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Abstract. We discuss the problem of fitting an experimental data
set into a linear curve when experimental uncertainties can not be
overlooked. Difficulties with the standard least-squares method are
pointed out. An alternative weighted least-squared method, depending
on knowledge about the uncertainties for four different cases-is pre-
sented, and we use it to analyze the data from a particular experiment.
From this application it is shown that we get better results using the
proper case.

PACS: 02.50.+s; 02.90.4p

1. Introduction

We want to point out a widespread error in the use of linear regression analysis when,
in experimental situations, the experimentalist wants to determine the functional
relationship between the experimental data.

The broad use of pocket programmable calculators and statistical software for
microcomputers makes easier the heavy work necessary to obtain such relationship
between the experimental data. Unfortunately, the most common analysis technique
available in the least square fitting of a line is not always the most proper.

Experiments in physics made to determine parameters through the functional
relationship between values of z and y involve a series of experimental measurements
of z and the corresponding y. In several cases there are not only measurement errors
in y;, but also there are measurement errors in r;. Many experimentalists apply the
standard least-squares method, which implicitly assumes errors neither in z; nor in
yi. Accordingly, this procedure affects the unknown parameters to be obtained from
the functional relationship, and it gives estimates of errors that are smaller than
the true errors.

This paper presents a review of standard least-squares method as applied to
a straight line, and the weighted least-squares method, where the weighting factor
is related to the experimental data precision. This gives place to four different
experimental cases; each one of these cases are applied to the same experimental
data set and the results of this weighted least-square fitting method of a straight
line are discussed as well.
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2. Review of the standard least-squares method

Suppose that in an experimental set of data points (z;,y;), where 7 =1,2,. ., n, it
1s assumed that there are not experimental uncertainties.

The standard least square method [1-4] requires that we minimize the quadratic
sum, @, of the ordinate differences between the experimental points, y, and the
required line Y(z;)

Q=) [w-Y(x) (1)

Here Y~ denotes the sum from i =1 to n.
For a linear fit, Y (z;) = mz + b,

Q=) [yi — mxi - b (2)

must be a minimum. Using the standard differential calculus technique to find the
minimum of @,
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0, So=0, (3)

we obtain a system of two equations in the two unknowns m and b. In order to find
m and b we write the resulting equations in matrix form;

A:(b)=C"§, (4)
m \

where, € is a 2 x 2 matrix whose elements Cj are
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—

er*'k-z, where j,k=1,2,...,n (&

and §is a 2 x 1 column vector whose elements Sy, are

Yz (6)

The fitted values of m and b are just the elements of the 2 x | column vector A,
that is,
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3. The weighted least square method

In actual experimental cases there are not only uncertainties, Sy;, for each y;, but
also uncertainties, Sx;, for each x, and these uncertainties do not have the same val-
ues. Many experimentalists merely apply the standard least-squares method which
implicitly assumes that all the Sz;’s and the Sy;’s are zero. Such a procedure loses
accuracy in the determination of the unknown parameters m and b and gives esti-
mates of errors that are smaller than the true errors; this has been previously noted
in the literature [5-7].

Now we are going to discuss a more general procedure [8,9], the well-known
weighted least squares method which requires the minimization of

Q=) wi(yi —ma; — b). (9)

Here w; are the weights which are related to the experimental uncertainties.
Using the same procedure as in Section 2, one now finds that

m = 2 X wirigi— 3 wisy J iy (10)
Ywi Y wiz? - (3 wiz)?

b= Yowird Yo wiyi — 3wz Y wiziyi
Yowp Y wiz? — (3 10,‘1,‘)2

Here the w; values represent the square-inverse values of the experimental uncer-
tainty, i.e. the variance S, and we can distinguish four cases, when
1) =1,
ii) w; = 1/Sy;,
i) w; =1/(Sz; + Sy;),
w) =z = 1/(Sy; + m?Sz;).
Here Sz, and Sy; are the x; and y; experimental data variances.

The first case gives the standard method, and it is, implicitly, assumed that
there is not errors on the experimental data, (z;,y;); while the second case must be
applied when Sy; 3 Sz; [10,11], and the Sz; values can be overlooked even if the
uncertainties Sy; are not the same for all.

The third case must be applied if, in your experimental data, you have significant
uncertainties for both z, and y; [7,10,11], and it is casy and simple to apply. Finally,
the last case is the acquainted ¢ffective variance method [7,10,11) This method must
be used when you have the same uncertainty conditions as in the third case, but
you want to obtain an improved linear model adjustment.

(11)

Here, in order to determine the unknowns m and b it is necessary to know m;
to know this, you can use an iterative procedure where the first m value can be
obtained using the standard least-squares method.

Comparing the third and fourth cases you find that the third case is easier to
apply, while the fourth requires an iterative procedure.
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It is quite common that in addition to the m and b values, you need to calculate
some secondary parameters, for example in order to use the error propagation ex-
pression [12], it is necessary to know the m and b variances. These latter variances
for the weighted least squares method [13] are

_(om\'e _ ¥ wi P wilyi — V)P
A (8y) i (n—2) (EWizlvif?—(Ewiz‘)2)1 -

/ab 2 - Yo wizi Y wiy — Y)?
#=(8) ¥ e et -]

Presenting this variances in matrix form, the variances in the elements of A are
the corresponding elements of the inverse correlation matrix €™

sA,; =[] s, (14)

where Sy is defined by

4. The experiment

We have used the previous four cases to analyze the data set from an experiment,
made to propose a new method, in order to determine the dead time, 7, for a Geiger-
Miiller nuclear measurement system [14], where, by virtue of the linear adjustment
of the counting rate by radioactive sample unit mass and the couting rate, we can
obtain the dead time by dividing the slope and the intercept. In Table I it is shown
the experimental data set of the mean counting rate and the mean counting rate by
sample mass unit.

We found the linear regression for the experimental data using the four weighted
least square cases discussed in Section 3; where in case i it was assumed that there
is not error in the experimental data sct; in case it was only considered error in the
yi experimental data; for the cases i1t and v it was assumed that the errors in the
z; and y; experimental data can be not overlooked. The results are shown in the
Table 11, where besides values for m, b, and 7 the Q value is shown. The smallest
value was obtained using the fourth case, where it was necessary to have an initial
m value which was selected from case . We repeated the fourth case once again but
the @) value was the same and this is not shown in the table,
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Mean counting rate Mean counting rate by mass unit
(zi) (%)
14598. + 123. 27912. + 240.
13695. + 102. 28006. + 215.
13394. + 226. 28020. + 475.
11313. £+ 71. 28211. + 187.
8910. + 47. 28375. + 238.
5952. + 51. 28615. + 207.

TaBLE 1. Experimental data for the method used to get the Geiger-Miieller dead time.

Case m b Q T [usec]
1) —0.0801 29096.2422 817.1462 165.1760

1) —0.0795 29093.1576 0.0189 163.9561
i11) —0.0974 29090.8176 0.0161 163.7630
) —0.0795 29091.3079 0.0145 163.9665

TaBLE II. Results for the linear regression of the experimental data set from Table I, using all
the weighted least squares methods.

5. Discussion and conclusions

If your objective is to determine exact values of some physical data, by means of the
linear adjustment of your experimental data set, the standard least squares method
is not always the most proper one.

As it was shown in the sample, you will have better data if you use the most
proper case, which will be the one who fits better to the experimental data, take
into account the experimental uncertainties and gives you the smallest value for Q.
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Resumen. Se discute el problema de ajustar un conjunto de datos
experimentales a una linea recta, cuando las incertidumbres experi-
mentales no pueden ser despreciadas. Se sefialan las dificultades que
se tienen al usar el método estdndar de la regresién lineal mediante
los minimos-cuadrados. Un procedimiento alternativo basado en los
minimos cuadrados ponderados, donde el factor de ponderacién depende
de las incertidumbres experimentales, es presentado para cuatro casos
diferentes; estos casos son utilizados para analizar los datos de un exper-
imento en particular. En esta aplicacién se demuestra cémo se obtienen
mejores resulados al utilizar el caso adecuado.





