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Abstract. Interíerometric methods permit us to measure the shape oí
an optical suríace with high accuracy, using the wavelength as a unit oí
length. On the other hand, spherical suríaces are the most common, but
aspherical surfaces i.e., not spherical, are more and more popular due
to their great design advantages. Aspherical surfaces generally have the
shape of a conic of revolution. The prozedure to determine the quality
of an aspherical surface is not an easy one. However,these methods are
absolutely necessary in order to manufacture the very precise modern
optica! surfaces.
Phase shifting interferometry started about ten years ago. It has

many great advantages with respect to the traditiona! methods, mainly
when it's applied to the testing of optical surfaces. Here, we present a
review of these advances.

PACS: 07.60.Ly

1. Introduction

Optical surfares are generally spherieal, but aspherieal surfaces, i.e. not spherical,
are becorning more and more frequently used, because of their great desigu advan-
tages. The reason is that one aspherical surfaee can eliminate or reduce aberrations
as well as three or four spherical surfaces do. In most cases an aspherical surface is
a oonie of revolution, like a paraboloid, hypecboloid oc ellipsoid.

On the other hand, as it may be easily understood, an aspherical surfare is more
difficult to manufacture. In this process, the most difficult step is its testing. It has
even been said that an asphere can be made as good as it can be tested.

As it is to be expeded, the traditional tcsting methods [1] are nearIy always
interferometric, due to their intrinsic accuracy. Ir the surface is spherical, a typical
two wave interferometer is like that shown in Fig. 1, produced by the interference
between two wavefronts. The first Olle, i(leal1y wilh a flat shape, comes from the
surface or lens under test, but very likdy it has sorne deformations due to the
imperfections in this surface. The s(:<:orHIwavefront does not pass through the lens
under test and is flat, to serve as a rdereJlce in thc test. If the fringes are straight,
parallel and equidistant from cach olller, the wavefront under test is flat as the

•Án abstract oC this work was presented at the ~lceting oC the Sociedad Mexicana de Física, in
Monterrey, N.L. in November 1988.
tOn leave from the Centro de Investigaciones en Optica, León, Gto.
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FIGURE 1. Twyman-Green interferometer.

reference wavefronL Hence the aplical eIernenl under test is perfecto In the case oC a
perfed aptical surface, with no crrors and in perfect focus, the ffinges are straight,
equidistant and parallel.

If the surface under test does nol have a perfeet sbape, the fTinges will nol be
slraight and their separations will be variable. The defQl'mations oC the wavefront
may be delermined by a mathematieal examination oí the shape oí the fringes. By
inlroducing a small spherical curvalure 00 the reference wavefront or by changing
¡ls angle with respect lo the wavefronl under test, the Dumbcr oí {ringes in the
interferogram may by changed, in arder lo reduce ils number as much as possible.
Tbe greater tbe number of fringes, the smaller the sensitivity of the test.

If the surfáce under test is not spherical, and its spherical aberration is not
compensate<! (the usual case), the reflecte<! wavefront will not he spherical (a flat is
a particular case of sphere with an infinite radius of curvature). In this case, as we
have explained before, the fringes in the interferograrn wiUnot be straight, neither
wiU have constant separations between thcm. ln an intcrferogram of an aspherical
surfare, the numher of fringes may he adjuste<!, hy changing the angle hetween
the reference wavefront and the wavefront under test (tilt), and the curvature of
the spherical reference wavefront (focusing), but this number of fringes can not be
smaller than a certain minimum, that in general is a very large number. SiDce the
fringe separation is Dot constant, in sorne piares the fringes wi1l be quite spaced,
but in sorne others the fringes will be too close together.

The traditional interferogram analysis method requires the measurement of the
position of severa! data points loeated on top of the fringes. These measurements are
rnade in many ways, for examplc, by meaos of a measuring microscope, by means
of a digitalizing tablet oc video camera connected to a computer, or many otbers.
Tbe sensitivity of tbe test depends on the separation between the fringes, because
an error of one wavelength in the wavefront distorts the fringe shape by an amount
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equal to the separation between the fringes. The fringe deformations can in general
be measured with an accuracy of one tenth of their separation, assuming that this
separation is large cnough to be measured with acceptable accuracy. The sensitivity
to wavefront deformations is then limited to about one tenth of a wavelength, if
there is a large fringe separation. Ir the íringes are very dose to each other, the
sensitivity is directly proportionaI to their separation. Where the fringes are wide
separated, the sensitivity of the test is about one tenth of a wavelength, but the
sampled points will be quite separated from each other, leaving many zones without
any information. On the other hand, where the fringes are very dose to each other,
there is a high density of sampled data points, but the precision of the measurements
are much lower than one tenth of a wavelength.

AH these problems of the traditional interferometric methods have been over-
come by the phase shifting interferometric techniques, where the density oí sampled
data points as well as the sensitivity and accuracy of the test is constant over the
wave front.

Besides, phase shifting interferometry is simple and fast, thanks to the modern
tools like the array detectors (CCD) and the microprocessors. Most oí the conven-
tional interferometers, like the Fizeau, Twyrnan-Green, etc., have been adapted to
perform the phase shifting techniques to be described here.

2. Phase shifting interferometry

The phase shifting interíerometric techniques have their first indirect antecedent in
lhe works hy Carre [23J, bul lhey rea!ly slarled less lhan lwenly years ago, wilh
Crane [3), Moore [41. Bruning el al. [5] and many olhers. The popularily o/lhese
techniques and its impact has been so great that about one hundred papers have
been published on this subject, in the last decade, including sorne review papers [6].
In the phase shifting interferometers the referenee wavefront is moved along the
direction of propagation, with respect to the wavefront under test, in this manner
changing their phase difference. The interference fringes then change their position,
henee the initial name of these techniques, namely ¡¡fringe scanning".

By measuring the irradiance changes for different phase shifts, it is possible to
determine the phase for the wavefront under test, relative to the referenee wavefront,
for that measured point over the wavefront. By obtaining this phase for many points
over the wavefront, the complete wavefront shape is thus determined.

If we consider any fixed point in the interferogram, the phase difference between
the two wavefronts has to be changed. We might wonder how this is possible, because
relativity does not permit any of the two wavcfronts to move faster than the other,
because the phase velocity is e for both waves. However, it has been shown (7), that
what realIy takes place is the Doppler effect, with a shift both in the frequency and
in the wavelength. Then, both beams with difrerent wavelcngths interfere, producing
beats. These beats can also be interpreted as the changes in the irradianee due to
the continuously changing pbase difference. In other words, tbese two coneeptually
difIerent rnodels are physically equivalent.



Phase shiftino interferometry 9

17VV1
Al STEPPING SA'oI TlllTI-I Pl-IASE SHlrTlNG

l~p",s(SHln

,~~
B) STEPPING HllANGUlAR !"HASe sHlrnNG

7VV"''''''1 lJ~-.
c> CllNlIl'UlUS SAIJ TOOTH PHASE SHlr T1NG

1~'~~"'"
'.'-.

nl CUt-lTI"lDJS TIlI•••NGI.A.•••1l P~S[ SI-l\rTlJ-IG

FIGURE2. Four different manners to do the phase shifting, when the frequeney of the referenee
beam is not permanently modified.

Then, the change in the phase may be accomplished only if the frequency of
one of the beams is modified in order to form beats. Of course, as we will see
below, this is possible in a continuous fashion using certain devices, but only for a
relatively short period of time with sorne other devices. This has lead to a semantic
problern: if the frequency can be rnodified in a perrnanent way, sorne people say
that it is an '"AC interferometer", an "hetcrodyne interferorneter" or a "frequency
shift interferometer". Otherwise, they say, it is a "'phase shifting interferometer".
In the author's point of view this distinction made by a few authors may confuse
more than clarify concepts. Bere, we will refer to all of these instrurnents as "'phase
shifting interferometers".

3. Techniques lo shift lhe phase

The procedure just described can be implemcnted in almost any kind of two beam
interferomcter as for example, in the Twyman-Green shown in Fig. 1. The phase
may be shifted, or equivalently, the frequency of one of the beams may be changed in
many ways, as reviewed in a paper by Wyanl and Shagam [8] and by Crealh [6]. As
pointcd out before, the phase rnay be shiftcd in: a continuous fashioll, by introducing
a pennanent frequency shift in the reference beam; or in a discontinuous manner, by
periodical1y increasing and dcereasing the optical path difference, with an oscillation
oí the phase in any oí two ways: a) In a saw toot1l manner as in Figs. 2.a and 2.c,
and b) in a triangular manner as shown in Figs. 2.b and 2.d.

The first method that can be used to shift this phase is by moving the mirror
for the reference beam along thc light trajectory, as shown in Fig. 3.a. This can
be done in many ways, for examplc, with a piczoclcctric crystal or with a coil in a
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FIGURE3. Obtaining the phase shift by means of a moving mitror or a rotating glass plate.

magnetic field. Ir the mirror maves with a speed V, the frequency of the refleded
light is shifted by an amount equa! to Ilv = 2V/>..

Another method to shift the phase is by inserting aplane parallel glass plate
in the light beam, as shown in Fig. 3.b. The phase is shifted when the optica! path
changes. The optical path di!ference OPD introduced by this glass plate, when ti!ted
an angle () with respect to the optical axis is given by

OPD = T(N cos O' - cos O), (1 )

where T is the plate thickness and N is its refradive indexo The angles () and ()'
are the angles between the normal to the glass plate and the light rays outside and
inside the plate, respectively. A rotation of the plate increasing the angle (), increases
the optical path difference. Thus if the plate is rotated with an angular frequency
w, the frequency v of the light passing through it is shifted by an amount Ilv given
by

Tvw [ COSO]
Ilv = -c- 1 - N cos ()' sinO, (2)

where e is the speed of the light. The only requirement in this method is that the
plate has to be inserted in a collimated light beam, to avoid introducing aberrations.

The phase may also be shifted by meallS of the device shown in Fig. 4. Ir a
beam of circularly polarized light goes through a half wave retarding phase plate,
the handness of the circular polarization is reversed. Ir the half wave phase plate
rotates, the frequency of the light changes. This frequency change 6v is equal to
twice the frequency oí rotation of the phase plate vP' that is: 6v = 2vp• This
arrangemenf works if the light goes through the phase plate only once. However, in
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FIGURE 4. Obtaining the phase shift by means of phase plates and polarized light, with a. single
pass of the light beam.
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FIGURE 5. Obtaining the phase shin by means of phase plates and polarized light, with a double
pa..-.sof the light beam.

a Twyman.Green interferometer the light passes twice through the system. Thus,
it is necessary to use the configuration in Fig. 5. the first quarter wave retarding
plate is stationary, with its slow axis at 45 degrees with respect to the plane oí
polarization of the incident linearly polarized light. Thi, plate also tran,forms the
returning cireularly polarized light back to linearly polarized. The second phase
retarder is also a quarter wave plate, it is rotating, and the light goes through it
twiee. Henee it really aet, as a half wave pIate. The ,hift in frequeney i, limited by
the maximum rncchanical speed of rotation oí the phase plate, which is only one or
two kHz.

Another manner to obtain the ,hift of the phase i, by mean, of a diffraetion
grating moving perpendicularly to the light bearn, as shown in Fig. 6.a. It is easy to
notiee that the phase of the diffracted light beam i, ,hifted m times the number of
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FIGURE 6. Obtaining the pha.<;ol'shirt by Illl'ans or diffraction.
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FIGURE 7. Two continuousl)" Illoving dilfradion gratings.

slits that pass through a fixed point. 'rhe If'tter rn rcprc'sl'll1.s tlw ordrr of dilfraction.
Thus, the shift in the frequclKY is ('qual lo 111 timps tlH' nUITIIWfof slit.s in the grating.
that pass through a fixf'd point in til(' unil of timc. 1'0 say it ill a difrefent TT1anner.
the shifl in he frequeney is ('qual lo 1111'sl)('cd of 111('grating, divicled hy period d of
the grating. Thus, we may finally wrill': D./J = mVfd. It is illl('J"('Sting to Batice tllat
tile frequeney is incrcascc1 for the light h('ams dilfracil .•1 in lhe saIne dircclion as
the movement oC the grating. The lighl beams dilTra<:ll,d in tllt" opposite direction
lo t1le moverncnt of thc grating dl'Cl"f'aSC tlH'ir frequf'llcy. This tTwthod lo shift the
phasc may be implemente<i by IIWil.IISof oscillating gratings. hy lI\l'ans of a rotating
grating, with thcir slits in thc radial dircction, or by TT1l'itll:-;of it cylindrical gratiJlg,
as illustrated in Fi.e;. 7. As it i:-; tu 1)(' cxpccted, the tiircdioll of tile bealll is challgeJ
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because the first arder bearn has to be used, ami the zero arder beam must be
blocked by rneans of a diaphragrn.

The diffractioll of light may also be used to shift the frequency of the light, by
mcans of an acoustic optic Oragg ceH, as shown in Fig. 5.h. In this ceH an acoustic
transducer produces ultrasonic vibrations in the liquid of the cel!. Thcse vibrations
produce periodical changes in the rcfractive index, rnoving in the liquido These
periodieal ehanges in the rcfractive indcx ael as a diffraetion grating, diffracting the
light. The change in the fre<¡ueney is e<¡ual to the frc<¡ueney f of the ultra...,>onicave,
times the order of diffraction m. Thus, we may write: ó'v = mf.

The last method lo be mcntioncd hcrc for shifting the frequency of the light
beam is a laser emitting two frequencies, v and v + ~IJ. This is a Zeernan split line,
in whieh the frequency scparation ó,v may be controllcd with a magnetic field. the
two frcquencies have orthogonal polarization, so, in order to be able to interfere,
their plan e of polarization is made to coincide. Tbc non sbifted freque[ley is used for
the tcsting wavefront and the shifted fre<¡ueney is used for the reference wavefront.

4. Measurement of the phase

Once the piJase shift method is implemented, it is necessary to determine the pro-
cedure by whieh the non-shiftcd rclative phase of the two interfering wavefronts
is going to be rnt::asured. This is done by measuring the irradiancc with several
pre-dcfincd and known phase shifts. Lct llS asstlmc that the irradiance of each of
the two interfering light heams at tbe point x, y in the intcrference pattern are
ft(x,y) amI 12(x,y) and that their phasc difference is 4>(x,y), it is thcn casy to
show that

I(x, y) = I¡(x, y) + I,(x, y) + 2J 1,(x,y)I,(x, y) eos <;\(x,y). (3)

This is a sinusoidal functiotl describing the phase differencc between the two
waves, as shown in Fig. 8. It has maxirnum alld rninimurrI values given by

1m,,(x,y) = 1,(x,y) + 1,(x,y) + 2J1,(x,y)1,(x,y) (4)

aud

Im;,(x,y) = I,(x,y) + 1,(x,y) - 2JI,(x,y)1,(x,y) (5)

respectivcly, and an average value gi"en by lo = /1 + /2.
As explaincd befo re, the basic problcm is tbat of determining the non4shifted

phasc dilTcrencc bct\VCCIlthe t\Vo waves, with t1lc highcst possiblc prccision. This
may be done by any of several different procedures to be describcd next. 1'he best
method to determine the phase, depends on hO\••..the phasc or freqllency shift has
bcen made. <\spointcd out by !\.foorc (4), hasically, there are three different possibil-
¡ties: a) thc frequency is permanently shiftcd and hence the output is a continuous
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FIGURE8. Irradlance signals in a given point in the interference pattern as a fundion oC the phase
difference between the two interfering waVe8.

Al S" ••• TQOTHPHAS[ SHlrT

Il SIGIUoL ••••ITH $" .••.TtJDlH

PffIoSC SHlfl

D) SlGN!\l \illH UlANGU..AIl

PIi"ISE SHlrl

FIGURE9. Signals obtained for saw tooth and triangular modulations oC the' tase.

sinusoidal signal, b) the phase is ehanged in a saw tooth manner, as shown in
Figs. 9.a, obtaining the signal in Fig. 9.b, and e, the phasc is changcd in a triangular
manner, as Figs. 9.c, obtaining the syrnrnetrieal signal in Fig. 9.d. AII thrcc methods
have becn used.

4.1. Zero cTOssing

This method deteeted when the irradiance plotted in I'ig. 8 passes through zero
when changing the phase differenee between the two intcrCcring wavcs. This zcro
does not really mean 7.Croirradian ce, but the axis oC symmctry oC the function, which



Pha$c $hijting interfemmdry 15

has a value equal to In. or almos! any otll('r intermediate lcvd het,\vecn the maximum
and the minimum irradiance. The points crossing lhe axis of symmctry can very
easily be fOtlIld by amplifica!ion of t he irradiancc fUllctioIl 1.0 saturation levels. In
this manncr. the sinusoidal shape of the fllnction iwconlf"s a square function. the
zel'O crossing tcchnique has bCIl IIsed by Crane [:l] and by ~foorc [4].

The wavefront shape is obtained hy Illeasuring the phase <t>al sorne refercnce
poiat on the wavefrollt. (refercllce signal) and t.hen at several otll<'r poiots on the
wavefronl (test sign.tl). " practica! implclllentation of this mdhod uses a dock that
star!s when lhe rdercncc signol passes tbl'Ough zcro and stops whcn thc test signal
passcs through zero. Tbe rat io of the tillle the dock runs to the knO\vn pcriod of
the irr<l<iiancc signa! gin's lhe wavefront dcviation rcspect to the refcrcncc roint.

The phase lo\k IIlct.hod can be cxplail\l'd wilil tlle lIdp of Fig. 10. Lel us aS5Utlle that
an additional pilase difference is addcd lo tite initial phasc <l>(x 1 y). Tbc additiona!
phasc hcing addcd. has two component:-, one of tlwrtl with a fixed villue ilnd the
other with a sinu~oidal time s1l<l1)(',hoth compOlwnts can have any predetermined
dcsired valtw. Thu:-

9= <I>(x,y) +b(.r,y) + "sin,.:t

then. tiJe irradiancc l(x,y) would be gin'Tl by

1 = I¡ + 1, + 2JI.T,cos[<I> + b + Asin",'tl

and this function <'éUl be cxpanded in s('ries as follows:

1 = I¡ + 1, + 2) I¡/,{ cos(<I>+ b)[Jo(il) + 2J,(A) ros 2wt + ...]

- sin(<I> + b)[2J¡(A) sin wt + 2J,(A) sin3",t + ...I}.

(6)

(7)

(8)

lIer(', JI! is the B('''sd fUIlction of ord('r n. t,he first part of this cxpr('ssion represents
harlllonic compollellts of cven order, while lhe se('ond part reprcscnts harmonic
cOlllponcllts of odd order.

Let us now assume thal tile amplitude of the phase os('il1ations A sin wt arc much
smaller tiJan Jr. If now we adjllst the fixed phase EJto a valuc such that ~ + EJ= mr,
t,hen sin(<l>+ EJ) is zero. IIcn("c, on!y (-'ven harllloni('s rCIIl<lin. This cffect is shown
in Fig. ID, tU'ar 01)(' of tlll' lIlinim<'t of this fUllctioTl. This is done in practicc by
slO\I/I)' changing t.1lt' valuc of the phase EJ,while maintaining the oscillation A sinwt,
unlil lhe lIlinilJlum alJlplit.u<ie of •.111"'fil'st harmonic, or fundamental frequency, is
ohtained. lhen, we Ilavc EJ+ <l>= nr.. Since the \'all1c of ti is knowIl, the va!lle of 4>
has becn dctermi lH'd.
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FIGURE 1O. Methods to find the phase with a small sinusoidal modulation oí the phase.

FIGURE 11. Averaged signa.! measurements with the integrating phase shifting method.

Another equivalent manner, would be to find the inflection point for the sinu-
soidal function, as shown in Fig. 11, by ehanging the fixed component of the phase,
until the first harmonic have their maximum amplitude. Then, sin fJ ;;;;;: 1.

4.3. Phase stepping

This method consists in measuring the irradianee values ror several known inere-
ments oC the phase. there are several versions oC this method that will be described
latero The measurement of the irradiance Cor any given phase takes sorne time, since
there is a time response for the detector. Henee, the phase has to be stationary
during a 8hort time in order to take the measurcment. Bctween two consecutive
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measurcments, the phase may change as fast as desircd in order to get to the next
phase with the smallest delay. Let us assume that an irradiance li is measured wheo
the phase has beco incremented rrom its initial value ep by an amount aí, as shown
in Fig. 11. Thu5

1,= 1, + 1, + 2J[;Tz C05(<I>+ oo). (9)

The mathematical treatment \\'111 be completed in the next section, when de-
scribing the integrating phase shifting method, because tite phase stepping method
ma)' be considered as a particular case of the first.

rr Integrating phase shifting

This rnethod, also caBed integrating bucket, is very similar to the phase stepping
rncthod, with the only differcncc that the phase changcs continuollsly and not by
discrete steps. The problcm with the phase stepping rnethod is that the sudden
changes in the mirror position may introduce sorne vibrations to the systern.

In the integrating phase shifting method the detector continuously measures the
irradiance during a fixcd time interval, without stopping the phase, but since the
phase changes continuously, the averagc value during the measuring time interval
is measurcd. Thus, the intcgrating phase stepping method may be mathematiea.lly
considered a particular case of thc phase stepping method, if the detector has an
infinitcly short time response, such that the measuremcnt time interval is reduced
to zero. Like in the phase stcpping mcthod, the rhase may be shifted using a saw
toot1l rrofile as in Fig. 2.c, ur a triangular profilc, as in Fig. 2.d, to avoid sudden
changcs.

Let us assume, as in Fig. 11 that the average measllfernent is taken from a =
Oí - 1::1/2 to a = 0i + 1::1/2, wilh ccnter value aj. Then, the average value of the
irradiance would be given by

1 1.+A/' [ ]1, = - h +I,+2J[;Tzc05(<I>+0)
L'> .-A/'

= /1 + 1, + 2J[;Tz 5inc(L'>/2) C05(<I> + o;)

do

(10)

As it is expeded, this cxpression is the same as Eq. (9) for the measurement
with phase steps, when 1::1 = O, sincc the sine functiotl has a unit value. Ir the
integration interval 1::1 is diffcrcnt from zero, the onl)' differcnce is that the apparent
contra.":it oí the íringes is reduccd. Then, we will consi<ier litis expression to be the
most general.

a) FOUT Slep .\Iethod. The values of the irradiance are measured using four
different values oí the pha.'ic, ni, equal to: O, 7r/2, 7r, 31r/2, as shown in Fig. 12.a.
In this manner, the followillg four values of the irra<!iance are obtained: lA, lB, le,
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FIGURE 12. Six dilferent manners lo shih Ihe pha."il'" using phas{' steps.

and 11)

lA ~ h + 1, + 2~ siuc("'/2) cos <1>,

IlJ ~ 1, + 1, - 2~ siuc("'/2) siu <1>,

le ~ 1, + 1, - 2~ siuc("'/2) cos <1>,

ID ~ h + 1, + 2V/,/,siuc("'/2)siu<l>,

From thcse equations we may obtain

~( ) _ t -, {/U(I,y) - IlJ(I,Y)}'!' I,y - an ,
fA(I,y) - Id",y)

( 10)

( 1I )

It is intcrcsting to Botice that this rcsult is inJepen<icllt of the integration inl.erval
"'.

b) Tlun:. 51ct>Melhod. Since we llave unly tiJr('(' 1I1lknowns 1" 12 amI ~ in
Eqs. (9), thrt.->e rneasurements woulJ be cnough to determine the phase <fl. (Fig. 11.1».
lIence, we may write

lA ~ 1, + 1, +2V/,/,siuc("'/2)cos(<I> + ~f-i),

~ 1, + 1, + 2Vi, 1,siuc( "'/2)1cos <1>- siu <1»/h,
IlJ ~ 1, + 1, - 2~siuc(Il/2)siu(<I> + h/4)
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= I1 + h + 2ffi sinc(,c,/2)[- cos <!>- sin <!>J/h,

le = 1,+ 1, - 2ffi sinc(,c,/2) cos(<I>+ 5" /4),

= I1 + 1,+ 2ffi sinc(,c,/2)[- cos <1>+ sin <l>l/h, (12)

Fronl these relations we may obtain

"'( ) _ t -1 {/c(X,y) -In(x,y)}.•.. I,Y - an -------.
IA(x,y) -In(x,y) (13)

e) Three 120 Degrees Sleps. The three measurements do not necessarily have lo
be separaled 90 degrees. The phase separation belwcen them may be 120 degrees,
as shown in Fig. 12.c. The phase may be found as follows

lA = /¡ + h+ 2ffi sinc(,c,/2) cos(<I>+ 120°),

= /¡ +h + 2ffi sinc(,c,/2)[-.5cos<1> - .866 sin <1»,

In = /¡ + 1,+ 2ffi sinc(,c,/2) cos(<I>+ 240°),

= I1 + h+ 2ffi sinc(,c,/2)[-.5 cos <1>+ .866 sin <1>]'

le'c /1 + 1,+ 2ffi sinc(,c,/2) cos <1>,

which gives the following result for the phase,

'" _1 { v'3(IA - In }..•.= tan -----,
. IA+ln-2/e

(14)

(15)

d) Two Steps Plus One. This is an interesting Three step method, suitable
for systems with vibrations, like in the test oC large astronomical mirrors [10]. The
phase oC oue oC the heams is rapidly switched helween t'o'.'ovalues, scparated by
,,/2. This is done fast enough to reduce the effects of the vibration. A third reading
is taken any time later, lo measure only the sum oC the irradiance oC the heams,
indcpendently oC thcir relative phase, by using an integrating interval .ó. = 27l'. Thus,
wc may write

1,\ = JI + 1, + 2ffi sinc(,c,/2) cos <1>,

In = I1 + 1,+ 2ffi sinc(,c,/2) cos(<I>- ,,(2),

= I1 + 1,+ 2ffi sinc(,c,/2) sin <1>,

le = [, + 1" (16)
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which givcs thc following result for thc phasc

~=l _,{Iu-Ie}
'" an I I 'A - e

( 17)

e) Carré Melhod. Another pha."ie shifling mdhod, suggested by Carr(~, tak('s
fOUTe{lually spaeed measurements, two incr('asing t.he p!l¡:¡se and t\\'o dccrcasing it,
as showlI in Fig.12.d

lA = II + 1,+ 2.¡¡;i,sinc(il/2)cos(<I> - ~o),

18 =!¡ + 1, + 2.¡¡;i,sinc(il/2)cos(<I> - !o),

le = II + 1,+ 2.¡¡;i, si••c(il/2) !"Os(<I>+ !o),

ID = 1, + 1, + 2J 1,1, sinc(il/2) cos( <1>+ ~o),

From these equations, the phase caH he ohtainf',(\ as follow5

~ _'{ n(fu-Ie)+(f,,-ID)}'l' = tan tan -:----~----~ ,
2 (fu - le) - (lA - ID)

4.5. Synchrollous dctcction

( 18)

(El)

The frequcncy and the \vayelength of tIJe functioll in Fig. S are both well known.
sincc wc know the speed with which the pha."ic of tiJc rdcrcllcc waye is shifted. henc£',
it is possible to use a method dcscrihed in comITlunical ion tilrory, called synebronolls
detcction. In this mcthod the signal is correlated wilh a sinusoidal signal wilh t.1H'
same frCfluency a.., the signal to be detected. This Illf'l hods have becn lIsf'd wit h
success for many years in radio colllmullications ami can he performed in lIIilll)'
ways. As pointed out by Bruning [,),11] a matilf'lIlat.ic<llly equivalent method is to
make a sampling of the irradiancc futlction "lid tll<'lI, " fitting of thcsc <I"la poillts to
a sinusoidal curvc with the knowII fff'<¡W'¡KY. Once the' fitting is tnad(" aH lIIaxilllét
and minillla are determined, Hcnce, lhe prohlelll is solno£!.

\Vit" this Illethod N mea..,urenwnls of tlle illl('nsity ilre made, for N diffl'r('llt
phasc shifts. Thc number N is gn'atn Ihan or ('filial to tiln'('. In gl'w'ral, 1.11('pllasl'
shifts ma)' be of any magnitud£', amI not Ill'Cessarily wilh the SdlllC p!J"S(' illtf'f\";¡1
scparations betwcen them, as showll by Greivcnkalllp 111]. TlwIl, the fittillg of 111('

data to t1le c10sest sinusoidal function with tllf' kllOWIl fr('<¡ucncy is oi>tailll'd 1,)"
meaos of a least squarf'S procedurc 011 a computer, Ld tlS assurllc that \\'f' h"VI' l"~I'1I
N mea"iurelllents of the irradiancc Ji, Nluall)' spil('('d 011 (l period of 111(' irrildiallt"f'
function, wilh pha"ies 0i added lo the initial pha$" <P, in sllch a way ,hal tbe Ilf'W
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phase in each measured point is tP =- 4>+ ni, whcrc

21ri
°i = N' (20)

with i = 1,2,3, ...• N. (Figs. 12.c and 12.f). Thcn, it is possihle to show with
e1ernentary Fourier thcory that the phase eJl to be determined is given by

tan 4> = L: li sin 0i
L: l¡cosoj' (21)

Another synchro.loUS deteetion rnethod, closer to the traditional c1ectronic rneth-
ods, would he to mcasure the irradiance funelion in a continuous manncr. then
tlle signal is c1eelronically filtered with éL band pass filter, in order to obtain the
dcsired fundamental Fourier component oC the signa!. TIJc rhase is tIJen measurcd
by c1ectronic means. lIowever, the ne\\' sampling procedurcs just described and also
callcd digital methods, are much more accurate.

5. Conclusions

'fhe new e1cc!.ronic phase shiftillg digital techniques have improved the accuracy
oC tIJe inlerCerometric measurcments by at least one order oC magnitude. Besides,
with the help oí the new imaging dcvices and microcomputers, not only the pre-
cision is better, hut also e measurerncnts can be made in real time. UnCortunatcly
the equiprnent requirements are considerable greater than that for the traditior:.al
intcrferornetric methods, making them more expensive. \Ve hope that oew research
will make phase shifting interícromctry cheaper and easier to perform.
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Resumen. Los métodos interferométricos permih'n mt'dir la forma de
una superficie con muy alta precisión. usando como unidad de medida
la longitud de onda de la luz. Por otro ladoJlas superficies ópticas más
comunes son las (>sfprkas. aunque las tlsférica.<;, es decir, las que no son
esféricas, son cada V('l más comunes. Esta.'i superficies asféricas tien('n
generalmente la forma de una cónica de rt'volución. El determinar en
forma rápida. y precisa los errores que pudiNa tener una superficie
asférica es un problema poco sencillo y caela vez es más necesario
resolverlo. La. razón es que las superficies asféricas son cada día más
necesarias y de alta pr('cisión en los instrum{'ntos ópticos modernos.

La interferometría de corrimiento de fa.<;c tiene alrededor de diez
años de haber sido introducida, con una ventajas extraordinarias con
respecto a los métodos tradicionales, cuando lit' aplica a la medición de
superficies asféricas. Aquí se presenta una revisión de estos avances.




