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On certain numerical technique to solve
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Abstract. This note deals with the generalization of a numerical tech-
nique to compute approximated eigenvalues and eigenfunctions of sec-
ond order linear differential operators in one dimension recently pro-
posed. This technique now uses a finite matrix representation of the
operator d/dz built out of N numbers obtained by imposing a condition
where the coefficients of the differential equation play the main part. It
is shown numerically that this method can now be applied to eigenvalue
problems with difficult-to-handle boundary conditions.

PACS: 02.60.+y; 02.70.+d

Recently, M. Bruschi, R.G. Campos and E. Pace [1], have improved a numerical
method to compute eigenvalues of linear ordinary differential equations proposed
some years ago by F. Calogero [2]. This method consists in the substitution of the
differential operator d/dx and the variable z by the N x N matrices
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built out of the N arbitrary different numbers z1,z3,...,zy, (the prime of the sum

sign means that the term with ¢ = k is excluded) in the differential equation to
convert it into a.matricial problem. (A similar method was proposed independently
by one of us [3]). The improvement frees this method of its main drawback: the
presence of complex eigenvalues for an hermitian operator as the Schrodinger-like
differential operator

_‘19:-:(3‘) + q(2)pa(7) = Apw(z)pa(z), z € (a,b), (2)

where w(x) > 0, and p(a) = @(b) = 0. It takes advantage of the arbitrariness in the
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selection of the points z; and of the fact that the method embodies the homogeneous
boundary conditions of such a problem through the ansatz

plz) =v(z)f(z), a<z<h, (3)

where vy(a) = y(b) = 0 and f(z) is a supposed regular function at the boundary
points. The matrices given in Eq. (1) replace the operators d/dr and z in the
differential equation for f(z) obtained by the substitution of (3) in (2). In Ref. [1] it
is shown that if y(z) = (z — a)#(b—z)¥, p > 0, > 0 and the points z; are chosen
to satisfy the nonlinear equations

ia 1 -__”_‘y’(-’ti) i—1.9 " a
k=1 (-'L'i—.’ck) 7(1,‘.'_)1 ,2,...,N,

then a really fast convergence of the approximated eigenvalues to those of Eq. (2)
is obtained for functions g(z) and w(z) satisfying certain boundary conditions.

Our purpose in this note is to report the numerical results yielded by a gener-
alization of this method when it is applied to a unidimensional two-point boundary
problem with nonhomogeneous conditions like this one

[(1—2")¢'(z)] + Ae"p(z) =0, @(0)=0, () continuousatz=1. (5)

This equation, concerning a heat conduction problem, [4] does not meet the
conditions for which the results of Ref. [1] are valid. Besides the strong singularity,
the lack of a quantitative condition on (z) at z = 1, makes this problem difficult
to handle even with other methods [4]. But this is not beyond remedy, because we
can obtain good results, in agreement with those obtained by other authors, if we
extend the numerical procedure as follows.

We begin by considering the general form of the Sturm-Liouville equation

[p(2)¢'(2)]' + g(z)e(z) = A(z)p(z)  z € (a,b), (6)

where p(z),w(z) > 0 for z € (a,b). In the ansatz (3), the function f(z) is supposed
to be approximated by polynomials, i.e., a polynomial of degree N that satisfies
approximately the equation

Ao(2)f"(2) + 41(2)f'(z) + Ae(2)f(z) = Mw(z) f(x)
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where
M) =pla), M) =22 T +5@)
_ 7"(z) 1 7‘(3)
Ao(z) = p(z) por ) +P(3):;(‘§ +q(z),

is supposed to exist. This means that the N points z; obtained through

N
' 1 1 Ay(zi) .
E =—= . = 1.0 N 7
= (zi—a) 2 Ax(xi) ' M

are the N approximated zeros of f(z) [5]. Therefore, these points should be a better
choice than those yielded by Eq. (4). It is an easy matter to show that the matrices
D and X built out of these numbers yield real eigenvalues for

L = Ay(X)D* 4+ A1(X)D + Ag(X).

Firstly, we note that the right-hand side of (7) can be written as —I'(z;)/I'(z;) where
['(z) = y(z)y/p(z), and this function is usually zero at the extreme. Therefore, a
solution of (7) there exists [6], with a < z; < 22 < -+ < zy < b (if In(T'(z))
is a concave function, the solution is unique), and this implies that the matrices
p(X) and w(X) are positive definite. Because L can be written as a product of the
positive definite matrix p(X)[w(X)]~! and the hermitian matrix (D? + Dd — dD —
d® 4 Ag(X)[A2(X)]™!), where d is the diagonal matrix whose nonzero elements are
given by Eq. (7), its eigenvalues are all real, having the same inertia as those yielded
by the hermitian matrix.

Note that Eq. (4) is one case of Eq. (7). the function 4(z) should be chosen
to embody the boundary conditions in such a way that the ansatz (3) satisfies the
differential equation at the extreme, as stated in Ref. [1].

Thus, for the problem given in Eq. (5), we choose v(z) = z and build the
matrices D and X out of the points obtained through

N
1 1 H
= = Tz; =510

=—— sV
(xi —xk) 2(1_13)1 yLyeeny

k=1
According to this method [2], we proceed to diagonalize the matrix
L =1 —X"TD* 40X T 25D 4 TX % (8)
The first eigenvalues A}, of this matrix (approximants of those of Eq. (5), A,,) are

shown in Tables I and II for some values of the number of points N. The com-
ponents (vy); of the eigenvectors v, of (8) are related to the values ¢ (z;) of the
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n X% (N = 10) AL AV

1 8.72747035 8.721575 8.727471
2 152.423 128.2512 152.4231
3 435. 208.3475 435.0634

TABLE 1. The first three stabilized eigenvalues A}, of the matrix given in Eq. (8) obtained with a
10-point mesh are shown in the second column. they can be compared with the lower
and upper bounds AL and AY, obtained [4] by the orthogonal invariants method and

the Rayleigh-Ritz method respectively.

AL(N = 20)

B W = |3

8.727470352642
152.42307087862
435.063332175
855.68572

TaBLE II. The first four stabilized eigenvalues of the matrix given in Eq. (8) obtained with a 20~
point mesh. The stabilization was established by comparing them with the eigenvalues
computed with a 25-point mesh.
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FIGURE 1. (a)-(d): Piecewise linear interpolations of the first four normalized vectors o7 (z;)
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n = 1,...,4, yielded by Eq. (9). They are the approximants to the corresponding
eigenfunctions pn(z), n=1,... 4 of Eq. (5).
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approximated eigenfunctions of (5) through [2,1]

eh(@i) = Cav(i) | [](zi = 22) | (va)s (9)
k#i

where (), is a normalization constant.

In Iig. 1 we show a graphic description of the first four normalized eigenvectors
@n(x;) obtained for N = 25.

We conclude this note pointing out the simplicity of this procedure. The results
presented in this work have been performed on a personal computer using standard

FORTRAN 77 routines to solve Eq. (7) and to diagonalize Eq. (8).
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Resumen. Fsta nota trata con la generalizacién de una técnica
numérica recientemente propuesta para calcular eigenvalores y eigen-
funciones aproximados de operadores diferenciales lineales en una di-
mension. Esta técnica ahora usa una representacién matricial finita del
operador d/dr construida con N nimeros obtenidos a partir de una
condicion donde los coeficientes de la ecuacién diferencial juegan el pa-
pel principal. Este método puede ser aplicado a problemas de eigenval-
ores con condiciones a la frontera dificiles de manejar, como se muestra
numéricamente.





