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Abstract. Jt is showll that a Chandrasekhar ehain has associated a
Wicner ITIeasurc with a particular coupling hctwcen cxtensibility and
curvature. Furthermore, a model with a general coupling parameter is
discussed and it is shown that any other coupling different from that
of Chandrasekhar ehain, under the condition of average inextensibility,
cannot either have a Kratky.Porod eud to enc! distanc(' nor the correct
flexible limit

PACS: 02.50.+5: 36.20.Ey: 05.40.+j

1. Introduction

There are sorne problcrns in polyrner physics where the stiffness of a chaio plays ao
irnportant role. For instance, in the statistics of entangled polymer, the ct1fvature of
the chaio represents an upper bonnd to the "degrec of elltangl~'lllent", and thercfore
\vould be highly desirable to inc1uded stiffness in sorne theories which only charac.
terize entanglcments by lower bounus [Ij. Tbere has been a \"ast litcraturc rclated
to the statistics of stilf chains after the c1assica.1papers of Kratky and Porod [2]'
Hermans and Ullman and Daniels [4], most of it concentl'ated in tlle introduction of
new mathcmatical techniques to solvc the same problem or study specific asymptotic
limits such as the rod limiL \VhiLin thcsc lechniques, functionai integration has a
spccial place sincc it providcs a mct.hod for posing polYlIlcr problellls with local ol'
global constraints, such as stiffness or knots respcdivciy.

Sait.o Takahashi and Yunoki [5] wcre the firsl lo introduce funct.ional inlcgrals
in tIte discussion of tlle statistics of stilf chains. They discllssed models of stiff chains
with constant or variable length, ano gave a exprcss ion ror tlldr distribution function
in tcrms of an infinitc series of spherical harmonics and I1crmite polynomials; they
also ealculated the first rnolIlcnls for such models ami proposed a general method
Loealculate an)' moment. (away from the rod Jimil) by expanding lhe eharaetcristic
f\lndion of lhe problem in terms of powers of J.. (k is the difTercncc between in and out
coming wavc vceLors). Tbc lat.tcr mdhod was d(~wloped explicitly by Yamaka\"ra,
obtaining ('xpressions fm the distl'ibutiolls and momcnts of a stiff inextensible chain
away from the rod limiL Furt!J('nnorc, )'amakawa ami Fuji [7] obtaincd, within tite
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WKB approximation, the distribution function and moments of a stiff inextensible
chaio oear the rod limito Although the work of all these authors is fairly comprehen-
sive as far as statistics of stiff chaios is concernro, their maUiematical complexity
inhibits their use in problems which are quite complex by themselvcs, such as topo-
logical constraints. The complexity of these thcories arises from the introduction of
the inextensihility condition which makes the choice of spherical polar coordinates
unavoidable. There are other throries in which this conditions has bccn rclaxed and
imposed only in ao average sense. In this categor)' we find the work by F'rccd (8) and
Tagami [9J. Frecd [81 has discussed simple \Viener integrals for stilT chains which
are exactly soluble in a closcd formo lIowever, as wc shall scc, tltis model does not
have proper asymptotic !imits, and furthcrmore we find sorne inconsistcncies in the
work by F'reed. Tagami (9], OH the other hand, proposed a mode! of a stíff chain
which corresponded to an Ornstcin Uhlenbeck process in the thcory of Markoffian
proccss, whieh we shall caH from here on a "'Chandrasekhar ehain". This model
has an exact Kratky-Porod end-to-cnd distance, proper asyrnptotie limíts in all
higher moments and mathematieally speaking is very simple. Thercforc, wc found
interestiug. to diseuss Tagami's model in the light of functional integration.

In this paper we shall give a path integral represcntation for a "Chandrasekhar
ehain", and show that this rnodel irnplics a particular coupling hetw('en cxtellsibility
and curvature of the chain. Furthermore, we gencralize this modcl to other coupling
constant.

2. Th~ Wi~ner measure for a Chandrasekhar chain

A Chandrasekhar chain will be one whose distrihution fundion satisfies the following
differential cquation

ac o 1
aL + 'lR. (VC) - (j.U. 'luC - 4f3' 'l~C = 6(L)6(R)6(U - U'), (1)

together with the conditions

(U') = 1 (average inextensibilily)

and

P(U') = 41~6(U" - 1),

(2)

(3)
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FIGUI

(first link random orientation and incxtensibility) where

v = u(!') = dr(s) I
ds .!=L

V' = u{O) = dr(s) I
d", ,,:0

R = r(!,) - r(O), (5 )

and r(s) is the radius vector oC monomer '" being s tlle areh Icngth along the ehain
as showll in Fig. l.

In order to construct thc \Viencr measure associated to Eq. (1)1 we shall fo1-
10\\1 lhe mcthod oC convolution of "short length propagat.ors1' used by one of liS

(RAK) [10] sorne years ago. The mcthod consists of constructing "shorl length
Green's functions" from Er¡. (l), and thf'n, convolute them to obtain the full Green's
fundion of Eq (1) in tlle form of a functional integral. TIlf' shorl Icngth propagator
of E'I. (1) for inlefval of length 6.jS, whefe 2 ~ j ~M, is

(61

wherc

(7)

(8)
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(9)

(10)

and k is a function of 11j!' only.
Convoluting, thcse short length propagators lcaving fixcd r(.<;o) = O, r(s.\f) = R,

u(so) = U' alld u(SAI) = U, aDlI taking the limit M ---> 00 (keeping the totallength
equal to L) wc get the fuU Grecn's fllnction of thc Fokkr-r-Planck cquation

J J
M Al

G(R, UU', L) =,E~:loo N ... 11 drh) 11 du(.5))
'\"'M j=O }=oLJi=! ~i,=I,

x 8(r("o))8(u(.,0) - U')8(r(sAI) - R)8(u(5.\1) - U)

(11)

[
If " ]}. -/3'''',' [L»,U "lI) +")-']" A ,

X cxp L- + ¡ L1 }~~ ,L»S i 2
J=2

whcre So = O, ~~M= L and "V is a fllnctioll of I1js' s only.
In Gelfand's (11] notation oC conditional \Vicncr integrals

R1U

G(R,U,U',L)=N ( 8[r(s)J8[u(.<)J118(u(.5)<I.,-dr(5))Jo V' .•
( 12)

or, alternativcly, as

G(R, U, U', L) = N fu~ 8[,,{-,))8( R - [' U(')dS)

x ex!, { - t [ou +<;~]2 dS}
(11)

This rncans that a Chandrasckhar chain illlplics a particular ('oupling hct.wccll length
and curvaturc, t1lat is 2af3u. (du/ds).

Thc distribution function of the chain associatcd to this cOllpling, togetlH'f with
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condilions (2) and (3), has heen discussed lhoroughly in Tagami's [9J papero How-
ever, it is interesting to sumrnarizc the propcrtics of this model. First, the relation
irnposed by condilions (2) and (3), belween o and /3, is independenl of L, lhal is

3
0/3 = 4'

Secondly, the persistence length for this rnodel is

¡R.U') /3( -AL)
fp = \ lU'I =;; 1 - e ~ .

Yet by definition

Thercforc the persistcncc lenght pararncter a is identical to

Thirdly,

which together with cquations (14) and (17) can be written
Porad [2] end-to-end distance

{R'} = 2aL - 2a' (1 _ e-L/a).

(14 )

(15)

(16)

(17)

(18)

exacUy as a Kralkly-

(19)

And last but not least, aH higher moments have proper asymptotic behaviour in the
flexible as much as in the rod limit.

Qne now wonders if we could improve the performance of this model by changing
thc coupling constant. This we shall disclIss in the next section.

3. A generalized rnodel for a stiff chain

Let liS now propose a model whose distribulions function is generated by the \Viener
meSHre

{ r L , ? (dU)' du }exp - Jo (o'u + /3- d" + 2, ds . u)ds , (20)
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where i is now a general coupling para meter. At the same time •.••.c shall dernand
that the chain is on the avemge inextensible, that is,

(U') = 1. (21 )

The distribution fundion wiIl be given, for this rnodc1, by the following path
integral

G(R, U, U', L) = N fu~8[u(s)]8 (R - f U(S)dS)

x cxp { - f (o',,' + p' (~:)' + 2,~~.U) dS} ,
(22)

where the notation implies that u(O) ;;::VI and u(L) ;;::U and Ar is a normalizing
constant whose value depends on \\'hether G is a joint or a conditional probability
fundion. \Vhen i ;;::013, G can OTlly be a conditional prohahility function since if
we integrate \\-'ith respect to R and U we will get a constant independent of Ul

and\ therefore, we rnust multirly by a probability fundioo of V' in order to obtain
a joint probability fundion. That is not the case when J f nj3 whieh has brought
sorne confusion in the literature [8].

In order to give an explicit cxprcss ion for'G(R, U, VI, L) we can proceed to find
the eorrcsponding differential equation and solve it, or e!se, to integrate direetly
the functional integral. \Vc shall follow the lalter proce<1l1fc, since in the case of
Gaussian functionals thc prohlern can be solved cxactly [12].

First of all, Ict liS write G in the following way

whcrc

G(R, U, U', L) = (2~)3 J e-ikR l(k, U, U', L)d'k, (23)

u
l(k,U,U',L) =N r 8[,,(s)]

lu'

x cxp { - f (o'u' + p' (~~)' + 2, ~~ . u - ik. U) dS} .
(24)

The solution of (5) is givcn by [12]

l(k, U, U', L) = F(l,)e-ScI,,(UU',L,k), (25)

where F( L) is an arhitrary fundion of '''' which is fixcd by norrnalization, Sdas is
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the first Hamilton integral ealculated at the "c1assieal path", that is,

rL ( " , (dU)' du . )5 = Jo Q U + (3 ds + 2'"( ds . u - ,k . uds,

and the classical path is the one for which

85 = o.

Calculating Scla.s we find

5ch,s(U'U, L, k) = sentF [COSh~L(U" + U') - 2U. U'] + '"((U' _ U")

. ((3(I-COSh~L), )+ ,k . h o l (U + U)
o sen 71"

k' {3(1 - cosh F) k'+ -,------ + -L.
20'2 O' senh ~L 40'2

(26)

(27)

(28)

Suhstituting (28) and (25) into (23) we get, arter arranging terms conveniently,

G(R, U, U', L) = N exp {-~l(U _ ,;. (~,U' _ BR))'

_ Q'~l (R+A' (1+ 6) U')' _Q'{3'-'"('u"}'
~lA ~l ~l

where

(29)

and

L ,
A=2+A,

~1=6+BA',

~,=6-BA',

Q
6 = '"(+ Q{3coth lJL,

Q

6 = Q{3csch lJ L,

, {3 h QA = --tan -L
Q 2{3

(30)

(31)
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\Vith thc conditiotl that

J ,¡'R,¡'V,¡'V'G(R, U, U', l.) = 1.

Ir \\'e no\\' ealculate (ll2) we gel

en)
Notice that wll('lI nl1 :;;;"1, (n2) - oo. TIH' rf'aSOIl for litis is lhat \\'hcn o(J = J'
\ve eannot nOfmalize G as (:12), SillCC once we han' itltegral('d lJ ilnd n, tlwrc is
nothing left lo be inlf'gri\tcd. This means that in tlle case 01' :;;;"1, G can 01lly 1)('
normalizf'd with rcslwcL lo aH tite palhs in phas(' SPélCf' starting <\t [J' and going
e1s('wlwre, which ill1plit's tllat n, in this case, is él (,ollrlilioTlIll1'1'OboiJilily dÚ;/l'ibutioTl
illstead of il join!. probi\hility disl,ribution as (29) togt'tller wilh (:~I). In order to hav('
tlle C<L'iC"1 :;;; n¡3 as a part.iclllnr case of Qur morid, we IDUS!.("{)nstrllcl i\ ('ollClitiollal
probahility dislribut.ion for this lTlod('1. \\'e willlook illt.o tbat ¡¡fter W(' han' discllssed
lile ¡>n's(,llt casí'.

Jf \\'(' now df'lllalHI all a\.eragc inextcnsihility, it Illusl he sati:,;fi(,d 1hat

( .") :1 ~ 1
U - = -o 'J iJ" " = 1_O-¡J--¡-

and

(V') = ~ + (t (U") = 1.
2~1 <i

110\\'('\'(,'1'(:1-1) and (:l!)) ¡mply f('spf'ctin'ly that

and

pI)

(:Il.a)

(:1.5. a)

"1 lI111St.h{, "qual 10 () in mil,,!' for llll's(, 10 1)(' cOlllpatihl". 11"11("('1111'n"ly case
f:()Jlsisl"lll. wit Ii ¡¡\"¡'raJ.!,f' illf'xt"llsihility is ~I= O, This was pn'cisf'ly t IIl' ('¡¡S"diS('USSf'(i
by Frt'f'd [:-\1, itlld IIi1rris ;tlll! Ika!'st [J:I].

Vd ir J = O. (U~) will 1t;\Yl' tl}(' simple sI fllctIlf('

(:16 )
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where o must be written in terms of the persisten ce length. Ir we do not impose
the i\\"eragc inextensibility con<lilion wc would he lefl free to choose the value of o.
Freed [8] chooses it to be equal to

, 3
Q =-

U' (3;)

where t is the monomcr Icngth. Thercforc he obtains thal (R2) = Lt, which is the
resull for a flexible chain. From lhcrc he conclucled that the average process used
was nol the correct one. He lllen proc<:'Cdsto propase a oew averaging procedure
were G(R, U, U', L) is trcatcd as a conditional probability funetion; this is math.
ematically wrong, since ii is a joi1l1 probability function. His mistake was to prefix
the value of o as we wiJl show.

00 the other haod, lIarris aocl lIearst {13}fixoo the value of " as

3,,--- Ud'

were the effective monomcr Icngth is chosed lo he

f 2a' ( L/,)d = 2(1 - T 1 - e- .

(38)

(39)

In that way they get the Kratky-Porod result. )'el this choice is inconsisteot with the
definition of persistence lcnglh togcther with an average inexteosibility condition
as we shall see.

The persistence length for our model, when i = Owill have the following form

iR. U') (3 " ,
Ir = \ IU'I =;-; taoh ¡¡L(lU 1). (40)

lo the case i = Oaverage incxtcnsibility condition establishes the following relation
bet wcen o and {3

or

2 3 o oo = --coth-L
2{3 (3'

aod (IU'I) wil! take the fol!owiog value

( )
1/'

(IU'I) = .!.
h

(41)

(4I.a)

(42)
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Therefore

lIenee

( )
1/'

(R') ~ 3; La (1 _ e-L/a),

(.13)

(44 )

which is a diffcrent result írom that of Frf'Cd and lIarris and IIcarst, yet this re-
sult is full)' consistent with the definition of persistence length and tile average
inextensibility condition. \Ve sec tIJen that titis modcl Cfltlno! give a Kratky-Porod
end-to-end distan ce (if we define consistently the persistt'nc(' length), and ncilher
has peoper asymptotic limits.

\Ve 5hall now discuss a model ror which lhe prohahility distribulion of lhe
direction of the first link is given by (:1). For that, lel liS constrnct the conditional
probability G(R, U IV', L) that the end of the chain is al p05ition R and with direc-
tion U when the initiallink, is at the origin with a direction V' .G(R, V I V', L) wiU
difree from G(R, V, V', L) by its lIormalization. that is, we will havc the following
normalizing condition

J d3Rd3UG(R,UIU';L) ~ 1

¡nstead oC (32).

Hence

( '~)3/' { (1 )'G(R, U I U', L) ~ ;A~" exp -'1' U - ;¡;-('I2U' - BR)

-~ (R+A' (1 + 6) U')'}.
2Arll ~I

(45 )

(46)

This conditional distribution function reduces to that of "Chandrasekhar Chain"
for f = o:{J, and therefore has the properlies mentioned befo re once we have USM

(2) and (3). For a d¡frerent valuc of "f we have

fp ~ (~~~') ~ -A' (1 + ~) (IU'I). (47)
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Bul, as P(U') = ,'."(U" - 1), (IUI) = 1, we have

and

(R') = 3~,A + A" (1 +6)'o~, ~,

(48)

(49)

'fhe persislencc lenglh pararncter a, and the paramcters oí the mode), are re)ated
lhrough Eq. (48). However if we now iropose the average inext.ensibility condition

wc will gel

,'- 0'13'~,= 2 3
,- 'i

or

(50)

(51)

,o 9
o'f3'csch ¡3L+ 16' (52)

Subsliluling (52) inlo (48) we have

i
p
= /_R_. U_') = ~lanh-'-'-l, (_~o=f3=ese=h=~=L==+ 1).
\ IU'I o 213 ~ + Jo'f3' eseh ~L + ir,

(53)

As one sees, the relalian betwecn a, o and ¡J, is fairly complex and only in few cases
this expression reduces cansidcrably.

On the other hand,

(R') = 3L _ 213 h -'-'-L (2- - e )
202 o tan 2¡J 202 P'

(54)

where ip is givcn by (53).
In lhe case where, = 013= 3/4, (R') lakes lhe Kralky-Porod form .nd a == 13/0

as pointed out in section 2.
\Ve now wonder if therc is anothcr value oí o and (J for which one could reduce

(R') lo ils Kralky-Porod formoYel if (R') is of lhe Kralky-Porod form, lhen lhis
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would imply anolhcr rclalion bclwcen a, o and {3; lhal is

and therefore

3L, + 2;\' (--; _ lp) ~ 2,,(1, - lp),
20 20

(55)

,,~~;!!+ A' (~- tp)
(1, - lp)

(56)

If we subslilute this va)ue oC a inlo a( I - e-L/a), wc do nol rceovcr the express ion
Cm lp given by (53), and conscqucntly, (56) is nol eom/intibie with (53). IIcnce wc
con dude lhal "f = 0/3 = 3/4 is lhe only value lhal gi\'es lhe exact end to end
distance consistently with the definilion oC lIJe persislcncc lcngth parameter and
the average inextensibility condition,

Let us now study the a'iymptotic bchaviour of lhis model. \Vhen /3 -+ 00 with
L finite (rod limit) ip and R'! hehave r<'Spectivc1yas

Jim lp ~ 1" (57)p_oo

Jim (U') ~ 1,', (58)
P-oo

which imply that this model hi'ls lhe correct rod limit. In lIle flexible chain limit
(L -+ 00 with 0//3 finilc) wc llave the following bchaviour

Jim (,' ~ ~ ~ n, (59)
L>l O'

• o 3L
hm(U-)~-". (60)
1,>1 2n-

In order Cor (R2) to take the correet flexible limil, 3/202 lIlust converge, in lhis
limit, lo 2a, which implics lhal

Jim o{3 ~ ~.
L-oo 4

(61)

This mcans that in order lo oht.ain liJ(' corred flexible chain limil \Ve musl impase
lhe conditioll that, in lhis limit, tl](' rdatioll hetwC'C1ltlle paralllctcrs oC tbc TTlodcl
should converge lo lhc rc};ll.ioll bdw('('I\ lllcTlI in a "Chandrasckhar ehain", If we
suh5~ilutc (61) inlo (:;2) \\'C gcl for I t.hal

3
lilll ,= -,
1.-00 ,1

(62)
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[" the case 1 = O we will get for this modcl that

3
fp =-,20

and that

(63)

(64)

\Ve sel', from the previous discllssion, that this modc.1 would nnIy llave the corrcct
rod limit since "'t has bccn prcfixed at a diffcrC'nt wdue t.IHln 3/4. It is interesting
lo poinl oul also lhat, cvcn within this modcl thc choice of O' by Harris and I1earst
and Frccd is nol the corrcet one.

\Vc observe that the rod lilllit ba..<;ically dq)('nc1s OH tbe prohability distribution
of lhe direclioo of lhe first link. Jf \Ve choose (:1) we gel lhe corred asymptotic
bchaviour in aH its moments. 1I0wever if \Ve are only illterest.ed in a second moment,
then we co.ulel use a probabilily C!istribution wilich only have (U/2) and (lU'1) equal
to ooe, rcganlless of highcr moments.

4. Conclusions

Prom the previous scctions, wc See that a differC'llt coupling bctwccn cxtensibility
and curvature froIn that of a Chandrasckhar chain leads to complicatcd rc1ations
betW(,CIl its parameters \Vit.hout offering advanttlgC's. E,.cn lhe uncoupled case "'t = O
has a more complicatcd rclation betwC'('n lhe p",ramelcrs of lhe model, and does
not have adequate asymplotic limils. Thercforc, \Ve wOllle! conduele lhat a Chan-
drasckhar cliain is lhe simplest modcl which hilS the CXilct secood momenl and the
correcl asymptotic bc]¡aviour. Any otiler cOllplillg will 71cilhu' have a Kratky-Porod
end-lo-end c1islancc nor the correel flexible limit unlcss \Ve impose the condition
that, in this limit, the parameters of the model are re!ated as in a Chandrasekhar
chain.

References

1. S.F. Edwards, J. [,hy', Al (1968) 15; R. Alcxandcr-Kalz and S.F. Edwards, J. Phys_
A5 (19,2) 6i-1.

2. D. Kratky and G. Porod, Hrc. Trav. C/win. 68 (l!lt9) l10G.
3. J.J. IIcrmans and R. Ullrnan, Pllysirn 18 (19.52) 9.51.
.1. II.E. Daniel" ['roe. Roy. SO<". (J;dillb",yh) A63 (19.52) 290 .
.5. N. Sa.itó. K. Takahashi and Y. KIIDOki, J. Phys. Soco Ja[HIn 22 (l9G7) 219.
6. 11. Yamakawa, J. Cltem. Plly.<:. 59 (1973) 3811.
,. 11. Yamakawa and M. Fuji, J. Chem. [,hys. 59 (19,3) 66.11.
8. K. Frccd, J. Chenl. Phys. 54 (1971) 1-153.
9. Y. Tagami, Macromo[cclJles 2 (l969) 8.
10. R. Alcxandcr-Katz, Ph.D. Thesis. ?\fanchestcr Univcrsity (1970) (scc appendix).
11. I.M. Gelr'and and A.M. Yaglom, J. Ata/h. ['hy .•. 1 (1960) 48.



616 Roberlo Alexander.Kalz and Rogelio Rodrigtlf:z 1'alal'áa

12. R.P. Feynman and A.R. Jlibbs, Quanttltn Mcchanics and Palh Integmls, Me Graw-
!liII, New York (1965).

13. R.A. !larris and J.E. !lears!, J. Chem. Phys. 44 (1966) 259.,.

Resumen. Se muestra que una cadena de Chandrasckhar tiene aso-
ciada una medida de Wiener con un acoplamiento particular entre la
extensibilidad y la curvatura. Además, se discute un modelo con un
parámetro de acoplamiento general, y se muestra que cualquier otro
acoplamiento diferente del de la cadena de Chandrasekhar, ~ajo la
condición de inextensibilidad promedio, no puede tener una distancia
extremo-extremo de Kratky-Porod, ni tiene el límite flexible correcto.




