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Abstract. This paper reviews the current status of our understanding
of tracer-diffusion phenomena in colloidal suspensions. This is the most
direct observation of the Brownian motion executed by labelled Brow-
nian particles interacting with the rest of colloidal particles in a sus-
pension. The fundamental description of this phenomenon constitutes
today one of the most relevant problems in the process of understanding
the dynamic properties of this important class of complex fluids, from
the experimental and theoretical perspective of physical researcR. This
paper describes the recent developments in the extension of the clas-
sical theory of Brownian motion and its application to the description
of the effects of direct and hydrodynamic interactions among colloidal
particles. As a result, a coherent picture has emerged in which the
agreement between theory and experiment has the degree of qualitative
and quantitative accuracy expected from more mature fields of physics.
The moral of the paper is that the use of well established concepts
of statistical physics, assisted by modern experimental techniques, are
contributing to transform complex fluids into a more amiable class of
materials from the point of view of the physicist.

PACS: 05.40.4j; 05.70.Ln; 47.15.Pn

1. Introduction

The study of complex fluids constitutes today one of the most relevant and novel
fields of research in materials science and engineering. For complex fluids we re-
fer to fluid systems, whose most important properties {thermodynamic, transport,
rheological, etc.) derive from a well-defined spatial and temporal structure at the
supramolecular level, i.e., intermediate between the molecular and the Macroscopic
scale [1-4]. Examples of such materials are colloidal dispersions, or sols (formed
by finely dispersed solids in liquids), macromolecular, polyelectrolyte, and micellar
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solutions, microemulsions, etc. In these materials, a large number of different mi-
crostructures can be formed, such as colloidal liquids and colloidal crystals, fractal
aggregates, microdroplets, vesicles, bicontinuous phases, filamentary and porous
structures, etc. Many industrial and comercial products, both natural and artificial,
involve in their processing, or in their final form, this type of materials. Among such
products, one could mention foods, like milk, many pharmaccuticals, cosmetics,
paints, petrochemicals, fertilizers, and polymeric and plastic materials.

In spite of their apparent diversity, there is a less apparent but important unifor-
mity, among the various classes of complex fluids, namely, in the general approaches
employed in their experimental and theoretical study. This is more obvious when we
consider the physical and chemical methods employed to probe their supramolecular
structure and dynamics [1-5]. Thus, physical techniques such as static and dynamic
light scattering, small-angle x-ray and neutron scattering, etc., have been devised
or adapted to study each particular type of complex fluids. The attitude, however,
is always the same, namely, one expects to explain the less detailed, macroscopic
behaviour of these materials, in terms of effective interaction forces acting at the
supramolecular level, and of the microstructural properties that such interactions
induce.

On the other hand, the study of Brownian motion, as pioneered by Einstein
[6], Smoluchowsky [7] and Langevin [8], among others, constitutes one of the most
prolific contributions to science. Thus, a large number of theories describing fluc-
tuations and random properties of systems constitute today important and active
fields of contemporary science, whose lineage may be traced back to the work of
those men. Among such living and healthy heirs of the classical theory of Brownian
motion, one could mention the mathematical theory of stochastic processes, the
irreversible-thermodynamic theory of fluctuations with its miriad of applications in
physics and chemistry, and the theory of noise and its applications in engineering
and science. In particular, the theoretical understanding of the dynamic properties
of complex fluids constitutes another concrete example of an active field of statistical
physics, whose genealogy traces back to the classical theory of Brownian motion.
Thus, generalizations of the classical theory to describe the random motion of ran-
dom surfaces in a bicontinuous microemulsion, the Brownian motion of a particle
within the filamentary matrix of a gel, or the irreversible trayectories leading to the
formation of fractal aggregates in an unstable colloid, could be typical examples of
the questions awaiting the development and generalization of the theory of Brownian
motion, aimed at understanding complex fluids from a fundamental perspective.

One of the most common structures formed by complex fluids is that of a sus-
pension, i.e., a set of well-defined entities, generically termed macroparticles (such
as macromolecules, micelles, microdroplets, small pieces of solid material, etc.),
suspended in a continuous fluid phase (the solvent). The Brownian motion of each
macroparticle in a concentrated suspension is, of course, highly correlated with the
motion of many other particles with which it collides and interacts by means of direct
and hydrodynamic forces [5-9]. We call direct interactions the conservative forces
between particles, such as electrostatic, van der Waals, hard-sphere, etc., which may
be described by an interaction potential function. Direct forces are responsible for a
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local average ordering of the macroparticles around any one of them considered fixed.
The function describing this local order represents the microstructural information
of the suspension, and is determined, at thermodynamic equilibrium, solely by the
direct interaction forces.

Hydrodynamic interactions, on the other hand, are the velocity-dependent, non-
conservative forces that each macroparticle experiences, due to the local velocity
field of the solvent, constantly perturbed by the motion of all the other particles
[10,11]. Although these forces do not affect any equilibrium (structural or thermo-
dynamic) property, their effects show quite dramatically in the transport properties
of concentrated suspensions.

The fundamental understanding of suspensions involves the establishing of a pre-
cise relationship among the concept of forces between macroparticles, supramolecu-
lar microstructure, and thermodynamic and transport properties. Clearly, the study
of the Brownian motion in concentrated suspensions constitutes an important aspect
of this general program, and it is the main purpose of this paper to review the
current status of our understanding of a particular class or phenomena, namely,
of the self-diffusion properties of suspensions. As we shall see, a coherent and
precise description of the main effects affecting the Brownian motion in concen-
trated suspensions has emerged rather recently, at least when dealing with clean
and well-defined model systems, both experimentally and theoretically. We would
like to conclude, as a consequence, that in this parcel of the study of complex fluids,
physics has provided the degree of qualitative and quantitative understanding which
1s common to other mature areas of physical research, and that those other aspects
of complex fluids which remain to be understood, constitutes a genuine frontier of
modern physics,

In most of this work, we shall have in mind suspensions of spherical macropar-
ticles of a single type (i.e., monodisperse). We shall first discuss the properties
of dilute suspensions of highly charged colloidal particles in water. In this case,
the effective pair potential u(r) describing the electrostatic repulsive forces between
macroparticles may be represented by a screened Coulomb potential. This is a rather
long-ranged potential compared to the hard-sphere repulsion associated to the ac-
tual physical diameter o of the particles. Thus, although the suspension may be
highly dilute with respect to the volume fraction occupied by the macroparticles,
the electrostatic forces strongly correlate the positions and the motion of all the
suspended particles. For such systems, hydrodynamic interactions are negligible.
Furthermore, their static structural properties are by now well understood, and the
agreement between theory and experiment may be said to be satisfactory, as it is
discussed and illustrated in section 2. Thus, these systems will serve to illustrate
the approach employed in the study of complex fluids.

With the structural problem assumed understood, one may proceed to the dis-
cussion of the dynamic properties. In section 3 we discuss and illustrate the dif-
ference between collective- and self-diffusion phenomena. Self-diffusion is the direct
experimental observation of the Brownian motion of individual macroparticles, and
the rest of the paper centers on that subject. Section 4 provides a simple, intuitive
picture of one of the main features of Brownian motion in concentrated suspension,
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namely, the existence of well-separated time-scales defined by the effects of the
direct interactions. In section 5 we illustrate the current status of our understanding
of self-diffusion experiments performed in highly correlated but hydrodynamically
dilute suspensions, in terms of two well-established theories.

Unfortunately, the consideration of hydrodynamic interactions demand exten-
sions of those two theoretical approaches, which at least from a practical point of
view, seem exceedingly complicated. Thus, in section 6 we describe a third the-
oretical formalism to the description of self-diffusion phenomena based on general
principles of the linear irreversible thermodynamic theory of fluctuations [12,13]. Its
application to the theory of Brownian motion in highly correlated suspensions con-
stitutes a simple example of the idea of contraction of the description, also explained
and illustrated in that section. This results, in our case, in a generalized Langevin
equation for a tracer Brownian particle that diffuses in a suspension of many other
strongly correlated colloidal particles (Eq. (18)). Although the general results thus
derived lead in a particular case, to one of the theories discussed in section 4, it
lends itself to rather simple extensions to incorporate the effects of hydrodynamic
interactions. Section 6 contains a rather detailed and elementary derivation of the
main results of this theory, as well as the description of a more formal derivation. A
more pragmatic reader may accept the main results of the theory, namely, Eqs. (36)
and (37), and proceed to their applications in the subsequent sections.

Section T describes the application of this theory to the interpretation of self-
diffusion experiments in concentrated hard-sphere like suspensions. These systems
aré the opposite extreme from the electrostatically correlated systems discussed in
section 4, in the sense that the direct interactions are hard-sphere (and hence, short-
ranged) rather than screened (but much longer ranged) coulombic interactions, and
in that hydrodynamic interactions constitute a most important feature, affecting
self-diffusion in all time-regimes.

Section 8 addresses a rather different effect. Considering charged Brownian par-
ticles at infinite dilution, another source of friction must be considered, namely, the
friction on the particle due to its interaction with the counterions and the other
small ions of the supporting solution. This is a rather small effect compared to
that of the direct interactions with other Brownian particles, but its features can
be clearly observed experimentally in the limit of extremely dilute suspensions. In
section 8, we describe the application of the same general results of section 6 to this
problem, with the intention to illustrate the power of the method. Finally, section
9 summarizes briefly the main aspects of this paper, and discusses the perspective
for progress in this field.

2. Static structure of suspensions

In the study of suspensions, the very first problem is the determination of the
local average microstructure around each suspended particle. In comparison, for
crystaline materials, this microstructure may be determined directly from the ob-
servation of their Bragg diffraction patterns. Thus, the physics of crystaline solids
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FiGURE 1. Radial distribution function of a salt-free aqueous suspension at room temperature
of highly charged polystyrene particles of charge @, hard-sphere diameter ¢, number
concentration n, and volume fraction ¢(= wna?/6), which interact through the DLVO
potential in Eq. (1) with a screening length x=! = 11.49¢. The dots are computer
simulation (Monte Carlo) data, and the solid line is a theoretical calculation based on
the rescaled mean spherical approximation. The corresponding static structure factors
fit the experimental results in a manner illustrated in Fig. 2 for a similar sample, using
@ as the only fitting parameter. (Figure reproduced from ref. [18]).

has focussed traditionally on other phenomena, such as the electronic properties of
those materials. A similarly privileged condition is not shared by complex fluids, and
not even by ordinary (atomic and molecular) liquids. Here, the ordered, long-ranged
periodic structure of a solid is replaced by an average, short-ranged, local structure,
whose determination is the very first relevant and fundamental task in their study.
The quantity containing this microstructural information of a liquid is the so-called
radial distribution function g(r). This function, times the bulk nymber density n,
gives the average local density of particles around a given particle fixed at r = 0.
It vanishes in a region centered around r = 0, since the very presence of the fixed
particle excludes other particles, from such a region. At long distances, g(r) — 1,
indicating the loss of the order induced by the central particle. The general features
of g(r) are ilustrated in Fig. 1, where the radial distribution function of a suspen-
sion of highly charged polystyrene spheres in water is plotted. As it happens, the
development of the theory of simple liquids during the last three decades generated
a wealth of theoretical and experimental techniques to determine the structural
properties of liquids [14]. During the present decade, the study of suspensions has
benefitted directly from such progress. This is due to the fortunate analogy between
a colloidal suspension and a simple liquid [15], in which the colloidal particles play
the role of the molecules in an ordinary liquid, the solvent replaces the vacuum,
and the effective forces between macroparticles replace the intermolecular forces.
The radial distribution function in Fig. 1 corresponds to a system of charged col-
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FIGURE 2. Direct comparison between experiment (crosses), computer simulations (dots) and

theory (solid line) for the static structure factor S(k) of a similar sample as in fig. 1.
QM and Q™MSA are the values of the charge @ employed in the Monte Carlo and
in the theoretical calculations, respectively, and were chosen to fit the hight of the
main peak of the experimental S(k), this being the only parameter, not determined
accurately otherwise by independent experimental measurements. (Figure reproduced
from ref. [18]).

loidal particles of hard-sphere diameter ¢, charge (), and number concentration n
which interact via an effective pairwise potential modelled by a hard-sphere plus
a repulsive screened Coulomb potential. Its specific form is the so-called DLVO
(Derjaguin-Landau- Verwey-Overbeek) potential, written as [16,17]

L Qle—m(r—a]
U(T) = mz—r' ¥ T % (l)

where ¢ is the dielectric constant of the solvent and « is the Debye screening pa-
rameter, which describes the charge-screening due to the counterions and other
electrolyte ions in the solution. The dots in Fig. 1 correspond to computer simula-
tions for this model system, and the solid line corresponds to theoretical results [18],
based on the use of the “rescaled mean spherical approximation™ [19,20]. This is
about the simplest, non trivial statistical thermodynamic scheme to calculate g(r)
given the pair potential u(r).

A quantity closely related to g(r) is the static structure factor S(k), defined as

Sk =1+ nfd3r[g(r) e, 2)

Just as neutron and x-ray scattering measures directly the static structure factor
S(k) of simple liquids, static light scattering, or x-ray or neutron scattering at



Brownian motion in compler fluids... 523

small-angles, may lead to the experimental determination of S(k) for a colloidal
suspension [1,2]. This experimentally-determined S(k) or g(r) may be compared
directly with theoretical results like those in Fig. 1, and one such comparison is
illustrated in Fig. 2. This is the static structure factor of a system similar to that in
Fig. 1. This comparison illustrates the degree of accuracy of the current theoretical
predictions, as compared with computer and real experimental data [18]. Of course,
one should not be left with the impression that all the basic problems referring to the
static structure of dispersions have been solved with the same degree of accuracy. In
fact, this is currently one of the most active aspects of the study of suspensions, and
of complex fluids in general. However, for the purposes of the present discussion,
let us assume that the description of the static properties is no longer a problem,
so that we can focuss our attention in other properties of colloidal suspensions.
FFurthermore, we shall actually aim at explaining some of those properties in terms,
precisely, of the equilibrium static structure represented by ¢(r) and S(k).

3. “Collective” versus “self" diffusion

Brownian motion and diffusion are two intimately related concepts, particularly
when refering to highly dilute suspensions. We might say that diffusion is the
collective, macroscopic superposition of the Brownian motion of many individual
colloidal particles. The most familiar diffusion process is that described by the
ordinary diffusion equation,

on(r,t) 2

2P =B N (st 3
) = D Pn(r, 1) 3)

where n(r,t) is the instantaneous concentration of colloidal particles at position r.

This diffusion phenomenon is referred to as “collective” diffusion, since it describes

the relaxation of a collective variable. The corresponding diffusion coefficient, D,

is known as the “collective” diffusion coefficient.

Quite a different diffusion coefficient characterizes more directly the concept of
Brownian motion. The experimental observation of the random motion of individual
particles must involve the recording of some averaged time-dependent individual
property, such as the mean squared displacement, ((Ar(t))?), or the velocity auto-
correlation function (V(¢) - V(0)) of individual Brownian particles. It is well known
that at sufficiently long times, the mean squared displacement increases linearly
with time, and the proportionality constant defines another diffusion coefficient,
according to the following expression

g,

Dy = li
Jim 6l

—00

(4)

The diffusion coefficient D, thus defined is called the “self-diffusion” coefficient.
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The distinction between collective and self-diffusion coefficients would be purely
academic if we were to restrict ourselves to infinitely dilute suspensions, as the classi-
cal theory of Brownian motion [6-8] does. In the absence of interactions between the
Brownian particles, both diffusion coefficients converge to a common value, which
we shall denote as D)°, and which is related to the hydrodynamic friction coefficient
¢° by Einstein’s relation. Thus, in the limit n — 0, we have that

 kgT

D, = Dy Co

(= D°).

According to this result, the measurement of I, in an ordinary concentration-
gradient experiment, in an extremely dilute suspension, leads to an estimate of
(°. The subsequent use of Stokes formula for the friction coefficient of a spherical
particle, (° = 3wno (with 5 being the viscosity of the pure solvent ), allows a simple
determination of the colloidal particle diameter o. In fact, particle sizing is one of
the most popular practical applications of the classical theory of Brownian motion,
although the actual measurement of the diffusion coefficient is carried out nowadays
more practically by means of Dynamic Light Scattering (DLS). In these experiments
one measures the intermediate scattering function, F(k,t), defined as [5]

F(k,t) = %(M(k,t)én(—k, 0)), (6)

which is the Fourier transform of the van Hove function of the macrofluid [14], i.e.,
én(k,t) is the spatial Fourier transform of the field of instantaneous concentration
fluctuations én(r,t) = n(r,t) —n, and the angular brackets indicate equilibrium en-
samble average. If the thermal fluctuations also obey the collective diffusion equation
in Eq. (3), it is then a simple excercise (see section 6) to show that F(k,) is given

by
F(k,t) = e ¥*Detg(p), (7)

where we have used the fact that F(k,0) = S(k) [14]. Actually, with DLS one is not
restricted to probe only the relaxation of concentration fluctuations of macroscopic
size (~ 1 mm) and over macroscopic times (¢ ~ 1 sec). One can also probe [5] the
collective diffusion behaviour in the length scale down to the mean interparticle
distance between the suspended particles n=1/3 (corresponding to the wave-vector
Fmax = 27n'/3 where the main peak of S(k) is located), and within time scales
comparable to the diffusion time 7; = 1072n=2/3/D° that takes a particle to diffuse
a small fraction (~ 1072) of such mean distance. Clearly, this fact is irrelevant when
extremely dilute suspensions are considered, since 7; — oo, as n — 0, and Eq. (7)
holds with Dy given by Eq. (5) for all times. This is, however, no longer the case
when the interactions between colloidal particles are not negligible, such as for the
systems in Figs. 1 and 2. In this case, the collective diffusion coefficient D, actually
becomes a spatially and temporally non-local kernel, and the collective diffusion
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FIGURE 3. (a) Inverse collective diffusion coefficient (in units of D°), as a function of the ionic
strength I of the supporting solution (I = £2_,|Z;|*n;, where Z; is the valence of the
electrolyte ions of species i, whose bulk number concentration is n;), for a sohition of
ganglioside micelles at fixed concentration. The solid line is a theoretical result based
on Eq. (7), within the HNC approximation for S(0) for the DLVO potential. (Repro-
duced from ref. [21.a]). (b) Self-diffusion coefficient in units of D° for a suspension of
polystyrene spheres at fixed concentration, as a function of I (expressed in terms of
the inverse Debye screening length x = (4me2I/ekpT)'/? and the tracer’s diameter
o) (data taken from ref. [21.b]). The solid and dashed curves are theoretical results
explained in section 5.

equation now-reads, in general [9],

(’)671 r,t) fdt /d%'D r—r't —t)én(r',t). (8)

Thus, F(k,t) is then given by
F(k,t) = x(k,1)S(k) (9)
where (k. 1) is the spatial Fourier transform of the propagator, or Green’s function,
of the general collective diffusion equation in Eq. (8). Clearly, Egs. (3) and (7), with

Eq. (5), are the free-diffusion particular case of Eqs. (8) and (9). Another well-known
general limiting expression of Eq. (9) is its short-time approximation, which is given
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(ignoring hydrodynamic interactions) by [4]
F(k,t) = S(k)e K D°US®) (417 < 1). (10)

This approximation is also exact [9] in the so-called “hydrodynamic” limit, obtained
letting &k — 0 and ¢t — oo, with k%t remaining constant. In this limit, we recover
Egs. (3) and (7), but with D, given not by its free-diffusion limit, Eq. (5), but by
the general result [5,9]

D. = D°/5(0)
. (aég_nP)ﬂ, (11)

where the second line makes use of the “compressibility” equation of the theory of
liquids [14], which states that S(0) = 1/(88P/8n)g, where § = 1/kyT, and P is
the osmotic pressure of the suspension.

In Fig. 3 we reproduce the results of the measurement of D, and D, in systems
similar to those in Figs. 1 and 2. Here, the system is kept at constant concentration,
but the Debye screening length £~ is varied by varying the ionic strength of the
supporting solution. Increasing k increases the screening, and the effects of the
interactions become less important. As a result, the system becomes more non-
interacting, (i.e., (9BP/dn)g — 1), and D, tends to its free-diffusion value D° (Fig.
3.a). This Figure also shows the behaviour of the self-diffusion coefficient Dy, which
also approaches D° as the interactions become less important (Fig. 3.b). Fig. 3
illustrates the fact that D, increases and D, decreases as a result of the interactions
between the Brownian particles. The behaviour of D, only reflects the dependence of
the thermodynamic factor in Eq. (11), and may then be considered well understood
[21.a]. In fact, the solid line in Fig. 3.a is a theoretical calculation based on the
HNC approximation [14] for the DLVO pair potential in Eq. (1). The qualitative
and quantitative understanding of the behaviour of D,, on the other hand, is the
subject of intense current research, and is one of the aims of the theory of Brownian
motion, as we now discuss.

4. Direct interactions and self-diffusion: facts and intuitive picture

Conventional dynamic light scattering measures the collective intermediate scatter-
ing function, Eq. (6). Imagine, however, that under certain circumstances, the vast
majority of the particles were not to contribute to the scattering (as would happen,
for example, if their refraction index matches that of the supporting solvent), but
that the remaining small fraction differ in their optical properties (but in no other
respect) from that majority. Then, light would be scattered only by this subset
of labelled particles, each of which virtually never encounters another labelled, or
“tracer”, particle. This would be a typical self-, or tracer-diffusion experiment, in
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FIGURE 4. Mean-squared displacement ((Ar({))?) of a tracer particle in the suspension in Fig. 2.
The noisy curve is the experimental result, the black squares are computer simulations
(Brownian dynamics), and the open squares and circles are theoretical results obtained
from the two theories described in section 6. The dashed straight line is the free-
diffusion result. (Reproduced from ref. [18]).

which the measured property is the self-diffusion propagator, defined as [5-9]
Tk i { SES00), (12)

where Ar(t) is the displacement, during a time interval t, of a tracer particle.
Thus, self-diffusion experiments measure directly the generating function of the
probability distribution of the random variable Ar(¢), and this determines, among
other things, the mean squared displacement and the self-diffusion coefficient of that
tracer particle interacting with many other identical particles. Fig. 3 is an example
of the experimental results which may be obtained with this, or similar techniques
applied to dilute suspensions of highly charged particles. This figure also serves to
illustrate that the degeneracy of the free-diffusion limit, in which D, = D, = D°, is
clearly broken by the presence of direct interactions. Explaining why D, < D°, and
predicting the extent of this deviation, is one of the goals of the theory of Brownian
motion of many coupled Brownian particles. However, as said above, dynamic light
scattering also provides the time dependence of quantities such as ((Ar(t))?). Thus,
Iig. 4 illustrates a typical signal of an experimental output (solid, noisy curve) for
this quantity [18] for the sample whose static structure factor is plotted in Fig. 2.
This Figure exhibits the difference between the mean squared displacement in that
sample, and the corresponding result for free diffusion, i.e., ((Ar(t))?) = 6D°t
(dashed line). It is immediately clear from this comparison that the main effect
of the direct interactions is a departure from the free-diffusion behaviour, which
becomes more apparent as time increases, but which is negligible at very short
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times. Let us notice, first of all, that the time scale of the Figure (¢ ~ 1 msec) is far
above the typical time 7 associated to the relaxation of the macroparticle velocity,
g = (°/M (where M is the mass of the particle), which may be estimated to be
around 1077 sec. for the conditions of that sample. Thus, during the times recorded
in the experiment, t 3 7p, and hence, in this time scale, the motion of the particles
is purely diffusive. However, in this diffusive regime, only at very short times the
mean squared displacement behaves as if it were free diffusion. Such short-time
regime corresponds to the times in which the tracer diffuses freely in the essentially
static field produced by its virtually immobile neighbors, who have had not, enough
time to change their collective configuration around the tracer. As time ellapses,
the dynamic effects of the interagtions (i.e., of the “collisions”) with its neighbors
cummulate, preventing the tracer from diffusing as fast as if it were diffusing freely.
Thus, the interactions of the tracer with its neighbors define another typical time,
which we denote by 77, and which may be defined as the time it takes the tracer
to diffuse a small fraction, say one hundredth, of the mean interparticle spacing
n=1/3, Thus, a simple estimate of 77 is given by 7; = 10=2/(D°n??), which in our
example yields 77 =~ 2 msec. For times much longer than 7y (far outside the scale
of the Figure), the mean squared displacement once again increases linearly with
time, but now with a different, smaller slope. Thus, as a direct consequence of the
interactions, we are forced to define two self-diffusion coefficients, one associated to
the short-time regime,

D? = lim M, (13)

(where ¢ — 0 means ¢/17 < 1, but still /75 > 1), and another for the asymptotic,
long-time behaviour, defined just as in the previous section, (see Eq. (4))

. {(Ar(2))?
k= Jim Lﬁg)ﬂ (14)
Here, of course, t — oo means ¢/77 > 1. In the present case, where no hydrodynamic
interactions are involved, D is identical to the free-diffusion coefficient, D°, and
is independent of the direct interactions, whereas Df‘ is always smaller than D°,
due precisely to the direct interactions. The experimental results for D, in Fig. 3.b
correspond, of course, to DL,

To gain a better intuitive understanding of the difference between Df and D;r“,
let us consider the thought experiment illustrated in Fig. 5. Imagine that instead
of observing directly the Brownian motion of tracer particles, we could measure
the friction force felt by a given particle when we force it to move at a constant
velocity 'V through the suspension. Depending on the time- and length-scale of
this experiment we would measure a different friction coefficient. For the condition
illustrated in Fig. 5.a, in which the particle has not had enough time to collide
with other particles, the only frictional forces are those of the solvent, i.e., at short
times, the external force F*** needed to move the particle with velocity V is given by
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FIGURE 5. Schematic illustration of the motion of a tracer particle moving at constant velocity
V through a suspension of colloidal particles of number concentration n, and mean
interparticle separation £ = n=1/3, The three figures describe the same motion, but in
three different time and space scales. In (a), the tracer has suffered a displacement d(®),
which is much smaller than the mean interparticle spacing £. Thus, in this time-scale,
the effect of direct “collisions” with the other particles is still negligible, and the force
F*** needed to pull the tracer at constant velocity V is given by F** = (5V where
¢% is the hydrodynamic friction coefficient at short times. In (b), the particle has
moved over a distance d*) comparable to £, and the effect of collisions start to become
appreciable. In (c), the displacement d(%) is much larger than ¢, and the force needed
to pull the tracer at the same velocity V is given by F*** = (¢5 + A()V, where ACV
is the additional friction force needed to push the other particles out of the way of the
tracer.

F = ¢SV where (¥ is just the hydrodynamic friction coefficient, given in our case
(where we are ignoring hydrodynamic interactions) by its Stokes value, ¢¥ = ¢°. In
the oposite regime, Fig. 5.c, the tracer particle has had many encounters with its
fellow particles. This produces an additional friction force AF = (A()V, besides the
hydrodynamic friction F¥ = ¢SV. Thus, in this time- and space-regime the external
force we would need to apply on the particle to move it at constant velocity V is
now given by F*t = (¢ 4+ A()V, and this defines a long-time friction coefficient,

¢h=¢¥ +AC (15)

The conditions illustrated in Fig. 5.b then describes the transition regime from
short-times to long-times, and corresponds to the regime exhibited in Fig. 4. Thus,
a complete picture of self-diffusion or self-friction should describe the build-up



530 A. Vizearra-Rendon et al.

of the frictional effects of the direct interactions, and should start with a purely
hydrodynamic short-time friction coefficient ¢® (and a corresponding short-time
self-diffusion coefficient DY = kgT/¢%), and end up with a long time friction
coefficient ¢ = ¢% 4+ A( (and a corresponding long-time self-diffusion coefficient
Dy = kpT/C").

The formal theoretical understanding of this dynamic phenomenon was con-
structed within the last ten years, following essentially a systematic application of
corresponding theoretical developments in the dynamics of simple liquids. However,
it was only within the last five years that a precise quantitative picture emerged,
which led to theoretical results in excellent agreement with the experimental mea-
surements. The state of the art concerning such comparison is illustrated in Fig.
3 and 4, where computer simulation data and theoretical results are also included.
The following section contains a description of the theoretical developments which
led to those results.

5. Theory of self-diffusion

The classical theory of Brownian motion is best described by the ordinary Langevin
equation for a freely-diffusing tracer particle [8]

M‘{Vd—t(t) = —C°V(¢) + (1), (16)

where f(t) is a Gaussian, purely random force, representing the thermal fluctuations
of the hydrodynamic forces or the particle. The stationarity of the equilibrium state
demands that the friction coefficient (° be related with the correlation function of
f(¢) according to the fluctuation-dissipation relation

(fi()£;(0)) = kgTC°28(t)6;; (1,5 =1,2,3). (17)

If the tracer particle does not diffuse freely, but is interacting with many other
diffusing particles in the suspension, one would expect, following the intuitive pic-
ture introduced in the previous section, that besides the hydrodynamic friction and
random terms, the direct interactions will lead to an additional friction term and a
corresponding fluctuating force, so that Eq. (16) will be modified to read

¢
M = v+ - [tV R0, (9)

where AC() is a memory-function-like friction describing the build-up of the effects
of the direct interactions of the tracer with its neighbors, and F(t) represents the
corresponding random force, generated by the instantaneous departure of the distri-
bution of neighbors from its equilibrium radial distribution ng(r). In the following
section we provide a derivation of the generalized Langevin Eq. (18), which leads,
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upon well-defned approximations, to explicit expressions for A((t) in terms of the
effective pair potential of the direct interactions and of the equilibrium structural
quantities g(r) and S(k).

Once A((t) is determined, other relevant properties describing self-diffusion may
be calculated. For example, the Laplace transform of the velocity autocorrelation

function C'(t) = (V(t) - V(0))/3, denoted as C(z), is given by

kgT

GEYNENL (19)

C(z) = %/oo dt e *(V(t)-V(0)) =

where A((z) is the Laplace transform of A((?), and where we have neglected z/zp
(with z5 = M/¢®) in the denominator of the right-hand side. This corresponds, in
the time-domain, to the neglect of terms of order (7g/t) and higher, as it should be
done if we wish to describe only the motion of the tracer particle in the diffusive
regime. From C(t) one can easily calculate the mean-squared displacement, since
they are related by means of the following equation

t
(@rp)/oe= [ ata e, (20)

[+]

Clearly, combining Egs. (20), (19), and the definition of D in Eq. (14), we have
that the long-time self-diffusion coefficient can be written as

%0 kgT
DL = s 2
b= [Tty = 52 (1)
where
Acz-f_\((mzf dAC(1). (22)

A still more general program to describe self-diffusion could aim at the calcu-
lation of the self-diffusion propagator Fi(k,t) defined in Eq. (12). The pioneering
work of Ackerson [22], Pusey and Tough [6,23], Hess and Klein [9], and others,
followed this route, starting from a mesoscopic dynamical description of the coupled
Brownian motion of N colloidal particles, provided by the N-particle Smoluchowski,
Langevin, and Fokker-Planck equations [24,25]. In close analogy with similar de-
velopments in simple liquids, they applied well established statistical mechanical
formalisms such as projector operators [22], short-time expansions [6], and linear re-
sponse theory [9]. As a result, they showed that Fy(k,t) satisfies a memory-function
equation, written, neglecting hydrodynamic interactions, as

dF,(k,t)

t
5 :—k2[)°F,(k,f)+/ Mk t — 'Y Fy(k, ")t (23)
o
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Thus, the aim of those theories is to calculate the memory function M(k, ). From
M(k,t), all the previously defined self-diffusion properties follow, since M(k,?) is
such that its Laplace transform M(k, z) is related A((z) by [26]

Mk Alz)
i TEDs T AL (2]

Although these statistical mechanical approaches lead to formally exact expressions
for M(k,t) and A((t), their actual application requires the introduction of approx-
imations. The most successfull approximate results of this type are the mode-mode
coupling approximation introduced by Hess and Klein [9], and the exponential-
memory approximation introduced by Arauz-Lara [26-30]. The first is a systematic
translation of analogous mode-mode coupling theories of simple liquids, and leads
to the following relationship between A((t), Fo(k,t), and the collective intermediate
scattering function F(k,t) (Eq. (6))

AL(t) = ki, P [———kh(k)

&
3(2x) 1+nh(k)] F(k.)Fs(kst), (25)

in which 14nh(k) = S(k) is the static structure factor of the bulk suspension. As we
shall gxplain in the following section, this result can also be derived in an alternative
manner, which allows its extension to more general situations. To make Eq. (25)
more tractable, the short-time approximation for F(k,t), Eq. (10), is introduced,
and Fy(k,t) is approximated either by its short-time limit,

Fy(k,t) = ' 0%, (26)
or by its long-time expression
Fy(k,t) = e=¥°Drt, (27)

The use of Eqgs. (25), (10), and (26) leads to an explicit expression for A((f) in
terms solely of S(k). Such an approximation has been labelled MMC1 [26]. The
use of Egs. (27) and (10) in Eq. (25) leads to an expression for A((?) in terms of
S(k), D°, and DE. This expression, when employed in Eqs. (22) and (21), leads
to an independent, implicit equation for (DE/D°), which must be solved before
one can calculate A((t). This second approximate scheme to calculate self-diffusion
is labelled MMC2. The only input required in the numerical application of these
approximations is then S(k) and D°. Since S(k) has been determined experimentally
and theoretically for the system in Fig. 2, the calculation of the mean squared
displacement {(Ar(t))?) is now straightforward. The numerical results, within the
MMC?2 scheme, are displayed in Fig. 4. Similarly, Fig. 3.b displays the resuls of
the MMC2 approximation for DI for the conditions of that Figure.
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The other approach which has been quite succesfully applied to the interpreta-
tion of self-diffusion measurements was suggested by Arauz-Lara [27]. It is based on
the derivation of exact conditions for the initial value of the memory function Mk, t)
and its first time-derivative. These exact conditions were employed to determine
the amplitude and the decay constant of the memory function, modelled by a single
exponential function [29]. This leads to approximate expressions for M(k, 1), AL(1),
{(Ar(1))?), and D in terms of D°, and of certain integrals involving the pair po-
tential u(r), the radial distribution function g(r), and the three-particle distribution
function ¢!®(ry,rq,rs) (14]. Neglecting terms proportional to ¢(®)(r1,r2,r3), leads
to an explicit expressions for those dynamical properties in terms only of g(r). Such
approximate scheme is referred to as the single-exponential approximation, and it
has also been applied to the systems and conditions in Figs. 3.b and 4, where it is
labelled SEXP.

As it is clear from the comparison in Figs. 3.b and 4, both methods to describe
self-diffusion in terms of the structural properties lead, upon the judicious and
well-defined approximations involved, to a succesfull comparison with experimental
and computer simulated results. This is particularly meritorious considering the fact
that no fitting parameters are involved in the conections between ((Ar(t))?) and
the static structural properties provided by these theories. Thus, we may conclude
that the theory of Brownian motion has been extended to provide a qualitative
and quantitative understanding of the effects of direct interactions in suspensions
of highly charged particles, where hydrodynamic interactions are negligible.

This optimistic claim is quite fair, as it can be judged by the comparison in Figs.
3.b and 4. Nevertheless, the need arises to extend the range of aplicability of these
theories to describe additional interaction forces which also affect self-diffusion in
systems other than electrostatically correlated systems. In fact, already with charged
macroparticles in the limit of infinite dilution, another small frictional effect is ap-
parent, due to the electric interactions with the screening ionic atmosphere, an effect
referred to as electrolyte friction. Unfortunately no straightforward extension of the
theories discussed in this section, to describe this efect, seems possible. Similarly,
the description of the coupled effects of direct and hydrodynamic interactions for
concentrated suspensions seems to be a formidable task, if approached along the
lines of the theories referred to before. Thus, there is room for alternative theoret-
ical descriptions which allow the extension of the results above to describe these
additional friction effects. The following sections review the theoretical methods
employed rather recently for such purpose, and its specific applications and results
arc illustrated in sections 7 and 8.

6. Self-diffusion revisited: the generalized Langevin equation

A beautiful generalization of the fundamental ideas of the classical theory of Brow-
nian motion may be found in Onsager and Machlup irreversible thermodynamic
theory of fluctuations [31]. Within this scheme, the ordinary Langevin equation,
Eq. (16), is just the simplest example of a fluctuation phenomenon cast as a Gauss-
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ian Markov stochastic process generated by a linear stochastic differential equation.
Within this spirit, we can construct a Langevin-type equation to describe the instan-
taneous random departures from its equilibrium value, of the local concentration
n(r,t) of colloidal particles in a suspension. In the previous section, when we said
that n(r,t) satisfies the diffusion equation, we were actually refering to the average
value (n(r,t)), whose value at thermodynamic equilibrium is just the bulk num-
ber concentration n for a homogeneous suspension. The instantaneous fluctuations
around this average, denoted as

én(r,t) = n(r,t) —n, (28)

satisfies, according to the irreversible thermodynamic theory of fluctuations, a sto-
chastic version of the diffusion equation, which in its simplest form reads [12]

) ).
19l ’la(—_:vi) = D .V*n(r,t) — V - jair(r; 1). (29)

This equation says that the fluctuations tend to relax to its equilibrium value
(6n(r,t)) = 0 following the same relaxation law as the average (n(r,t)). This is
described by the first term on the right-hand side of Eq. (29), which is the analog
of the —C°V(#) term in the ordinary Langevin equation, Eq. (16). But just as the
spontaneous hydrodynamic fluctuations of the supporting solvent give rise to the
random force f(f) on an isolated Brownian particle, it produces random diffusive
fluxes jgif(r,t) of particles in the suspension, and this is represented by the last
term in Eq. (29). These random diffusive fluxes give Eq. (28) the character of a
stochastic diffusion equation. Furthermore, just as f(t) in Eq. (16) is assumed to be
a Gaussian, é-correlated noise, we also assume —V-jgi(r, 1) to have those properties,
and as a consequence of the stationarity of the equilibrium state, its correlation
function is also related with the transport coefficient of the relaxation term (i.e.,
with D.) by a fluctuation-dissipation relation, which reads [12]

(V- Jaie(r, )V - jaie(x', 1)) = 26(t — ') DenV76(r — v'), (30)

where §(r — r') is the Dirac delta function.

A simple application of Eq. (29) is the derivation of Eq. (7), which follows
after taking the Fourier transform of Eq. (29), multiplying by én(—k,0), taking the
equilibrium average, and using the fact that én(r,0) is statistically independent of
the random fluxes jgi(r,¢). More generally, collective fluctuations are described by
Eq. (29), but with the diffusive relaxation term D.V?én(r, t) replaced by a spatially
and temporally non-local kernel, as in Eq. (8). This leads to the general result in
Eq. (9).

Let us now use these ideas to derive the generalized Langevin equation in
Eq. (18). As we said before, in self-diffusion -experiments, the Brownian motion
of a very small fraction of suspended particles is recorded, and each of these tracer
particles may be regarded as diffusing independently of the other tracers, while
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interacting with the many un-labelled particles in the suspension. Thus, the state of
this system may be represented by an equilibrium ensamble of identical systems each
containing many identical particles plus a single tracer particle. Let the state of this
system be described by the velocity V(t) of the tracer, and the local concentration
n'(r,1) of the other colloidal particles, around the tracer. The vector position r in
n'(r, t) is referred to the center of the tracer, and the prime is a reminder of this fact.
In thermodynamic equilibrium, the average value of V(t) is (V(f)) = O, and the
average of n'(r,t), which we shall denote by n®(r), is just ngrc(r), where gre(r) is
the radial distribution function of the colloidal particles around the tracer. In prin-
ciple, standard statistical thermodynamic theories [14] may be used to determine
gre(r), given the pair potential upe(r) of the force between the tracer and any of
the other colloidal particles, along with the pair potential ucc(r) of the colloidal
particles. Of course, if the tracer is also identical to the rest of suspended particles,
te., if upc(r) = uce(r) = u(r), then gre(r) is just the radial distribution function
g(r) of the suspension, an object already discussed and illustrated in section 2.
Let us now write a generalized Langevin equation for the stochastic vector
whose components are V (t) and én'(r, t)]. According to the general principles of the
irreversible thermodynamic theory [12,31,32], this vector satisfies a linear Langevin-
type equation, i.e., V(t) and én'(r,t) satisfy two coupled stochastic differential
equation. The first of them is just a Langevin equation for the tracer (33]

M([‘:fft) =—C%V(t) + £5(t) + /d:‘r[VuTC(r)]c‘)'n'(r,t). (31)

The last term is an eract mechanical coupling between V() and én'(r,t). It is just
the total force [ d*r[Vupe(r))n'(r,t) exerted on the tracer by the other particles
instantaneously distributed according to n'(r,t). Since n'(r,t) = n®(r) 4+ én'(r,t),
and because of the radial symmetry of n®(r), only the departures én'(r,t) from
n®(r) contribute to this force. The other two terms in Fiq. (31) represent the force
of the solvent on the tracer, which contributes with a dissipative term, —( 'V (1), plus
a corresponding Gaussian, é-correlated fluctuating force. With the proper definition
of ¢¥, which will be given below, Eq. (31) is exact.

The time-evolution equation for 8n'(r, ) constitutes the second linear stochastic
equation for the vector [V (t),én'(r,t)], and has the general form [33]

Aén s
Lﬂ({;;ﬁ = [Vn®™(r)]- V(1) - j (il']dgr’Df(r, it "én' (v )y -V (e, ).
) (32)

The linear term in V(¢) is an exact (but linearized) streaming term, due to the
fact that the vector r in én'(r,t) is referred to the center of the tracer (which
moves with velocity V(¢)). The memory term in Eq. (32) is the most general form
of the collective diffusion equation (see Iiq. (8)), as described from the reference
frame of the tracer. The last term represents the corresponding random fluxes.
Thus, Egs. (31) and (32) constitute the most genceral stochastic linear equation for
the vector [V(t), én(r,t)]. (In principle, the dissipative term —¢%V(t) should also
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involve memory, representing the finite decay time of the hydrodynamic modes of
the solvent. Such decay time is, however, much too small in the diffusive regime of
interest here, and hence, a constant friction coefficient ¢9 suffices).

So far, Eqs. (31) and (32) are exact, although ¢ and D'(r,r';¢ — t') have not
been yet specified. We could proceed further at this level of generality. Nevertheless,
let us replace at this point D'(r,r';t —¢') by its simplest approximation, namely,

D'(r,r'";t —t') = —26(t —1")D.V%(r — 1), (33)
which allows us to write Eq. (32) as

9én'(r, 1)

ar [Vn®(r)] - V(8) + D V260! (r,8) = V - J'gig (. 1) (34)

This means that we have assumed that the diffusive relaxation of &n'(r,t) is
described by the same law as the bulk collective fluctuations in Eq. (29), and that
the random fluxes are modelled as the Gaussian, é-correlated fluctuating fluxes
explained in the context of that equation, which is recovered if we set V(i) = 0
in Eq. (34). This assumption is a reasonable simplification, although it involves a
rather crude description of the dynamics of én'(r,1). However, we introduce it here
only to illustrate the procedure that follows.

Let us now apply the idea of contraction of the description [12,32,34], which
in this example amounts to solving Eq. (34) for én(r,t) in terms of V({), and
substituting the result in the last term of Eq. (31). This eliminates én'(r,?), leading
to a closed equation for V(t) that has the structure anounced in Eq. (18). Math-
ematically, Eq. (34) is just an inhomogeneous ordinary diffusion equation, whose
solution can be written as

t
n(r,t) = / dt'/d37"x'(r,r';t — )[V'R®(")] - V(1)
t
& / " f ol bl < )R gl 2]
e]
f /dar’x(r,r';t)ﬁn(r,ﬂ). (35)
where \'(r,r';# — ') is the collective diffusion propagator,

V' (r,r'1) = (ArDot) =32 exp[—(r — r')2/4D.t], (36)

i.e., it is the solution of the homogeneous diffusion equation whose initial condition
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is x'(r,r';0) = &(r,r'). Substituting Eq. (35) in Eq. (31), we obtain

MO _ vy 4150 - /t di'A((t - 1)V(!) + F(1), (34

dt 5

where the memory-function term derives from the first term on the r.h.s. of Eq. (35),
and where we have defined the time-dependent friction A((t) as

Al(t) = —%/dsrfds’"r[vw'c(f)] X (0, 1 )[VIRS(). (38)

The other terms, which derive from the second and third terms of the r.h.s. of
Fq. (35), are linear on the random variables —V - jyir(r, ) and én'(r,0), respec-
tively, and have been grouped in the last term, F(¢), of Eq. (37). This is, hence, a
random force, which originates from the spontaneous departures of the distribution
of colloidal particles around the tracer from its radial equilibrium average n®(r).
Equations (37) and (38) constitute the most fundamental results of the theory
presented here, and in the following we elaborate further on some aspects of its
derivation and generality.

The derivation above is a simple exercise of the idea of “contraction of the
description”, in which the aim is to establish a connection between two phenomeno-
logical levels of description of the same fluctuation phenomenon, which differ only
in their degree of detail [32,34]. Thus, we started with a system of two coupled
equations of motion for the state variables V({) and én'(r,t), cast as a Markov
stochastic process. This constitutes the non-contracted description. In eliminating
én'(r, 1), we have carried out the contraction procedure. This resulted in a Langevin
equation for V(t) alone, which exhibits memory as a consequence of the contraction.
In principle, however, the non-contracted description itself should be non-local in
time as indicated in Eq. (20), since it could be viewed as the result of a primary
contraction from a Hamiltonian level of description [35]. Such considerations are im-
portant, since the dynamics of the fluctuations in the local concentration of colloidal
particles is known to involve memory effects [5,9] of the type in Egs. (32) and (8),
and which are not included in the simple diffusion model employed in Eq. (34).

Prompted by these considerations, in a recent work [33] we have indicated a
canonical procedure to carry out the contraction from a non-Markovian level of
description. This procedure is based on the use of general conditions imposed by
the stationarity condition on the structure of the generalized Langevin equations
that defines such a stationary non-Markovian process (i.e., Eqs. (31) and (32) in
our problem). These conditions, along with others that derive from the time-reversal
symmetry properties of the dynamic variables themselves, lead to precise “selection
rules” for the “frequency”, “memory”, and “random force” terms, which are exten-
sions of the well-known Onsager-Casimir relations [12,13]. We have applied those
selection rules to our problem, within the assumption that the only dissipative
processes to be considered are the diffusion of the cloud of colloidal particles and the
hydrodynamic friction on the tracer. As a result of such analysis [33], one concludes,
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in particular, that the simultaneous presence of the cross-coupling, non-dissipative
terms in Eqgs. (31) and (32) is required by one of the general selection rules referred
to above, which also requires [33] the following relation to be fulfilled

N ()= ~ T fdar o(e, v )V ure(r'), (39)

where a(r,r') is the equal-time correlation function of én'(r, 1), i.e.,
a(r,r') = (6n(r,0)én(r',0)). (40)

Eq. (39) is, however, an exact relationship, well-known in the statistical-mechanical
literature of inhomogeneous fluids [14,36].

Once we are sure that the time-evolution equations which constitute our non-
contracted description do not violate any of the mentioned selection rules, the
contraction procedure is rather straightforward [33], and follows a similar route as
that in our simple derivation, thus leading essentially to the same results, namely,
Eqs. (37) and (38). In fact, the only difference is that the propagator x'(r,r';t) in
Eq. (38) is no longer given just by Eq. (36). Instead, it is the solution of the more
general diffusion equation,

",
ax(r Ll j dt' ]d3r'D r, et —t)x'(r' ) (41)

with the initial condition y'(r,r';0) = é(r — r').

An important requirement of the stationarity condition on the structure of a
generalized Langevin equation is the existence of a fluctuation-dissipation relation
between the generalized relaxation kernel and the random term [32]. For the partic-
ular case of the generalized Langevin equation represented by the system of coupled
Equations (31) and (32), such fluctuation-dissipation relation reads

(FWf©0) = MkpT¢S26(1)5,, (42)

([V - J aie(r, D)V - § e, 0)]) = /dsT‘"D'(l‘J":f)ff(l‘"~l") . (43)

fori,j7 =1,2,3and r, r' € R*. These relations can be employed to demonstrate the
fluctuation-dissipation theorem that holds at the contracted level, which reads [33]

(Fi(t)F5(0)) = MkgTAC(t)éi; (1,7 = 1,2,3). (44)
Let us also notice that by using Eq. (39) into Eq. (38) one can derive two

alternative (but formally equivalent) expressions for A((t) in terms of a(r,r') and
x'(r,r';¢) [33]. The first involves only [Vurpe(r)], and the second, which will be used
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below, reads
8¢ =222 [ & [ 19 o X O TG, (19)

where the function [o~1y/(t)](r,r') is the convolution of ¢~ and y'(r,r';t), with
o~ !(r,r') being the inverse function of o(r,r') (i.e., their convolution equals the
Dirac delta function). Both quantities, o(r,r') and x'(r,r’; 1), depende on r and r'
separately, since the field upe(r) breaks the homogeneity of space near the tracer
particle.

Finally, let us notice that for short times, i.e., times short enough for x'(r,r';1)
not to depart apreciably from 8(r —r’), the time-dependent friction-function equals
approximately A((0),

AC(0) = %fd%[v"’-um(r)]nm(r) = ky, (46)

which is the spring constant of the approximately harmonic force on the tracer
originating from its interaction with its virtually static neighbours, distribited ac-
cording to n®4(r). The Brownian motion that the tracer executes in such harmonic
cage during this short-time regime is described by the following Langevin equation

MdV (t)/dt = =5V (t) + £5(t) — kg (Arp(t)), (47)

where Arp(t) = f: V(t')dt' is the tracer’s displacement. Equation (47) follows from
averaging Fq. (37) over initial concentration fluctuation profiles én'(r,0), and rec-
ognizing the fact that even for these short times, the time integral of the random
flux term —V - j'4¢(r, 1) vanishes. Thus, if we denote by D? the diffusion coefficient
which describes the Brownian motion of the tracer in this short time regime, then
from Equation (47) we have that Df: is given by DS = kpT/¢°. Here we have
employed the same symbol for kgT/(” as for the short-time self-diffusion coefficient
defined in Eq. (13). This is not, of course, a loose notation, but the recognition of an
important fact: the short-time self- diffusion coefficient DY describes, according to
its deffinition in Eq. (13), the Brownian motion of the tracer in the same time-regime
where Eq. (47) is valid. Thus, DS and kpT/C are one and the same thing. As a
consequence, we have now given a well-defined meaning to the phenomenological
coefficient (¥, heretofore left undetermined. This identification of ¢¥ with kgT/D?
also provides the means for its experimental determination as the initial slope of
((Ar(t))?)/6t in the diffusive regime. Of course, as indicated in Fig. 4, DY = D°
for highly dilute suspensions of strongly charged particles, where hydrodynamic
interactions are negligible. Thus, in this case, (5 = (°, where C° is the Stokes friction
coeflicient of the tracer. However, when hydrodynamically concentrated dispersions
are considered, the identification above becomes most relevant, as we discuss in the
following section.
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To proceed further we must introduce approximations such as those involved
in our simple model in Eq. (34). The most essential ones concern the expression
employed for the collective diffusion propagator \'(r,r';t). Before we commit our-
selves to any particular approximation for this quantity let us notice that a general
simplification results if we assume that y'(r,r';#) and o(r,r') depend on r and r/
only through the distance [r—r'|. This amounts to ignoring the effects of the field of
the tracer in the calculation of these quantities. This approximation, which we shall
refer to as the “homogeneous fluid approximation™ [33], is involved in the specific
results presented in this paper. Under those circumstances, Eq. (45) can also be
written as

_ kpTn
T 24nx3

Ac(t) f E{(khro(8)? SE)N k1), (18)

where hre(k) is the Fourier transform of [n®4(r)/n — 1], and S(k) = 1 +nhee(k) =
o(k)/n is the static structure factor of the diffusing particles, i.e., o(k) is the Fourier
transform of the isotropic function o(|r—1r'|). Similarly, x'(k,) is the Fourier trans-
form of the collective diffusion propagator.

The next approximation involves the prime on Y'(k,t). We have consistently
denoted properties described from the reference frame of the tracer by a prime. The
exact relationship between the primed quantities and the corresponding (unprimed)
properties described from a fixed reference frame is unknown. Thus, here we also
require approximations. For example, one can compare the definition of y(k,{) and
of X'(k,t), and neglect in this comparison the correlation between the displacement
of the tracer, Ary(t), and the local concentration fluctuations én(r,¢). As a result
one is led [33] to the following approximation

X' (k,t) = Fr(k,t)x(k,t), (49)
where the “tracer-diffusion propagator” Fr(k,t) is defined as
Ip(k,t) = explik - Arp(1)], (50)

i.e., it is the self-diffusion propagator of Eq. (12) in the particular case that the
tracer is identical to the other particles. The expression for AC(t) which results
from employing Eq. (49) into Eq. (48) will be referred to as the mode-mode cou-
pling approximation, in reference to the fact that it was first suggested by Hess
and Klein [9] using mode-mode coupling arguments, for the particular case of
self-diffusion. Clearly, taking Eq. (19) into Ilq. (48), and recalling Eq. (9), we
can see that Eq. (48) reduces to Eq. (25) in that particular case, namely, when
hro(k) = hoc(k) = h(k) = (S(k) — 1)/n. As argued after Eq. (25), we still have
to approximate x(k,?) and Fr(k,t). The pertinent approximations leading to the
MMC1 and MMC2 schemes were defined there, and their quantitative results were
already discussed in connection to Fig. 3.
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Of course, the purpose of the present section is not only to provide a simple
derivation of an otherwise well established result, but to pave the way to extend
the theory of Brownian motion to still more interesting situations. Already Eq. (48)
contains a relevant generalization, to the case when the tracer is not identical to
the other colloidal particles in the suspension. But more important, the extension
to the case in which the suspension contains particles of various species turns out
to be rather straightforward within the approach described here. Such an extension
is employed in section 8 to describe electrolyte friction. First, however, we discuss
the application of these resulls to systems with strong hydrodynamic interactions.

7. Concentrated hard-sphere suspensions

Let us now consider a different kind of suspension than the dilute but electrostati-
cally correlated systems dealt with above. Dispersions of neutral macroparticles in
organic solvents, with adequate refractive-index matching, may be manufactured
[37,38], which behave like model hard-sphere suspensions. In these systems, the
direct interactions are the hard-sphere repulsion determined by the physical di-
ameter of the particles. The typical concentrations in these systems may be quite
high, so that the volume fraction ¢ may be as large as 0.5, above which the direct
interactions drive crystalization or glass formation [37]. At such high volume frac-
tions, however, hydrodynamic interactions become a most important feature of the
dynamical properties of these systems, and in this sense they represent an oposite
extreme case from the electrostatically correlated suspensions considered above.
The fact that hydrodynamic interactions cannot be described by pairwise additive
effective interactions [10,11,39] renders the description of their effects a genuine and
complex many-body problem. Nevertheless, this problem has been approached by
several authors [10,11,39-42], and as a result, a good theoretical understanding has
emerged of the effect of these non-dissipative forces on their short-time self-diffusion
properties [39,40].

On the other hand, dynamic light scattering techniques have been recently
applied [37,38] to the determination of the time-dependence of the mean-squared
displacement of labelled particles in these suspensions. Fig. 6 illustrates the main
features of such measurements. In this figure, ((Ar(t))?) is plotted for different
values of the volume fraction. As a reference, the [ree-diffusion result (¢ = 0) is also
indicated. The first thing we notice, is that each curve seems qualitatively rather
similar to the result in Fig. 4, where there were strong electrostatic direct forces,
but no hydrodynamic interactions. There is, however, a fundamental difference: In
Fig. 6, none of the curves approaches the free-diffusion behaviour at short times,
as the system in Fig. 4 does. As a consequence, if we determine the short-time
self-diffusion coefficient according to its definition in Eq. (13), i.e., from the initial
slope of ((A(r(t))?), we get from Fig. 4 that DS = D°, independently of the direct
interactions, whereas from Fig. 6 we find that DY is a function of volume fraction.
This is the first relevant observation deriving from the experimental data in Fig. 6.
A summary of the corresponding short-time results for different volume fractions
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FIGURE 6. Experimentally measured mean-squared displacement in a suspension of hard-sphere
particles of diameter ¢ at various volume fractions as a function of time. The solid
straight line corresponds to free diffusion. (Reproduced from ref. [37]).
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FIGURE 7. Short-time self-diffusion coefficient D in units of D°, as a function of volume fraction,
for various hard-sphere suspensions differing in their hard-sphere size (various simbols).
The solid line is an empirical fit, and the dashed line is the theoretical result of ref.
[41]. (Reproduced from ref. [37]).

is plotted in Fig. 7, where the ¢-depentence of DY for hard-sphere suspensions is
illustrated. In that figure, the various symbols corresponds to samples [37] which
differ in the size of the colloidal particles. Thus, we learn another important fact:
For hard-sphere suspensions, ¥/ D° does depende only on ¢, and not separately on
n and o, which is a nice scaling property expected in genuine hard-sphere systems.
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As we said before, important advances have been made in the theoretical un-
derstanding of the short-time effects of hydrodynamic interactions, and the result
of the theory of Beenaker and Mazur [39,41] are also plotted in Fig. 7. In a simple
way to understand these effects; one can say that the presence of the Brownian
particles modify the effective viscosity felt by any of the particles, so that the friction
coeflicient describing the short-time diffusion is still given by the Stokes expression,
but with an effective, volume-fraction dependent viscosity [42], which is affected
rather weakly by the direct interactions [31]. In summary, from the results in Fig,
7 we learn that concerning short-time self-diffusion the volume-fraction dependence
of DY in these systems is amenable to experimental determination, and its theoret-
ical understanding may be qualified as acceptable, probably awaiting only further
quantitative refinements.

Understanding the intermediate and long-time behaviour of ((Ar(#))?) observed
in the experimental data in Fig. 6 represents, on the other hand, a still more challeng-
ing theoretical problem than the purely hydrodynamic effects involved in D (¢). Ac-
cording to the conventional approaches employed to describe self-diffusion [5,9,26-
30], except at short-times, the effects of hydrodynamic and direct interactions inter-
mingle in such a complex manner that no simple scheme seems at sight to decouple
them. Thus, any effort made to understand self-diffusion at longer times is particu-
larly valuable at this stage. It is in this sense that the theoretical approach explained
in the previous section constitutes much more than a re-derivation and extension
of otherwise available results for systems without hydrodynamic interactions.

The theory described in section 6 is based, precisely, on the existence of well
separated time-scales, such that at short times a single quantity, namely, (5, is
the relevant parameter. The theory has the limitation of not providing the means
to calculate a priori this parameter. It has the virture, however, that it provides
a precise definition for it, which is just kgT/D3. This property, as we just saw,
happens to be readily measurable experimentally. Furthermore, the very writing of
Eq. (31) involves already a neat decoupling between the short-time hydrodynamic
effects (represented by () and the effects of direct interactions, entering in the last
term of that equation. This decoupling is a fundamental aspect of the generality
of the main results in Eqgs. (37) and (38). This allows us to apply those results to
our presente case in a rather simple manner, i.e., taking (% as an experimentally
determined quantity, given, for example, by the results in Fig. 7, with (¥ = kpT/D?3.

Of course, a similar decoupling should be made in the second equation on which
the theory is based, namely, Eq. (32). In this case, no similarly general and exact
arguments have been given, but a reasonable and consistent approximation [43,44]
can be provided, namely, that also for collective diffusion one should replace D° by
Df when hydrodynamic interactions are considered. This allows us to use particular
approximate schemes, such as the mode-mode coupling approximation explained in
Eq. (48), or more particularly in Eqs. (25-27). From these results we could calculate
A((1), ((Ar(t))?), DE, ete., in terms only of DY and S(k). Such results could then
be compared with experimental measurements like those in Fig. 6.

In Fig. 8 we illustrate one such comparison. The data in this figure are the values
for DL scaled with the free-diffusion coefficient D° as a function of ¢. According
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FIGURE 8. Long-time sel-diffusion coefficient. DF in units of D° for hard-sphere suspensions.
The solid and the dashed lines are the theoretical results obtained from the MMC1
and MMC2 approximate theoretical schemes. The various symbols represent the ex-
perimental results from various samples differing in their hard-sphere diameters. For
comparison, the empirical fit in Fig. 7 for DY /D? is also plotted (dotted line). (Ex-
perimental data taken from rel. [37]).

to its definition, DL should be read from the asymptotic, final slope of ((Ar(t))?)
plotted as a function of time, as in Fig. 6. The theoretical results presented in
Figure 8 were calculated using the MMCI and the MMC2 approximations, with
S(k) calculated from the Perkus-Yevick approximation [14], and with DY taken
from the experimental data in Fig. 7. Clearly, the agreement between theory and
experiment cannot be better, given the fact that absolutely no adjustable parameters
are involved in the theoretical calculation.

Although more extensive comparisons of this sort are clearly desirable, the main
limiting step in this direction is at the moment the production of more abundant and
precise experimental results. Because of its simplicity, the predictions of the theory
in other cases, such as when the tracer is not identical to the other particles, or
when polydisperse suspensions are considered, can be calculated with relatively little
effort. Still, let us emphasize the fact that the theoretical results presented in Fig. 8
stand, at the moment, like the only predictions for long-time self-diffusion properties
at volume fractions far from the linear regime in ¢ [40]. This is already a relevant
step in our way to understand one of the most fundamental problems posed by this
type of complex fluid, in terms of relatively simple and physically intuitive terms.

8. Electrolyte friction

A third example of the application of the general results derived in section 6 is the
description of electrolyte friction. Here we return to suspensions of highly charged

™~
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Ficurg 9. Diffusion coefficient of isolated polystyrene spheres diffusing in an ionic solution of
varying electrolyte concentration, as a function of ka (where a is the radius of the
spheres). The three curves correspond to three different types of added electrolyte.
(Reproduced from ref. [45]).

particles in an aqueous electrolyte solution, but under conditions of extreme dilution
of colloidal particles. In this case, the direct and hydrodynamic interactions between
the suspended macroions are negligible, and thus, DX = DY = kpT/¢5 where
¢% should be identical, if the particles were not charged, to the Stokes friction
coefficient ¢°. Due to the electrostatic interactions between the macroion and its
counterions (and the small ions of the supporting ionic solution), (¥ # ¢°. In Fig. 9
we reproduce the results of measurement of D(= DL = D) for freely diffusing
polystyrene spheres in an ionic solution of varying ionic strength [45]. The first
thing that we notice is that D is not a constant, but it depends on the amount of
electrolyte ions. Second, we notice that there is a well-defined minimum of D at
ka &2 1, where a’is the macroparticle radius and & is the inverse Debye screening
length (k2 = (47me/kpT) Y, niq}, where n; and ¢ are the number concentration
and charge of the small ions of species 7). These results may be understood as the
manifestation of the additional friction, —AC*'V (), besides the pure solvent friction
—(°V(t) (where (° = 67ya), due to the interactions between the macroion and its
own ionic cloud. Thus, the measured self-diffusion coefficient may be written as

kgT

T AT =

where AC® is called the “electrolyte friction”. Electrolyte friction is generally a
much smaller effect than the self-friction induced by polyion-polyion interactions in
less dilute suspensions, like those considered earlier in this paper. Thus, our earlier
assumption in that case, that the short-time self-diffusion coefficient D¥ could be
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approximated by D°, and not by Eq. (51), turned out to be a good approxima-
tion. Fig. 9 shows, however, that electrolyte friction effects can also be observed
experimentally under appropriate conditions.

The theoretical calculation of AC® has a rather long history. Already in 1954,
Booth [46] provided the first description of this effect, by calculating AC®! as the
net electrostatic force on a macroion moving at constant velocity due to its interac-
tions with its distorted ionic atmosphere. This still constitutes the main theoretical
approach to the description of electrolyte friction [47], although its extension to non-
stationary motion of the polyion remains a challenging problem. Furthermore, the
connection between this relaxation effect and the effects of spontaneous fluctuations,
measured in the light-scattering experiments illustrated in Fig. 9, has not been fully
clarified. On the other hand, Schurr [48] provided the first theoretical description of
electrolyte friction effects on the Brownian motion of isolated polyions. Although his
approach made use of rather severe approximations at a very early stage, his final
result for AC yields a remarkably simple analytic expression for A¢® as a function
of ka. Both of the theories just mentioned predict the main feature observed in Fig.
9, namely, a maximum of A(® (and a corresponding minimum of D) at xa ~ 1,

The general results of section 6 may also be extended to describe electrolyte
friction, and this application leads not only to expressions for AC®, but also to
expressions for the dynamical version of this quantity. The main results of section 6
must first be extended to the general case when the tracer diffuses in a suspension
containing more than one species of Brownian particles. This is, however, a rather
straightforward extension. It leads, for example (see Eq. (38)), to

Ac(t) = —%ZZ/dar/dsr'[VUﬂ(r)]-X,'j(r,r';t)[V'njq(r')], (52)

i=1 j=1

when there are s species of colloidal particles, interacting through a central pair
potential up;(r) with the tracer, and whose radial distribution function around the
tracer is g7i(r) = ni'(r)/ni (where n; is the bulk concentration of species i=1,2,...,s).
In Eq. (52), xi;(r,r';t) is the collective-diffusion propagator, i.e., it is defined by
the following equation

(6ni(r,t)énj(r',0)) = Z/dsr”xik(r,r”;.!)crk}(r”,r'), (53)
k=1

and is such that x;;(r,r';t = 0) = §;;6(r—r'). Clearly, ay;(r, ') is just the equal-time
correlation function {&n;(r,0)én(r’,0)) of the fluctuations in the local concentration
of species ¢ and j.

The application of these results to describe electrolyte friction [49-51] is based
on the fact that the small ions, without being large Brownian particles, they do,
anyway, undergo Brownian motion and diffusion. Hence, the result in Eq. (52) also
holds to describe the friction effects produced on the polyion by the counterions
and the various other species of electrolyte ions, with which it interacts through the
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unscreened Coulomb potential

Q?i‘ r>a+a;
uri(r) =< ¢ (54)
00, r<a-+a;

with € being the dielectric constant of the solvent, and where a; is the radius of
the small ions of species i. Of course, a; < a, and the Einstein-Stokes diffusion
coefficients DY of the small ions are much larger than D° = kgT/(°.

The simplest approximate scheme is obtained if we describe the static properties
oij(r,r’) and n{%(r) within the Debye-Hiickel approximation for the (point-like)
electrolyte ions, and the “homogeneous fluid approximation” is adopted (see section
6). If, in addition, Fick’s law is employed to describe the collective diffusion of the
small ions, A((f) may be evaluated explicitly [50]. Its long-time asymptotic result
reads

Q2 e~ 5D5mant
T Gre(D)ME 432

AC(1) (t = c0) (55)

where D?_ ., is the Stokes-Einstein diffusion coefficient of the small ions. The time
integral of A((t) is AC®!, and the approximations just indicated lead to [49,51]

At = QL= (14 2xa)e]
IQCaDEma“fca

(56)

This happens to be the result previously derived by Schurr [48].

Once again, this derivation of a previously-available result illustrates the gen-
erality of the theory presented in section 6, and indicates several ways to extend its
application to electrolyte friction. Thus, a simple expression for the time-dependence
of A((t), which in principle could also be observed experimentally by light scattering
techniques, is the first bonus of this approach. Furthermore, approximations such
as the use of Debye-Hiickel static correlations, the vanishing size of the small ions,
and the homogeneous-fluid approximation, involved in Schurr’s theory for A¢®, may
also be avoided or replaced by less restrictive assumptions [51,52]. Unfortunately,
the improvement of the theoretical results does not change the fact that electrolyte
friction effects are generally small, and rather difficult to measure experimentally
with high accuracy. Nevertheless, the theoretical relevance of this work lies on the
fact that for the first time a single theoretical approach has provided a unifying view
of this phenomenon and that of self-friction, both of which are present whenever we
have charged colloidal particles in suspension.

Let us mention that in reality, it was to electrolyte friction where the method
explained in section 6 was first applied [49] to derive a generalized Langevin equation
of the form of Eq. (37). It was a further development [33] to notice that the same
approach could also be used to describe the interaction of a tracer Brownian particle
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with other diffusing macroparticles. As we saw in the previous sections, this has been
a fruitfull observation, and this is perhaps the main contribution of the pioneering
attempt [47] to introduce the idea of contraction of the description to describe
electrolyte friction.

9. Concluding remarks

As we have seen in this paper, a relatively simple picture is now available to de-
scribe, within the same theoretical scheme, three rather different aspects of the
study of Brownian motion in colloidal suspensions. In the first place, we discussed
the effects of macroparticle-macroparticle interactions, then we incorporated the
effects of hydrodynamic interactions, and finally we applied the same ideas to the
description of electrolyte friction. Traditionally, these three effects have been studied
by rather different, and seemingly unrelated theoretical methods, and by somewhat
disconnected communities. The advantage of having a general approach, besides
its theoretical value, is that it allows the expansion of our understanding, to in-
creasingly more complex systems and processes. For instance, the description of the
static and dynamic properties of polydisperse suspensions (i.e., with more than one
type of colloidal species) is a relevant practical problem, posing a large number of
basic questions. Although the first steps along the lines of the theories described
in section 5 have been taken in this direction [27,53], concerning tracer-diffusion,
still much is to be done to reach the same degree of qualitative and quantitative
accuracy of the results compared and illustrated here for monodisperse suspensions.
Concerning tracer-diffusion, it is likely that the multi-species extension in section 8
of the main results of the theory presented in section 6 will provide an accurate and
convenient approach to the dynamics of polydisperse suspensions. As we saw in the
previous section, such extension found already a neat application in the description
of electrolyte-friction effects.

Another important practical problem is the description of self-diffusion of non
spherical colloidal particles. Although suspensions of approximately spherical par-
ticles are no rare exception, for many systems and conditions the departure from
such limiting case constitutes the main characteristic feature. This is so, for example,
when we deal with biopolymeric materials such as DNA, with concentrated micellar
solutions, or with magnetic colloids. With suspensions of non-spherical particles,
progress has been slower, due to the understandable difficulties associated to the
loss of a simplifying symmetry. We may say that the description of many dynamical
properties of these systems encounter a severe difficulty in the non-availability of
a practical description of the corresponding static quantities. However, this being
a problem already considered in the physics of molecular fluids, one would expect
that some of the advances in that field will be of assistance in the understanding of
colloidal suspensions of non-spherical particles. After all, an analogy between simple
liquids and suspensions of spherical colloidal particles was the basis for the progress
in this field, as we have attempted to describe in this paper. One should also mention
that one of the main features of the dynamics of non-spherical particles is the need
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to describe rotational diffusion. Although in principle the method employed in the
derivation of the main results in section 6 could also be extended to incorporate
these effects, such an extension is not yet available. Let us mention, however, that
the translational Brownian motion of non-spherical tracers in a bath of spherical
macroparticles may be described by, essentially, the same general results of section
6. In fact, the first results of this type have recently been produced [52] in a simple
extension of the results of the previous section for A¢®, to calculate the electrolyte
friction on a charged spheroidal Brownian particle with a rather particular internal
charge distribution. Although this is still a modest step in the understanding of
the dynamics of non-spherical particles, it has provided preliminary indications [52]
that electrolyte friction effects, which are small for spherical particles, may be more
important for long rod-like tracers.

In summary, in this paper we have attempted to illustrate the power of the
concepts and theories of fluctuations and Brownian motion, which originate from
the classical work of Einstein, Langevin, Onsager, and others. This illustration was
based on the description of tracer-diffusion phenomena in colloidal suspensions. As
it happens, colloidal suspensions are a prominent class of complex fluids. Thus, we
hope to have convinced the reader that at least when well-defined theoretical and
experimental model systems are considered, the methods of physical research have
converted a small piece of the land of complex fluids into a hospitable field of modern
physics. Similar fronts in other aspects of the physics of complex fluids are being
pursued, and one would expect that statistical physics will join the experimental
physicist, chemist and materials scientist in the venture to render unjustified the
“complex” portion of the name of these materials.
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Resumen. Este trabajo revisa el estatus actual de la comprensién de
los fenémenos de difusién de un trazador en suspensiones colpidales.
Esta es la observacion mas directa del movimiento que ejecutan
particulas brownianas marcadas que interactnan con el resto de las
particulas coloidales en una suspensién. La descripcién fundamental de
este fendmeno constituye hoy en dia uno de los problemas mas relevantes
en el proceso de comprender las propiedades dindmicas de esta impor-
tante clase de fluidos complejos, desde la perspectiva tedrica y experi-
mental de la investigacion en fisica. Este trabajo describe los desarrollos
recientes en la extension de la teoria clasica del movimiento browniano
y su aplicacién en la descripcién de los efectos de las interacciones di-
rectas e hidrodinamicas entre particulas coloidales. Como resultado se
ha producido un marco coherente en el que el acuerdo entre teoria y
experimento tiene el grado de precision cualitativa y cuantitativa que se
espera de campos de la fisica con mayor madurez. La moraleja es que el
uso de conceptos bien establecidos de la fisica estadistica, asistidos por
técnicas experimentales modernas, esta contribuyendo a transformar a
los fluidos complejos en una clase mas amigable de materiales, desde el
punto de vista del fisico.





