and (8),
and which are not inc!ndc,eI in t.lte simple diffllsion 1Il0del c'l1lployed in Eq. (:H).

Prornpted by tlH's(' eOllsic!C'ratiolls. in a ren'nt work [3:1] we have indic<lteci a
canollical procedurc lo carry 0111 Ihe conlractioll froln a non-~Iarkoviall levd of
df'scription. This pron'dllfl' is hasec! 011 the' lIS(' of gellcral conditions imposed by
tlH' stationarity condilion 011 the strllcture of tile gelleralized Langcvin equations
that dcfines sllch a statiollitry non-~Iarkovian procc~ss (i.c., Eqs. (11) and (32) in
Ollf problem). TIlf's(' cOllditiollS. along with otl1('rs that derive froIn the time-re\'ersal
sYlllllwl ry pro¡wrt ies of 11)('dynalJlic variahles 11lt'lJIsd vcs, Icad to precise "selectiotl
rules" for Ihe "freqll('llcy". "J1H'lJIory", ancl "randolll force" terms, which are ex ten-
siolls of the well-knowll ()1I~(\ger-Casimir rel¡-¡t.iolls [12,1:11, \Vc have' applied those
s(,J¡,ctioll rules lo 0111' prohlelll. wilhin the assllTllptioll Ihat Ihe only rlissipative
pr(jcc'SS('~ lo be cOllsidef(,d are 11lf'diffusion of Ilw c!oud of colloidal part.icles and tile
hydrodYllil.lJlic friet ion on llH' tracc'r. As a result of sllch .1llillysis I:n], one cOllciu<ies,
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in particular, that the sillluitanl'Olls presence of tJw (fOS~-collpling, non.dissipatiH'
t('fIllS in Eqs. (31) and (:12) i~ f('qllirt'd hy one of t1w g(,lH'rni Sf'!cction rules rcferrl'<i
lo aboH" which also requif('s [:1:1) the followillg relation to 1)(' fulfillf'd

wJwrc a(r, r') is the eqllal-tilllf' corrl'lation fllllction of lú¡'(r.l). 1.( ••

,,(r. r') = (hll(r.O)hll(r'.O)). (.10 )

Eq. (:19) i~, howcver, an <,xact rclationship, well-knowlI in tlw statistical-Jnechanical
likrature of itihomogell(,olls f1uids {i.l,:IGj.

Once we are ~Ilre t.ilat t.ll(' time-cvoiut.ion l'qllRtiollS which constitute our nOB-
contracted description do !lOt. violal.e any of tll1' 1ll('lIliOlWci se1ertion rules, t.1\('
cOlltract.ioll procedure is rat.h('r straight.forward [:n], éllld follows a similar routf' as
tbat i!l Ollf simple derivRlioll, l.hus kadillg essl'ntii1lly to tlle Silllll' rl'su1ts. nallwly.
Eqs. (:17) and (38). In faet, tlt(' onl)' differellce is tilat tJw propagator \'(r, r'; t) in
Eq. (:18) is no longer gi\"('11just by Eq. (:16). Instf'ad, it is tJI(' sOilltioll of tile mOf('
gelleral dilfusioIl c(¡llatioll,

(.11 )

wil h the initial conditioll \'( r, r'; O) = b(r - rl).
An import.ant. reljllirctlll'll1. of th(~ stat.ionarity cOllditioll on t.hf' st.ruct.llfe of a

gl'llcralizf'd Langevin cquatioll is t.he existellcC of n f1uctllatioll-dissipat.ion relatioll
hetw(,cll the genernlized f(,laxatioll kernel ami the ralldol1l t('flll [:t!]. For tile partic-
ular casc of tile gelleralizf'e! Lang('\'in ec¡uation represPIltl'd hy t1ll' Systl'lll of (,ollpled
Eq\lations (:H) and (2), sllch f1uctuation-dissipat.ioll f(,lali(lIl ff'a<!s

([\' . j'''i¡{r, t )JI\" . j',,¡r(r'. O)]) = J ,{1,." f)'( r. r", I),,(r". r')

( 12)

• (1:1)

for i, j = 1,2,;3 ami r, r' E f{1. 'rhcS(' rdations can 1)('elllploY"(1 lo (Iemonst.rat.e tbe
f1l1ctllat.ion-dissipat.ioll I.hcof('J11 tbat holds at thf' (,olltrac:lf'(1 h'\"('I, which rcads [:n]

(/';(t)lj(II)) = .\Ik¡¡J'i:;((t)~'J (i.] = U.:I). (~I)

Lel liS also notin' tbat l,y llsillg Ec¡. (:.m) iJIlo Eq. (:tS) 011(' can deriW' two
ahl'rÚali\'1? (hUI forlllally ('qni\'all'llt) l'xpressions for ~((I) JJI tl'rms of a(r. r/) ami
\I(r, r'; t) [:1:1]. The first ill\'oh.('s ollly [\7uTc(r)j, (lile! ti\(' s(,("oll(l, which will be Ils(,fl



1Jmwnian rnotion in comp/ex fluid...... 539

below, reads

,,((1) = ¡'~T J d'r J d3r'[\'n'"'l(r)]. [,,-1 x'(I)I(r, r')[\'nN'(r')), (45)

where lile fUllclion [o--Iy'(t)](r,r') is lile convollltioll of 0--1 and y'(r,r';i), with
o--I(r,r') being lhe invcrse funclion of <1(r,r') (¡.c., thcir convolution equals lhe
Dirac delta f\lnction). Both qllantities, <1(r, r') and x'(r, r'; t). dcpeIHie on r and r'
separale1y, siuce the ficld uTc(r) breaks the homogt'T1l"ity of spacr Ilrar the tracer
part iele.

Finally, lel liS notice that for short tirnrs, i.e., times short cllough for x'(r, r'; t)
not to deparl apreciabl)' from 8(r - r'). tbe time-drpelldent frictiotl-function rquals
ilpproxilIliltely ,,((O).

(.16 )

which is lhe spring cOllslant of lile approxirnalely ha.rmonic force on the tran'r
originating from ils inll'faetion with its virlually statie ncighbours, distriblited ae.
cording 1.0 1lcQ(r). Tbe Browllian motioll that the tracN execut.es in sllch harrnonic
cage during t.his short-lilllc regime is dcscribed by lhe following LUlgcvin equatioll

.lldV(I)/dl = _(sV(/) + rS(t) - ¡'J/("rT(t)), (17)

where D.rr(l) = J: V(t')dt' is the lraeer's displacclTH'llt. Eqtlalion (-17) follow5 from
averagillg Eq. (37) o\"('r illilial cOllcelltralion nuct.uation profiles (11I/(r.O), and rec-
ognizing tllf' fact that ('\'('11 for thcse sbort times, t he time int.egral of lhe randolIl
nux terlll -\7 .j'Jif(r./) \';mishes. Thus, if we delloÍ(' hy D; the diffusion coefficient
which d(~crihes lhe Brownian motion of the t.raCf'r in this short time r('gime, t.h('1I
from Equal.ioll (,17) WI' hav(' t.ilat f); is givcll by 1J; = I.:JJT/(s. IIcrc we h,w('
employed the S¡UllCsYllIbol for knT/C'''' a..•• for tile s!lort-timc sclf"diffllsion coeificiellt
defined in Eq. (13). Th is is not, of cours(', a loosf' notation, but the recognilion of an
important faet: lhc short.tilllf' sf'lf- dilfusion codfkit'nt D; d('Scrilws, according lo
its deffinitioll in Eq. (1:1). lhe Ilrownialllllotion ofthe tracer in thc sarne timc-regimc
where Eq. (.17) is valid. Thus, f).~ and k1JT/(s aff: OIW ami the saIll(~ t.hing. As a
conscqll('IlCe, Wf' ha\'p now givf'n a w"lI-defincd tll('.'llling 1.0 the p1Jcllomcnologica!
coefficiellt e', !lcretofoff' Idt IIfldeterlllillcd. Tbis it!elltification of (, with k[JT/ D~
also provid(,s the Tllt'ans for ils experilJlelltal delt'fmination as the initial slope of
((.6.r(t)f}/fit in tl1<' diffllsi\"t, r('gime. Of course, as indicaled in Fig. ,1, D~ = DO
for highly dilut.e SUSP('IlSiOllS of slrollgly charged part.iclcs, \\'11('re hydrodynamic
inleractiolls are Ilcgligiblt'. Thus, in t.1lis case, (, = (0, wherc (0 is tht' Slokcs fridioll
cocflicif'llt. of the t.r;H'('f. lIow('ver. wlll'll hydrodYllillllically collccntrated dis¡wrsiolls
are ("(msi<if'l"('(i. thc id('ntification a"ove hecolllf's most rel('vant. as \\'e discuss in the
following s('ctioll.
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To proceed furthcr we rnllst introduce approximations slIch as those in volved
in our simple model in Eq. (3.1). The most e:-;senl ial OIlf'S cOllccrn ¡he expression
employed for the collcctive diffusion propagator y/(r, r'; t). Before we cornmit our-
sclves to any particular approxirnation for this quantity Id us notice that a general
simplification results if \Ve aSSUIlle that x'(r, r': t) alld a(r, r') depend on r and rl

only throllgh thc distance Ir- r/J. TlJis arnollnts to ignoring the cffects of thc field of
the tracer in the calculation of thcse qllantitics. This approximation, which we shall
refcr to as the "homogcneolls nuid approximation" [;nJ, is involved in the spccific
results prescnted in this paper. Under those circlllllstances! Eq. (,n) can also be
written as

Ll((t) = ~'IJT:,jd'k[(khTc(k))'IS(k))l:'(k,t),2ü.>

where hTCU) is the FOlll'icr tr<lllsfol'lll of [neq(r)jn-l], amI S(k) = I +nhcc(k) =
a(k)/n is the static structurc faclor of the difTusing; p;nt.iclps, IJ:., a(k) is the Fourier
transform of t\w isotropic fllllC! ion a(lr - r/j). Similar!y. X' (k, t) is dI(' FOlll'ier triUI:-;-
form of the col1ecti\'(' difTllsion propa¡!;ator.

The ncxt approxilllalion i1l\'otves the prime on ,/(1..',1). \\'e ha\'(~ cOllsistent.!y
den oled properlies df'scri\H'd frorn llll' refercIH'(' fr<lllle of lhe lr<lcer hy a prifllt'. TI\('
cxact relationship hetwecn Ihe prilTlcd qllantiti{.~ <lnd Lhe corrcspo]](ling (unprilllC(l)
properties descri\)('d from a f\xed rcferctlce fr<lJJ]e is unknowlI. 1'hllS, I¡('TI' W(' abo
rcquire approxilTlations. For eXillllple, Ollf' c<ln compare lhe def\nitioll of \(k, l) and
oC X'(k, I}, alJ(i neglect in this comparison 1\1(' cOf]'(,lalioll hetwf'en Illl_~displ<lu'IlH'llt
of t.he lracer. D.r-r(t), ami Ihe local collcell1.r<ltio]] fluctualiolls bn(r, l). As a rcsult
olle is leel [3:1] f.o lhe followillg approxilllat.ioll

,'(l-, t) = ¡'7(Uh(U),

where the "tracer-diffusion propagator" FT(k,t} is ddincd as

Vd!',t) = exp[ik. LlrT(t)],

(-1!) )

("O)
i.e., it is the self-diffllSioll propagator of Eq. (12) in t1w Jlill'liclllar case thal the
trace[ is idf'ntical lo thf' othcr partidcs. '1'\1(' expression ror D.((t) which Tl'slllts
from employing; Eq. CID) inlo Eq. (.18) will 1)(' rcferred lo as t.he rnocic-llIoc!(' cou-
pling approximalion, ill n>[el'ellce lo lhe fad Ihal it was first slIg;g;est.ed hy 1I(,5s
alJ(i Klcin [O] using mOc!f'-Tllode couplillg arglllTWllt.S, for the particular cas(' of
sdf-diffusioll. Clcarly, ta.killg Eq. (49)' illlo Eq. (-18), alld recalling Eq. un, \Ve

can sce that Eq. (48) redllces 1.0 Eq. (2;1) in lli<-lt. particlllar case, nallldy. whclI
hTc(k) = hcc(k) = h(k) = (S(k) - 1)/". As argll<'d arler Ec¡. (2.5), we slill have
lo approximale X(k, l) alld Fr(l~, t). The ¡wrtirH'lIt approxilllations leading lo t1w
!\IMCl and !\1l\lC2 sdH'lT](,s wel'f' defined ti]('l'(', and their quantitativc I'esults were
airead)' discllssed in conllectioll 1.0 Fig. a.
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Of (ourse, the purpose of Lhe prcscnt seetion is nol onl)' to provide a simple
derivalion of an othcrwisc well establishcd wsult, hut lo pave lhe way to extcnd
lhe theory of Brm••..nian motion to still more interesting situations. Already Eq. (48)
(ontains a relevant generalizat.ion, to the case when lhe tracer is not identical 1.0
the other coHoidal partic1es in the suspcnsion. But. more important, thc extension
to the case in which the s\lspension contains particlcs of various species turns out
lo be rather slraightforward wilhin lhe approach describcd here. Sllch an exlcnsion
is emp10yed in sed ion 8 lo describe eleclrolylc friction. First, however, we disCllSS
the application of lhese resulls to syslerns with strong hydrodynamic interaetions.

7. Concentrated hard-sphere suspensions

Let us now consider a diffcrent kind of suspension lhan the dilule bul eledroslati-
cally correlated syst.erns d('alt wilh aboye. Dispersions of neulral macroparlicles in
organic solvenls, with adequate refraetivc-index matching, may be manufactured
[37,38], whieh behavc likc mode1 hard-sphere suspensions. In these s)'stelll~, the
direct intcractions are the hard-sphere repulsion determined by the physical di-
amcler of liJe particles. Thc typieal concentrations in thesc systell1s ma)' be quite
high, so that lhc volull1e fraction t/J may be as large as 0.5, above which the direct
intcraclions drive crystalizalion or glass formal ion [37]. At stlch high volume frac-
tions, howevcr, bydrodyna.rnic intcractions bccome a m051 imporlanl feature of the
dynamical propertics of t.hese systell1s, and in this scnsc t1ley reprcsent an oposite
exlreme casc froID t1le c1ectrostatieal1y corrclatc<\ suspcIlsiollS considered above.
The fact thal hydrodynamic interaclions cannol be dcscribcd by pairwise additive
effcctive interaet.iolls [10,11,:19] rClldcrs t.he description of their effccts a gelluine and
cmnplex many-body problcm. Ncvcrthcless, this problem has bt'Cn approaehed by
several authors [10,11,39-,12], and as a resull, a gooel t.heorC'tical unelcrs1anding has
emerged of the effcet of thesc non-dissipative forces on their shorl-time sclf-diffusion
properl;es [39,'10).

On lhe other hand, dynarnic ¡¡ght scattering tcchniques llave Leen rcccntly
applied ¡37,38] lo the determination of lhe limc-dcpenoenee of the mean-sc¡uarcd
displaeemenl of labdled particlcs in lhesc suspcllsions. Fig. () illustrates thc main
features of suc}¡ mf'asurelllcnts. In lhis figure, ((,ó,r(t))"2) is plotted for dilferent
valucs of lhe volume fract.ion. As a rcference, the frre-diffusion result (t/J = O) is also
indicatecl. The first tbing we notice, is that ea eh curve secms qualilalively rather
similar lo the resull in Fig. 4, wherc there were strong clcctroslalic direcl forces,
but no hydrodynamic interaet.ions. There is, howcver, a fundamental diffcrcIIce: In
Fig. 6, nOlle of lhc CIifVCS approaclles the free-diffusion hehaviour al short times,
as thc system in Fig. 4 do('s. As a consequenee, if we det.ermine the shorl-time
self-diffusioll eoefficicllt according to its dcfinilioll in Eq. (1~1), i.c., from lhe initial
slopc of {(,ó,(r(t))2), we gct frolTl Fig. 4 that D.~= DO, indcpf'ndcntly of liJe dircct.
interact.ions, whcrcas from Fig. () we find that D; is a function of volume fradion.
This is lhe firsl rclevant observation deriving from t.he experimental data in Fig. 6.
A summary of lhc corrcsponding short-timc rcslllts for diffcrcnl volurnc fractions
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FIGURE 7, Short-time sl'lf-diffusioll rf)('lIiri('nt [)~., in nnils of /)0. a.<;a fllllrtion of\"olulIlf' frarlion,
for variolls hard-splwre Sllspl'llsions diffnillg in tlll'ir hard-sph(,tl, size (\"ariolls sirnhols).
The salid lilH' is <tn l'lllpiriral lil, aud lhe dl\.<;I1I'dlilH' is tlw tlworelical resull of rd.
[,11]. (Reprodured frolll rd. 1:17]).

is plot\('<I in Fig. 7. wiwff' (11(' r>-dqwnticllcc of f).~ for hard-splwrc sllspcnsions is
illustrated. In that figure. ti\(' various symbols COffCSPOllds to samplcs [:l7] which
diffcr in lhe sizc oC the colloidal partirles. Thus. W(' If'arn anotlwr important fact:
For har<l-spbere SIlSP(,IISiollS. n~//)0 <lo('s depende only 011 tj¡. and nol separale1y OH
H and a, which is a flirc scaling property expected in genllilll' Itard.spllf"re syst('ms.
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As we said befo re, important advanccs have b(,(,1lmade in lhe tllL"'Oreticalun-
derstanding of lhe shorl-tillle dfects of hydrodynamic interactiolls, and the result
of tlle theory of B('cnakcr and ~1azllr [39,41] are also plotled in Fig. 7. In a simple
way to undcrstand these effccts, one can 5ay that the prcscnce of tlle Brownian
particles modify tl)(' cffectivc viscosity fdt by any of the partic1es, so that the friction
coeflicieIlt describing the short-time diffusion is still given by tlle Stokcs expression,
but with an cffective, volullle-fraction dependent viscosity [-12]' which is affcctcd
rather weakly by thc direct intcractions [31]. In summary, from tIJc rcsults in Fig.
7 we learn that cOllccrning short-timc self-diffusion the volurnC'-fraction depcndence
of lJ~ in thcsc systems is anwnable to experimental dctermination, and its th('or('t-
ical understanding rna)' be qualificd as acccptable, probably awaiting only further
quantitativc rdinen1<'nts.

UndC'rstanding the intcrmediatc and long-time bchaviour of ((.6.r(t))2) observcd
in the experimental data in Fig. 6 rcprescnts, on the other hand, a stillmorc challeng-
ing thcordical problclIl t.hofl the purcly hydrodyna rnic effects involved in lJf (4)). Ae-
cording to tiJe coll\'cnt.ional approaches cmploycd to describe sclf-dilfusioll [5,9,26-
30], except. at short-timcs, tile cffccls of hydrodynarnic and <iir('ct illteractions inter-
mingle in such a complcx manncr that no simple schemc seerns at sight 1.0decouplc
t.llcrn. Thus, any cffort made to undcrstand self-diffusion al. longer times is particu-
larly valuable at tbis stage. It is in this scnsc that tIJe theorelical approach explained
in thc previous sectioll constitutes much more t.han a rc-dcrivatioll and cxtcnsioll
of otherwisc availahle rcslllts for systems withollt hydrodynamic inleractions.

The theory descrihcd in section 6 is bascd. preciscly, Oll the l'xistcncc of wcll
sq)aratcd tilTle-scales, sueh that at short times a single quantity, namc1y, (s, is
the relcvant paramctcr. Tile thcory has the limitation of 1I0t providing lhe mcans
to ealculatc a priori this para meter. It has the \.irture, howcver, that it provides
a precise definition for it, which is just knTf D;. This property, as we just saw,
happens to be readily mcasurable experimentally. Furthcrmorc, tile very writing of
Eq. (31) invo!vcs alrcad)' a ncat dceoupling betwecn the short-timc hydrodynamic
cffccts (rcprcscntcd by (s) and the' ('ffects of dircct intcractions, entering in tlle last
tcrm of that equation. This <Iccoupling is a fundamental aspcct of the gellcrality
of the main rcsults in Eqs. (37) and (38). This allows us to apply tIJose results to
our presente case in a ratl\('r simple manner, ¡.r., taking (s as an cxpcrimentally
determine£! quant.ity, given, for cxample, by tIJe results in Fig. 7, with (s = k lJ7'f f)~.

Of (ourse, a similar decollpling should be madc in thc sc('ond eqllation OHwhich
the the{)ry is bascd, namcly, Eq. (32). In this case, no similarly general and exact
argumcnts llave lWCIlgivcll, hut a reasonable ami ('o[Jsistent approximatioll [.13,'14}
can be provi<ied, nanwly, that a.1sofor collcctivc diffusio[J olle should rcptan~ lJO by
J); whcn hydrodynamie intcractions are considereti. This allows liS to use particular
approximatc Sc!ICIllCS,slIch as the ITlode-JIIodecollpling approxilllalioll ('xplailled in
Eq. (48), or more part.iclllarly in Eqs. (2,j-2i). Frolll these resu1ts Wl'("ould calculate
"'((1), (("'r(I))'), n~',etc., in (e,ms oniy of D; and S(k). SllCh ,es"lIs ('""Id (hen
he cOlllparecl witll experimental IllcasurCll1cnts likc t hose in Fig. 6.

In Fig. 8 wc illustrate one sllch comparison. 1'he dota in lhis f¡gll!"Caf(' tlw yalll('S
CorD; scaled with the ff('{'.diffusion eoeffieicnt /)0 a.s a fUlle1iOI]of Q. ¡\ccor<iing
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and ;\I\IC2 approximate t.lworetical sc!H'Il](,s. TI\(' various symhols r('presl'nt the "x-
perimelltal results frOIll variolls sarrlplcs differing in tbeir hard-sphcre Jiallwtrrs. For
comparisoll, the empírical fit. in Fig. 7 for f)~"IDo i!; ,liso pIO\t('d (Jottl"d line). (Ex-
perin]('f1t.al data taken froTll ref. [37]).

to its definition, /J.~should he r(,<td frolTl Ihe ilsYlllpt.otic, final slopc of ((D.r(f.)f)
ploUed as a fundion of time, as ill Fig. 6. '1'11(' theoreticill rcsu1ts pwscllted in
Figure 8 wcrc ca.lculated lIsing t1l(' i\I\ICl ilTld tlH' ~1~IC2<'lpprOXilllaliolls, with
5(1.:) ealculated fraln tIJe Pcrkus- Y('vick <'lpproxiJll<'ltioll [1.1], and wit h /J.;. lilkell
from the experimcnt.al data. in Fig. 7. eh'arly, tllf' ilgrCl'lTll'nt hetwc(,1l tlwory and
experiment caIIIlot he bctter, gin'lI th(' fad tbat ah~oll\tf'ly no <ldjllstah1P p<lralIlt'tcr...;
are invoked in t.he thcorct ical ca1culatioll.

Although more cxtcIlsive eompnrisons of thi~ sort. are clf'é1rly df'.-;irahlf'. 1111'main
limiting step in t.hi~ direetion i~ ilt. t.he IIIomcnt tlw produdion of mon' ahundant and
precise experimental rcslIlts. Bccallsc of its simplicity, tll(' prnlictions of tllf' tlwory
in otber cases, sucb as wllf'1l t.he t.racer is not ici('ntical to tlH' o1.lwr pilrti,\es, or
when polydispcrse suspensions are collsidc[ed, CéH1 be ca!culalnl with rf'1aliwly lit Uf'
efforL Still, let liS cmphasizc the faet that tIJe t.lwordical J"('sllit.s prc.'i(,llt('d in Fig. S
st.and, at. the momcnt., likc tlle oll~y prcdict.iolls for long-tillle s('lf-difTusion prolH'rlies
al. volumc fractions far from the linear reginw in Ó [.10]. lhis is already il rdeVilllt
step in our \vay to ulldcrst.and ol\e of tlw lIlost fundament.al problellls posed by Ihis
typc of complcx fluid, ill tenns oC rdatively simple and physically intuitive tcrms.

8. Electrolyte friction

A third eXilmple of t.he applictition of the gcneral r(,slllts d('rin'd in scction () is the
description of e1ectrolyte friction. IIcre \\!c rdurn to slls¡wnsiolls of Itighly eharg('d
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FIGURE 9, Diffusion coefficient of isolated polyslyrene spheres Jiffusing in an ionic solution of
varying c1ectrolyte concentratioll, as a fund.ion of f\.a (where a is the radius óf the
spheres). The thrce curves correspond to thrf't' different types of added electrolyte.
(Reproduced fram ref. [45]).

particles in an aqueous clectrolyte solution, but undcr conditions of extreme dilutioo
of conoidal particles, lo this case, the direct and hydrodynamic interactions bet\'ieen
the suspended macroions are negligiblc, and thus, D.f = D; = kJJT/(S where
(s should be identical, if the particles werc not charged, lo lhe Stokes friction
cocfficient (0, Due to the clcclrostatic intcract.ions bctw(,cll lhe macroion and its
counterions (and the smal! ions of the supporting ionic sollltion), (5 o:J (0. In Fig. 9
we reproduce the results of mC(l.SlIfcmcntof !J(= !J; = J);) for fred)' diffusing
polystyrene spheres in an ionic soiution of v<lryillg ionic :-:;t.rength145]. The first
thing that we noticc is thal D is not a constant, hut il dqwllds on the <lmounl of
e1ectrolyte ions. Sccond, we not.ice that there is a wdl-deflnrd minimum of D at
Ka:;::;j 1, whcrc a'is the macroparticle radius ami ,,~i:-;lhe inwrse Debye screening
length (K2 = (41rt/kjJT) L¡ n¡fl;, where lIj and f[¡ are tlw !lumbrr cOllcentration
and chargc of the small ions of SIH'ci('s i), 'rhes(' [(,slIlts tlloY be un<!erstood as thc
manifestation of the addition<ll frictioll, _~(elF(t), besi<!cs llu' PUfl~solvcnt friction
_(OV(t) (where (0 = 61r1¡a), dllc t.o the intcractiolls bet\\'cen lhe llIacroion and its
own ionic doud. Thus, the Hwasurt'd self-diITusioll ('oefnci('1I1Ill<lY\)(' written as

f) = k¡¡T ,
(' + "'('_' (51 )

•...•.here Ó,(e1 is caBed the "ckctrolyt(' friclion", El('ctrolyl(' fri('tioll is gelleral1y a
much smallcr effect than thc self-friction indllccd by polyioll-polyioll illteraclions iu
less dilute suspensions, like those consi(icrcd ('ilrlier jl[ t.his pilpn, 'I'1111S.Ollr ci-lrlicr
assllmption in that case, that tltc short-time s('lf-dilfnsioll ('()('lIi('i(,1l1/).~..; (,ollld bc
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approximated by DO, and not by Eq. (51), tllrned out to be a good approxima-
tion. Fig. 9 shows, however, that electrolytc friction effects can also be ohserved
experirnentally under appropriatc conditions.

The theorctical calculation of Do(eI has a rathcr long hbtory. Already in 1954,
1100th 146] provided the first dcscription of this effeet, by ealclllating DoC~l as the
net e1ectrostatie force on a macro ion moving at constant vclocity duc to its intcrac-
tions \',rith its distorted ionic atmosphere. This still constitutes the main throrctical
approach to the dcscription of eleetrolyte friction [47]' although its extension to non-
stationary motion of the polyion remains a ehallcnging problem. Furthermore, the
connection bet\ •...een this rclaxation cffect and the effects of spontaneous fiuctllations,
measured in the light-seattcring experiments illustrated in Fig. 9, has not bren fully
c1arified. On the othcr hand. Schurr [48] providcd tite first t1lf'oretical description of
e1eclrolyte friction effccts on the Brownian motion of isolaled polyions. Although his
approaeh made use of rather severe approximations at a very cady stage, his final
reslllt for DoCel yiclds a rcmarkably simple analytic expression for Do(e! as a function
of Ka. Both of the thcorics just mentioned predict the main feature observed in Fig.
9, namely, a maximum of Do(e! (and a corresponding rninimum of D) at Ka ~ 1.

The general rcsults of section 6 may also be extended to describe e1ectrolyte
friction, and this application leads not only to expressions ror Do(el. but also to
express ions for the dynamical vcrsion of this quantity. The main results of section 6
must first be extended to the general case whcn tbe tracer diffuses in a suspension
containing more tban one spccies of Brownian particlcs. This is, howc\'er, a rather
straightforward exlension. It Icads, ror examplc (scc Eq. PS)), to

Ll((t) = -í t t J d3r J d3r'[V'IlT;(r)]. x;,(r, r'; t)[V"njq(r')], (52)
i=l j=l

whcn there are s species of colloidal particlcs, interacting through a central pair
potential uTi(r) with the tracer, and whose radial distribut.ion function around the
tracer is 9Ti(r) = n~q(r)/ni (wherc ni is t1le bulk conccntration of speeics i=1,2, ... ,s).
In Eq. (52), Xij(r, rl; t) is thceollcctive.diffusion propagator1 i.e., it is defincd by
the following equation

(ón;(r, t)ón,(r', O)) =t J d3r"X;k(r, r"; t)ak,(r", r'),
.4:=1

(53)

amI is sueh that Xij(r, r'j t = O) = hijh(r-r'). Clcarly. O"ij(r,rl) is just the equal-time
corrclation function {hn¡( r, O)ón (rl, O)} of the f1uctuations in the local concentration
oí specics i and j.

The application oí these results to describe clectrolyte íriction [49-51] is based
on the faet that the small ions, without bcing large Brownian particles, they do,
anyway, undergo Hrownian motion and d¡ffusion. Henee, the result in Eq. (.52) also
holds to describe the friction effects produced on the polyion by the counterions
and the various other species of c1ectrolyte ions, with which it interacts through th~
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unscrccncd Coulomb potential

{

Qq;

tlTi(r) = ~'

00, r < a + Q¡

(54)

with t being the diclectric constant of the solvent, and where Q¡ is tbe radius of
the sma!l ions of spccies i. Of course, a¡ '%:: a, and the Einstein-Stokes difTusion
eoefficients Di of the small ions are mueh larger than DO = knT/(o.

The simplest approximat.c scheme is obtained if we describe the static properties
O'¡j(r, r/) and n;q(r) within the Debyc-I1üekei approximation for the (point-like)
eleetrolyte ions, ano the "homogeneous fluid approximationl'l is adopted (see section
6). Ir, in addition, Fick's law is cmployed to dcscribe the eolleetive diffusion oí the
small ions, ~((t) may be cvaluatcd explieitly [50]. Its long-time asymptotic result
reads

t3/'
(1 ~ 00) (55)

where n:mal1 is the Stokes-Einstein diffusion coefficient oí the small ions. The time
integral of ~((t) is ~(e1,and the approximations just indicated lead to [49,51]

L'>(" _ Q'[1 - (1 + 2<a)e-'''1
- 12wD~mallKa . (56)

fhis happens to be the result previously derived by Sehurr [481.
Once again, tbis derivation oC a previously-available result i!lustrates tite gen-

erality of the theory prescntcd in scetion 6, and indica tes several ways to extend its
application to c1ectrolyte [rietion. thus, a simple cxpression for the time-dependenee
oí ~((t), which in principle could also be observed experimentally by Iight scattering
techniqucs, is the first bonlls of this approach. Furthermore, approximations such
as the use of Debye-Hückel static correlations, the vanishing size oí the small ions,
and the homogencous-fluid approximation, involvcd in Schurr's theory for ~(el, may
also be avoided or replaced by Icss restrictive assumptions [51,52J. Unfortunately,
the improvement of the theoretical results does not ehange the fact that eledrolyte
fridion effects are generally small, and rathcr difficult to mcasure experimcntally
with high accuracy. Ncvcrtheless, the theorctical relevance oí this work lics on the
fad that for the first time a single thcoretical approach has provided a unifying view
of this phenomcnon and that of sclí-friction, both of which are present whenever we
have charged colloidal partic1cs in suspension.

Let us mention that in reality, it was to eledrolytc frietion where the method
explaincd in section 6 was first applied [49] to derive a generalized Langevin equation
oí the íorm oí Eq. (37). It was a íurther development [33J to notice that the same
approach could also be uscd to describe the intcraetion of a tra.ccr Brownian particlc
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with othcr diffllsing macropartidcs. As we saw in the previolls sections, this has becll
a fruitfull obscrvation, and this is pcrhaps t1le main contriblltion of the pioIleering
attempt [47] to introdu<,c the idea of contraction of t1le dcscription to dcsnibc
clcctrolytc friction.

9. Concluding remarks

As wc ha\'c secn in lhis paper, a rclativcly simple picture is now availahle to de-
scribe, within the saTlle thcoretical scheTllc, thrC'C rather diffcrent aspects of the
study of Drownian motion in <,olloidal suspensions. In the first place, we discussro
the effccts of macroparticle-ma.croparticlc intcractions, then wc incorporated the
eiTects of hydrodYllarnic interaclions, and finally we applied the sarne ideas to thc
dcscription of clectrolyte fridion. Traditionally, these thrC'C ciTpcts have heen studied
by rather diiTerent, and seemingly ullfc1ated theorctical methods, and by somewhat
disconnectcd communities. 'fhe advantage of having él. general approach. besidcs
its theoretical value, is that it allows the cxpansion of our understanding. to in-
creasingly more complcx systems and processes. For illstance, the description of the
static and dynamic propcrties of polydispcrse suspcnsions (i.c .. with JIlore than one
type of colloidal spccies) is a relevant practical problem, posing a large number of
hasic qucstions. Allhough the first stcps along the lines of lbe theories described
in scdion 5 have heen lakcn in tbis dircction [27,53], concerning lraccr-diiTusion,
slill much is to be done to reach liJe saIlle Jegrec of qualitative and quantitativc
accuracy of the results compared and illustrated here for mono disperse suspensions.
Concerning trac..cr.diffusion, il is lik(.ly lhat the multi-spccics cxtension in s(,ction 8
of thc rnain rcsult!i of thc theory Pf(~s(,lIt('d in section 6 will provide an accuratc and
convcnicnl approtidl lo tlle dynami(:s of polydispcrse suspensions. As wc saw in the
previo1Js section, suc:h cxtension fotlud airead,. a ncat application in the description
of c1ectrolytc.friction eiTecls.

Anothcr important practical proulem is the description of self-diiTusion of non
sphcrical colloidal particlcs. Although suspensions of approximately spherical par-
ticles are no rare exccption, for many systems and conditions the departurc from
such limiting ca.<;econstitutes themaillcharacteristicfeature.This is so, for example,
whcn we deal wilh biopolyrncric materials such as DNA, with concentrated miccllar
solutions, or with magnetic colloids. \Vith suspcnsions of non.spherical particlcs,
progrcss has becn slower, duc to thc undcrslandable difficulties associatcd to the
loss of a simplifying syrnmt'try. \Vc may say that the dcscription of rnany dynalllical
properties of thcse systems cncountcr asevere difficulty in thc non.availability of
a practical description of the corresponding static quanlities. However, this being
a problem airead)' cOlIsicief(xl in the physics of molt'Cular fluids, one would exp{'ct
that sorne of the advanccs in that ficld will be of assistance in the understanding of
colloidal suspensions of non.spherical particlcs. After aH, an analogy between simple
liquids and suspensions of spllerical colloidal particles was the basis for the progress
in this field, as we have attemptc(i to describe in this papero One should also mention
that one of the main features of the dynamics of non-spherical particles is the necd



Brownian molion in complex jluids... 549

to describe rotational diffusion. Although in principie the method employed in the
derivation oí the main results in section 6 could also be extended to inoorporate
these effects, such an extension is not yet available. Let us mention, however, t}-,at
the tmnslational Brownian motion oí non-spherical tracers in a bath of spherical
macroparticles may be described by, essentially, the same general results of section
6. In fact, Ihe firsl resulls of Ihis typc have rccently hecn produced [52J in a simple
extcnsion of the results of the previous section for Ó(e1, to ealculate the el~ctrolyte
friction on a eharged spheroidal Brownian particle with a rather particular internal
charge distribution. Although this is still a modest step in the understanding oí
the dynamics of non-sphcrical particles, it has provided preliminary indications [52)
that electrolyte friction effects, which are small for spherical particles, may be more
important [or long rod.likc tra.cers.

In summary, in this pa.per wc have attemptcd to illustrate thc power oí the
concepts and theorics oC fiuctuations ami Brownian motion, which originate from
the classical work of Einstein, Langevin, Onsagcr, and others. This illustration was
based on the description of tracer.diffusion pheoomena in colloidal suspensions. As
it happens, colloidal suspcnsions are a prominent class oí complex f1uids. Thus, \I.'e
hope to have convinced thc readcr that at Icast when well.dcfined theoretical and
experimental modcl systems are considered, the mcthods of physical researeh have
convertcd a small pieee of the land of complex fiuids into a hospitable field oí modern
physics. Similar fronts in other aspects of thc physics of complex fluids are being
pursucd, and one would cxpcct that st.atistica! physics will join the experiment.al
physicist, chemist and malerials scicntist in tIJe n'nture to render unjustified tlle
"complex" portion oC t.he name oCthese matcrials.
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Resumen. Este trabajo revisa ('1('status actual de la comprensión de
los fenómenos de difusión de un trazador en suspensiones co~idales.
Esta es la observación más dire('ta 11('1 movimiento que ej('cutan
partículas brownianas marcadas qlH~interactúan COll el resto de las
partículas coloidal('s en ulla suspensión. La descripc;.5n fundamental de
este fenómeno constituye hoy en día uno de los problemas más relevantes
en el proceso de comprender Ia.o;propiedades dinámica...<;de esta impor-
tante clase de fluidos complejos, d('sd~' la p('fspectiva trorica y experi-
mental de la investigación en física. Este trahajo describe los desarrollos
recielltes en la extensión de la teoría c1á.sicadd movimi('nto browniano
}' su aplicación en la descripción de los (,fectos dt, Ia..<;int('facciones di-
rectas e hidrodinámicas entre partículas coloidales. Como resultado se
ha producido un marco coherente "" ,,1 <¡U('~,I (\cuerdo entf(~ t('Oría y
experinl('lIto tiene d grado de pr('cisión Cll(\litativa y cuantitativa que se
('spera de campos de la física mIl mayor madurez. La moraleja es que el
uso de conceptos bien estahlecidos dí' la física ('stadística, asistidos por
técnicas experimentales modernas, ('stá contrihll}'('IHio a transformar a
los fluidos complejos en ulla clase más amigable de materiales, desde el
punto de vista del físico.




