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Abstract. It is shown that a Chandrasekhar chain has associated a
Wiener measure with a particular coupling between extensibility and
curvature. Furthermore, a model with a general coupling parameter is
discussed and it is shown that any other coupling different from that
of Chandrasekhar chain, under the condition of average inextensibility,
cannot either have a Kratky-Porod end to end distance nor the correct
flexible limit

PACS: 02.50.+s; 36.20.Ey; 05.40.+j

1. Introduction

There are some problems in polymer physics where the stiffness of a chain plays an
important role. For instance, in the statistics of entangled polymer, the curvature of
the chain represents an upper bound to the “degree of entanglement”, and therefore
would be highly desirable to included stiffness in some theories which only charac-
terize entanglements by lower bounds [1]. There has been a vast literature related
to the statistics of stiff chains after the classical papers of Kratky and Porod [2],
Hermans and Ullman and Daniels [4], most of it concentrated in the introduction of
new mathematical techniques to solve the same problem or study specific asymptotic
limits such as the rod limit. Whitin these techniques, functional integration has a
special place since it provides a method for posing polymer problems with local or
global constraints, such as stiffness or knots respectively.

Saito Takahashi and Yunoki [5] were the first to introduce functional integrals
in the discussion of the statistics of stiff chains. They discussed models of stiff chains
with constant or variable length, and gave a expression for their distribution function
in terms of an infinite series of spherical harmonics and Hermite polynomials; they
also calculated the first moments for such models and proposed a general method
to calculate any moment (away from the rod limit) by expanding the characteristic
function of the problem in terms of powers of k (k is the difference between in and out
coming wave vectors). The latter method was developed explicitly by Yamakawa,
obtaining expressions for the distributions and moments of a stiff inextensible chain
away from the rod limit. Furthermore, Yamakawa and Fuji [7] obtained, within the
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WKB approximation, the distribution function and moments of a stiff inextensible
chain near the rod limit. Although the work of all these authors is fairly comprehen-
sive as far as statistics of stiff chains is concerned, their mathematical complexity
inhibits their use in problems which are quite complex by themselves, such as topo-
logical constraints. The complexity of these theories arises from the introduction of
the inextensibility condition which makes the choice of spherical polar coordinates
unavoidable. There are other theories in which this conditions has been relaxed and
imposed only in an average sense. In this category we find the work by Freed [8] and
Tagami [9]. Freed (8] has discussed simple Wiener integrals for stiff chains which
are exactly soluble in a closed form. However, as we shall see, this model does not
have proper asymptotic limits, and furthermore we find some inconsistencies in the
work by Freed. Tagami [9], on the other hand, proposed a model of a stiff chain
which corresponded to an Ornstein Uhlenbeck process in the theory of Markoffian
process, which we shall call from here on a “Chandrasekhar chain”. This model
has an exact Kratky-Porod end-to-end distance, proper asymptotic limits in all
higher moments and mathematically speaking is very simple. Therefore, we found
interestin'g to discuss Tagami’s model in the light of functional integration.

In this paper we shall give a path integral representation for a “Chandrasekhar
chain”, and show that this model implies a particular coupling between extensibility
and curvature of the chain. Furthermore, we generalize this model to other coupling
constant.

2. The Wiener measure for a Chandrasekhar chain

A Chandrasekhar chain will be one whose distribution function satisfies the following
differential equation

G a 1
3 T VR (UG) - E-U - VuG — mvf',G =8(L)§(R)S(U — U"), (1)
together with the conditions
(U) =1 (average inextensibility) (2)

and

PU") = ﬁ&w’z -1, (3)
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(first link random orientation and inextensibility) where

U=u(l)= d;(:) .
) dr(s) .

W=
R =r(L) — r(0), (5)

and r(s) is the radius vector of monomer s being s the arch length along the chain
as shown in Iig. 1.

In order to construct the Wiener measure associated to Eq. (1), we shall fol-
low the method of convolution of “short length propagators” used by one of us
(RAK) [10] some years ago. The method consists of constructing “short length
Green’s functions” from Eq. (1), and then, convolute them to obtain the full Green’s
function of Eq (1) in the form of a functional integral. The short length propagator
of Eq. (1) for interval of length A;S, where 2 <7 < M, is

G(A,r,Aju,Ajs) = k6 (Eszifﬁa,-s ~ Ajr)

. . . 2
o -2 0.
:

where
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Ajr =r(s;) — r(sj-2), (9)
Ajs = 85 — 553, (10)

and k is a function of Ajs only.

Convoluting, these short length propagators leaving fixed r(sp) = 0,r(sy ) = R,
u(sg) = U and u(sy) = U, and taking the limit M — oo (keeping the total length
equal to L) we get the full Green’s function of the Fokker-Planck equation

M M
G(R,UU', L) = lim N/-v-/Hdr(Sj)Hdu(Sj)
1=0

M—oo
M

Ej:laf’zl’

x 8(r(s0))8(u(se) — U")o(r(sp) — R)6(u(spy) — U)

7=0

Mo (11)
x H H-—1=8:8 —Ajr)
=2
M 2
2 Aju  au; +ujg ;
X exp [—f ;[E-l-ﬂ—_? J Ajs| g,
where 89 = 0, sy = L and A is a function of Ajs s only.
In Gelfand’s [11] notation of conditional Wiener integrals
R (U
G(R,U, U, L) = ,‘\f/ f 8[r(s)]8[u(s)] Hﬁ(u{s)ds — dr(s))
o Ju -
5 (12)
]
X exp {—/ [ﬁd—u + au] (ls} ,
o | ds
or, alternatively, as
U L
GR,U,U, L) =N Slu(s))d (R - / u(s)ds)
u 0
(13)

I 92
xcxp{~'[ [au+;}@} ds}
0 dS

This means that a Chandrasekhar chain implies a particular coupling between length
and curvature, that is 2af8u - (du/ds).

The distribution function of the chain associated to this coupling, together with
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conditions (2) and (3), has been discussed thoroughly in Tagami’s [9] paper. How-
ever, it is interesting to summarize the properties of this model. First, the relation
imposed by conditions (2) and (3), between a and £, is independent of L, that is

aff = -, (14)

Secondly, the persistence length for this model is

R-U B Y
={——)==(1—¢"F
& < i > = (1-e78). (15)
Yet by definition

t=a(1-eth), (16)

Therefore the persistence lenght parameter a is identical to

_B
Thirdly,
3 3L 3B -§L
(B) = 50 ~ 303 [1-e#]. (18)

which together with equations (14) and (17) can be written ezactly as a Kratkly-
Porod [2] end-to-end distance -

(R?) = 2aL — 2a° (1 - e-”“) . (19)

And last but not least, all higher moments have proper asymptotic behaviour in the
flexible as much as in the rod limit.

One now wonders if we could improve the performance of this model by changing
the coupling constant. This we shall discuss in the next section.

3. A generalized model for a stiff chain

Let us now propose a model whose distributions function is generated by the Wiener

mesure
L 2
exp —] (a®u? 4+ 2 an + 27d—u cu)ds (20)
0 ds ds
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where 7 is now a general coupling parameter. At the same time we shall demand
that the chain is on the average inextensible, that is,

(U =1. (21)

The distribution function will be given, for this model, by the following path
integral

U L
GR,U, U, L) =N /U élu(s)e (R— /0 u(s)ds)

L 2
du du
. 2.2 202" e
xexp{ /0 (af u®+ g (d.s) +2’rds u)ds},

where the notation implies that u(0) = U’ and u(L) = U and N is a normalizing
constant whose value depends on whether G is a joint or a conditional probability
function. When v = af3, G can only be a conditional probability function since if
we integrate with respect to R and U we will get a constant independent of U’
and: therefore, we must multiply by a probability function of I/ in order to obtain
a joint probability function. That is not the case when v # af which has brought
some confusion in the literature [8].

(22)

In order to give an explicit expression for G(R, U, U’, L) we can proceed to find
the corresponding differential equation and solve it, or else, to integrate directly
the functional integral. We shall follow the latter procedure, since in the case of
Gaussian functionals the problem can be solved exactly [12].

First of all, let us write G in the following way

N | —ik-R t oy .
G(R,U,U,L) = TE /e Ik, U, U, L)dk, (23)
where
U
106U, U L) = N [ 8fu(s)
Ul
L 2
g () 4o
xexp{ ]@ (af u“+ g (ds) —E—2'7d3 u—tk u)ds}.
(21)
The solution of (5) is given by [12]
I{k, U, U", L) = F(L)e Sana(UU"LF), (25)

where F(L) is an arbitrary function of L, which is fixed by normalization, S, is
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the first Hamilton integral calculated at the “classical path”, that is,

L 2
du du
= 2. 2 2r== L R |
Sk,/g (au +7 (ds) +2’Yds u —tk u) ds, (26)

and the classical path is the one for which

65 =0. (27)
Calculating S, we find
I of a 12 2 / 2 2
Sclas(UU,L,k)z—a——[cosh—L(U +U)—2U-UJ+7(U -U%)
senh FL B
) B(1—cosh§L)
(U
+ik (a senh %L (U +U) (28)
ﬁg(l—cosh%L) k_ZL
202« senh FL 42

Substituting (28) and (25) into (23) we get, after arranging terms conveniently,

2
1
G(R,U,U‘jL) = Nexp {—m (U — T‘—(THU’ — BR))
I3

%ty &)\ _ e*f -+ <
— (R+ A (1 % 5—1) U’) = Seg U”} )
where
A:§+A', §1=7+a,8coth%L,
m =& + BA, &2 =afcsch 2L, (30)
n2 =& — BA, ’
B:%, A‘=ﬁ§tanh-2%f4
and

20242 _ 2\\ 32
N=(%”’—’) . V1#ap. (31)
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With the condition that

/d"’RdSUd"U’G(R,U.U’. L)=1. (32)

If we now calculate (R?) we get

2y _ dmA 347 ) =
(R} = a’f, " 26 K+ ahft ~ v

(33)
Notice that when af = v, (R?*) — oo. The reason for this is that when af = 7,
we cannot normalize G as (32), since once we have integrated U and R, there is
nothing left to be integrated. This means that in the case a8 = v, G can only be
normalized with respect to all the paths in phase space starting at (/' and going
elsewhere, which implies that &, in this case, is a conditional probability distribution
instead of a joint probability distribution as (29) together with (31). In order to have
the case ¥ = aff as a particular case of our model, we must construct a conditional
probability distribution for this model. We will look into that after we have discussed
the present case.
If we now demand an average inextensibility, it must be satisfied that

3 3
(b-):im%?=1 (34)
and
r2 3 E")z 72
VY = i SR {1, 3
(V%) = 5+ (0™ (%)

However (34) and (35) imply respectively that

2 y .
&= i(ﬂzﬂz -7 (34.a)
and
2. o By
& = §(0 B — 7)) + 2. (35.a)

~ must be equal to 0 in order for these to he compatible. Hence the only case
consistent with average inextensibility is ¥ = 0. This was precisely the case discussed
by Freed [8], and Harris and Hearst [13],

Yet if 4 = 0, (/t?) will have the simple structure

(R%) = f—L (36)
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where @ must be written in terms of the persistence length. If we do not impose
the average inextensibility condition we would be left free to choose the value of a.
Freed [8] chooses it to be equal to

02

3
where € is the monomer length. Therefore he obtains that (R?) = Lf, which is the
result for a flexible chain. From there he concluded that the average process used
was not the correct one. He then proceeds to propose a new averaging procedure
were G(R,U,U', L) is treated as a conditional probability function; this is math-
ematically wrong, since it is a joint probability function. His mistake was to prefix
the value of a as we will show.

On the other hand, Harris and Hearst [13] fixed the value of o as

3

a = E, (38)
were the effective monomer length is chosed to be
2(12 —L/a
fef:Za——E—(l—e ) (39)

In that way they get the Kratky-Porod result. Yet this choice is inconsistent with the
definition of persistence length together with an average inextensibility condition
as we shall see.

The persistence length for our model, when v = 0 will have the following form

R-U\ 4 @ g

In the case v = 0 average inextensibility condition establishes the following relation
between a and /3

aﬁ=gcmh%L (41)
o
aQ:g%cmh%L, (41.a)

and (|U'|) will take the following value

HUD=(%)W (42)
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Therefore

g\ 3 i
e,,:(g—w) 5?:a(l—e ) (43)

Hence
e 12
(RY) = ({) La (1 — ety (44)

which is a different result from that of Freed and Harris and Hearst, yet this re-
sult is fully consistent with the definition of persistence length and the average
inextensibility condition. We see then that this model cannot give a Kratky-Porod
end-to-end distance (if we define consistently the persistence length), and neither
has proper asymptotic limits.

We shall now discuss a model for which the probability distribution of the
direction of the first link is given by (3). For that, let us construct the conditional
probability G(R, U | U’, L) that the end of the chain is at position R and with direc-
tion U when the initial link, is at the origin with a direction U’'-G(R, U | U’, L) will
differ from G(R, U, U’, L) by its normalization, that is, we will have the following
normalizing condition

/d3Rd3UG(R,U|U’;L) =1 (45)

instead of (32).

Hence

GR.U|U, L) = (£ " LU’ ’
. b = expq—m (U— -n—l(ngU — BR)

2Arx?
_ad (R+A’ (1 + '5—2) U’)2 :
24m &

This conditional distribution function reduces to that of “Chandrasekhar Chain”
for v+ = af3, and therefore has the properties mentioned before once we have used
(2) and (3). For a different value of 4 we have

b= <R|T,I|y> =-A (1 + g—f) {(1U")). (47)

(46)
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But, as P(U") = L8(U" - 1), {|U|) =1, we have

4 =—a' (1 + ?) =a(1-etlo) (48)

and

2 3711/‘1 12 €2
F =t A( fl) =

The persistence length parameter a, and the parameters of the model, are related
through Eq. (48). However if we now impose the average inextensibility condition

&
Ul = —+2% =1, 50
(Us) = 261 £ (50)
we will get
2 292
q-—a'f
e (51)
2y — %
or
= (§ — affcoth iy + \/a2ﬁ° csch? £ L+ (52)
T=\4 A B 6'
Substituting (52) into (48) we hdve
.U aficsch L
EP=<%>:Et 2 +1]. (39)

3+,,/ ,BzcschB-L %

As one sees, the relation between a, o and 8, is fairly complex and only in few cases
this expression reduces considerably.
On the other hand,

2 3L 2,@ a 3
po nh — e 4
(R)_22 tanh2 L 2 £ ) (54)

where £, is given by (53).

In the case where v = off = 3/4, (R?) takes the Kratky-Porod form and a = 8/«
as pointed out in section 2.

We now wonder if there is another value of & and 3 for which one could reduce
(R?) to its Kratky-Porod form. Yet if (R?) is of the Kratky-Porod form, then this
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would imply another relation between a, o and f3; that is

3L 3
- + 24’ (-24&3 - EP) = 2a(L - &), (55)

and therefore

a= . (56)

If we substitute this value of a into a(1 — e~%/%), we do not recover the expression
for £, given by (53), and consequently, (56) is not compatible with (53). Hence we
conclude that ¥ = aff = 3/4 is the only value that gives the exact end to end
distance consistently with the definition of the persistence length parameter and
the average inextensibility condition.

Let us now study the asymptotic behaviour of this model. When # — oo with
L finite (rod limit) £, and R? behave respectively as

ﬁlin;o b=1L, (57)
Jim (%) = 17, (58)

which imply that this model has the correct rod limit. In the flexible chain limit
(L — oo with a/f finite) we have the following behaviour

; B
by = —i= :
BT a=e B
. 2 3L
Elgll(ﬂ Yi= 552" (60)

In order for (R?) to take the correct flexible limit, 3/2a% must converge, in this
limit, to 2a, which implies that

LIE];: af = g (61)

This means that in order to obtain the correct flexible chain limit we must impose
the condition that, in this limit, the relation between the parameters of the model
should converge to the relation between them in a “Chandrasekhar chain”. If we
substitute (61) into (52) we get for v that

Ll:_l.lgo*y = (62)
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In the case v = 0 we will get for this model that

3
b= 302 (63)
and that
(R?) = Lt, = La (1 —e~Ha). (64)

We see, from the previous discussion, that this model would only have the correct
rod limit since 7 has been prefixed at a different value than 3/4. It is interesting
to point out also that, even within this model the choice of a by Harris and Hearst
and Ireed is not the correct one.

We observe that the rod limit basically depends on the probability distribution
of the direction of the first link. If we choose (3) we get the correct asymptotic
behaviour in all its moments. However if we are only interested in a second moment,
then we could use a probability distribution which only have (U'?) and (IU']) equal
to one, regardless of higher moments.

4. Conclusions

From the previous sections, we see that a different coupling between extensibility
and curvature from that of a Chandrasckhar chain leads to complicated relations
between its parameters without offering advantages. Even the uncoupled case vy = 0
has a more complicated relation between the parameters of the model, and does
not have adequate asymptotic limits. Therefore, we would conclude that a Chan-
drasckhar chain is the simplest model which has the exact second moment and the
correct asymptotic behaviour. Any other coupling will neither have a Kratky-Porod
end-to-end distance nor the correct flexible limit unless we impose the condition
that, in this limit, the parameters of the model are related as in a Chandrasekhar
chain.
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Resumen. Se muestra que una cadena de Chandrasekhar tiene aso-
ciada una medida de Wiener con un acoplamiento particular entre la
extensibilidad y la curvatura. Ademds, se discute un modelo con un
parametro de acoplamiento general, y se muestra que cualquier otro
acoplamiento diferente del de la cadena de Chandrasekhar, vajo la
condicién de inextensibilidad promedio, no puede tener una distancia
extremo-extremo de Kratky-Porod, ni tiene el limite flexible correcto.





