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Abstract. Interferometric methods permit us to measure the shape of
an optical surface with high accuracy, using the wavelength as a unit of
length. On the other hand, spherical surfaces are the most common, but
aspherical surfaces i.e., not spherical, are more and more popular due
to their great design advantages. Aspherical surfaces generally have the
shape of a conic of revolution. The prozedure to determine the quality
of an aspherical surface is not an easy one. However, these methods are
absolutely necessary in order to manufacture the very precise modern
optical surfaces.

Phase shifting interferometry started about ten years ago. It has
many great advantages with respect to the traditional methods, mainly
when it’s applied to the testing of optical surfaces. Here, we present a
review of these advances.

PACS: 07.60.Ly

1. Introduction

Optical surfaces are generally spherical, but aspherical surfaces, i.e. not spherical,
are becoming more and more frequently used, because of their great design advan-
tages. The reason is that one aspherical surface can eliminate or reduce aberrations
as well as three or four spherical surfaces do. In most cases an aspherical surface is
a conic of revolution, like a paraboloid, hyperboloid or ellipsoid.

On the other hand, as it may be easily understood, an aspherical surface is more
difficult to manufacture. In this process, the most difficult step is its testing. It has
even been said that an asphere can be made as good as it can be tested.

As it is to be expected, the traditional testing methods [1] are nearly always
interferometric, due to their intrinsic accuracy. If the surface is spherical, a typical
two wave interferometer is like that shown in Fig. 1, produced by the interference
between two wavefronts. The first one, idecally with a flat shape, comes from the
surface or lens under test, but very likely it has some deformations due to the
imperfections in this surface. The sccond wavefront does not pass through the lens
under test and is flat, to serve as a reference in the test. If the fringes are straight,
parallel and equidistant from each other, the wavefront under test is flat as the
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FIGURE 1. Twyman-Green interferometer.

reference wavefront. Hence the optical element under test is perfect. In the case of a
perfect optical surface, with no errors and in perfect focus, the fringes are straight,
equidistant and parallel.

If the surface under test does not have a perfect shape, the fringes will not be
straight and their separations will be variable. The deformations of the wavefront
may be determined by a mathematical examination of the shape of the fringes. By
introducing a small spherical curvature on the reference wavefront or by changing
its angle with respect to the wavefront under test, the number of fringes in the
interferogram may by changed, in order to reduce its number as much as possible.
The greater the number of fringes, the smaller the sensitivity of the test.

If the surface under test is not spherical, and its spherical aberration is not
compensated (the usual case), the reflected wavefront will not be spherical (a flat is
a particular case of sphere with an infinite radius of curvature). In this case, as we
have explained before, the fringes in the interferogram will not be straight, neither
will have constant separations between them. In an interferogram of an aspherical
surface, the number of fringes may be adjusted, by changing the angle between
the reference wavefront and the wavefront under test (tilt), and the curvature of
the spherical reference wavefront (focusing), but this number of fringes can not be
smaller than a certain minimum, that in general is a very large number. Since the
fringe separation is not constant, in some places the fringes will be quite spaced,
but in some others the fringes will be too close together.

The traditional interferogram analysis method requires the measurement of the
position of several data points located on top of the fringes. These measurements are
made in many ways, for example, by means of a measuring microscope, by means
of a digitalizing tablet or video camera connected to a computer, or many others.
The sensitivity of the test depends on the separation between the fringes, because
an error of one wavelength in the wavefront distorts the fringe shape by an amount
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equal to the separation between the fringes. The fringe deformations can in general
be measured with an accuracy of one tenth of their separation, assuming that this
separation is large enough to be measured with acceptable accuracy. The sensitivity
to wavefront deformations is then limited to about one tenth of a wavelength, if
there is a large fringe separation. If the fringes are very close to each other, the
sensitivity is directly proportional to their separation. Where the fringes are wide
separated, the sensitivity of the test is about one tenth of a wavelength, but the
sampled points will be quite separated from each other, leaving many zones without
any information. On the other hand, where the fringes are very close to each other,
there is a high density of sampled data points, but the precision of the measurements
are much lower than one tenth of a wavelength.

All these problems of the traditional interferometric methods have been over-
come by the phase shifting interferometric techniques, where the density of sampled
data points as well as the sensitivity and accuracy of the test is constant over the
wave front.

Besides, phase shifting interferometry is simple and fast, thanks to the modern
tools like the array detectors (CCD) and the microprocessors. Most of the conven-
tional interferometers, like the Fizeau, Twyman-Green, etc., have been adapted to
perform the phase shifting techniques to be described here.

2. Phase shifting interferometry

The phase shifting interferometric techniques have their first indirect antecedent in
the works by Carre [23], but they really started less than twenty years ago, with
Crane (3], Moore [4], Bruning et al. [5] and many others. The popularity of these
techniques and its impact has been so great that about one hundred papers have
been published on this subject, in the last decade, including some review papers [6].
In the phase shifting interferometers the reference wavefront is moved along the
direction of propagation, with respect to the wavefront under test, in this manner
changing their phase difference. The interference fringes then change their position,
hence the initial name of these techniques, namely “fringe scanning”.

By measuring the irradiance changes for different phase shifts, it is possible to
determine the phase for the wavefront under test, relative to the reference wavefront,
for that measured point over the wavefront. By obtaining this phase for many points
over the wavefront, the complete wavefront shape is thus determined.

If we consider any fixed point in the interferogram, the phase difference between
the two wavefronts has to be changed. We might wonder how this is possible, because
relativity does not permit any of the two wavefronts to move faster than the other,
because the phase velocity is ¢ for both waves. However, it has been shown [7], that
what really takes place is the Doppler effect, with a shift both in the frequency and
in the wavelength. Then, both beams with different wavelengths interfere, producing
beats. These beats can also be interpreted as the changes in the irradiance due to
the continuously changing phase difference. In other words, these two conceptually
different models are physically equivalent.
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FiGURE 2. Four different manners to do the phase shifting, when the frequency of the reference
beam is not permanently modified.

Then, the change in the phase may be accomplished only if the frequency of
one of the beams is modified in order to form beats. Of course, as we will see
below, this is possible in a continuous fashion using certain devices, but only for a
relatively short period of time with some other devices. This has lead to a semantic
problem: if the frequency can be modified in a permanent way, some people say
that it is an “AC interferometer”, an “heterodyne interferometer” or a “frequency
shift interferometer”. Otherwise, they say, it is a “phase shifting interferometer”.
In the author’s point of view this distinction made by a few authors may confuse
more than clarify concepts. Here, we will refer to all of these instruments as “phase
shifting interferometers”.

3. Techniques to shift the phase

The procedure just described can be implemented in almost any kind of two beam
interferometer as for example, in the Twyman-Green shown in Fig. 1. The phase
may be shifted, or equivalently, the frequency of one of the beams may be changed in
many ways, as reviewed in a paper by Wyant and Shagam [8] and by Creath [6]. As
pointed out before, the phase may be shifted in: a continuous fashion, by introducing
a permanent frequency shift in the reference beam; or in a discontinuous manner, by
periodically increasing and decreasing the optical path difference, with an oscillation
of the phase in any of two ways: a) In a saw tooth manner as in Figs. 2.a and 2.c,
and b) in a triangular manner as shown in Figs. 2.b and 2.d.

The first method that can be used to shift this phase is by moving the mirror
for the reference beam along the light trajectory, as shown in Fig. 3.a. This can
be done in many ways, for example, with a piezoelectric crystal or with a coil in a
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FiGURE 3. Obtaining the phase shift by means of a moving mirror or a rotating glass plate.

magnetic field. If the mirror moves with a speed V, the frequency of the reflected
light is shifted by an amount equal to Av = 2V/A.

Another method to shift the phase is by inserting a plane parallel glass plate
in the light beam, as shown in Fig. 3.b. The phase is shifted when the optical path
changes. The optical path difference OPD introduced by this glass plate, when tilted
an angle # with respect to the optical axis is given by

OPD = T(N cos 8’ — cos¥), (1)

where T is the plate thickness and N is its refractive index. The angles # and &'
are the angles between the normal to the glass plate and the light rays outside and
inside the plate, respectively. A rotation of the plate increasing the angle 0, increases
the optical path difference. Thus if the plate is rotated with an angular frequency
w, the frequency v of the light passing through it is shifted by an amount Av given

by
Tvw cos f

Ay = = I—Nwsg,]smﬂ, (2)

where ¢ is the speed of the light. The only requirement in this method is that the
plate has to be inserted in a collimated light beam, to avoid introducing aberrations.

The phase may also be shifted by means of the device shown in Fig. 4. If a
beam of circularly polarized light goes through a half wave retarding phase plate,
the handness of the circular polarization is reversed. If the half wave phase plate
rotates, the frequency of the light changes. This frequency change Av is equal to
twice the frequency of rotation of the phase plate 1, that is: Av = 2, This
arrangement works if the light goes through the phase plate only once. However, in
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FIGURE 4. Obtaining the phase shift by means of phase plates and polarized light, with a single
pass of the light beam.
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FIGURE 5. Obtaining the phase shift by means of phase plates and polarized light, with a double
pass of the light beam.

a Twyman-Green interferometer the light passes twice through the system. Thus,
it is necessary to use the configuration in Fig. 5. the first quarter wave retarding
plate is stationary, with its slow axis at 45 degrees with respect to the plane of
polarization of the incident linearly polarized light. This plate also transforms the
returning circularly polarized light back to linearly polarized. The second phase
retarder is also a quarter wave plate, it is rotating, and the light goes through it
twice. Hence it really acts as a half wave plate. The shift in frequency is limited by

the maximum mechanical speed of rotation of the phase plate, which is only one or
two kHz.

Another manner to obtain the shift of the phase is by means of a diffraction
grating moving perpendicularly to the light beam, as shown in Fig. 6.a. It is easy to
notice that the phase of the diffracted light beam is shifted m times the number of
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Ficure 6. Obtaining the phase shift by means of diffraction.
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FIGURE 7. Two continuously moving diffraction gratings.

slits that pass through a fixed point. The letter m represents the order of diffraction.
Thus, the shift in the frequency is equal to mn times the number of slits in the grating,
that pass through a fixed point in the unit of time. To say it in a different manner,
the shift in he frequency is equal to the speed of the grating, divided by period d of
the grating. Thus, we may finally write: Ay = mV/d. It is interesting to notice that
the frequency is increased for the light beams diffracted in the same direction as
the movement of the grating. The light beams diffracted in the opposite direction
to the movement of the grating decrease their frequency. This method to shift the
phase may be implemented by means of oscillating gratings, by means of a rotating
grating, with their slits in the radial direction, or by means of a cylindrical grating,
as illustrated in Fig. 7. As it is to be expected, the direction of the beam is changed
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because the first order beam has to be used, and the zero order beam must be
blocked by means of a diaphragm.

The diffraction of light may also be used to shift the frequency of the light, by
means of an acoustic optic Bragg cell, as shown in Fig. 6.b. In this cell an acoustic
transducer produces ultrasonic vibrations in the liquid of the cell. These vibrations
produce periodical changes in the refractive index, moving in the liquid. These
periodical changes in the refractive index act as a diffraction grating, diffracting the
light. The change in the frequency is equal to the frequency f of the ultrasonic ave,
times the order of diffraction m. Thus, we may write: Av = m/.

The last method to be mentioned here for shifting the frequency of the light
beam is a laser emitting two frequencies, v and v + Av. This is a Zeeman split line,
in which the frequency separation Ar may be controlled with a magnetic field. the
two frequencies have orthogonal polarization, so, in order to be able to interfere,
their plane of polarization is made to coincide. The non shifted frequency is used for
the testing wavefront and the shifted frequency is used for the reference wavefront.

4. Measurement of the phase

Once the phase shift method is implemented, it is necessary to determine the pro-
cedure by which the non-shifted relative phase of the two interfering wavefronts
is going to be measured. This is done by measuring the irradiance with several
pre-defined and known phase shifts. Let us assume that the irradiance of each of
the two interfering light beams at the point z,y in the interference pattern are
hi(z,y) and I>(z,y) and that their phase difference is ¢(z,y), it is then easy to
show that

I(z,y) = Ii(z,y) + la(z,y) + 2/ i (=, y) (2, y) cos é(z,y). (3)

This is a sinusoidal function describing the phase difference between the two
waves, as shown in Fig. 8. It has maximum and minimum values given by

Imax(z,y) = h(z,y) + L(z,y) + 2/ (z,y)2(z,y) (4)

and
Inin(z,y) = I(z,y) + L(z,y) — 2¢/Li(z,y) (2, y) (5)

respectively, and an average value given by Iy = 1) + I>.

As explained before, the basic problem is that of determining the non-shifted
phase difference between the two waves, with the highest possible precision. This
may be done by any of several different procedures to be described next. The best
method to determine the phase, depends on how the phase or frequency shift has
been made. As pointed out by Moore [4], basically, there are three different possibil-
ities: a) the frequency is permanently shifted and hence the output is a continuous
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FIGURE 9. Signals obtained for saw tooth and triangular modulations of the * 1ase.

sinusoidal signal, b) the phase is changed in a saw tooth manner, as shown in
Figs. 9.a, obtaining the signal in Fig. 9.b, and ¢, the phase is changed in a triangular

manner, as Figs. 9.c, obtaining the symmetrical signal in Fig. 9.d. All three methods
have been used.

4.1. Zero crossing

This method detected when the irradiance plotted in Fig. 8 passes through zero
when changing the phase difference between the two interfering waves. This zero
does not really mean zero irradiance, but the axis of symmetry of the function, which



Phase shifting interferometry 15

has a value equal to [y, or almost any other intermediate level between the maximum
and the minimum irradiance. The points crossing the axis of symmetry can very
easily be found by amplification of the irradiance function to saturation levels. In
this manner, the sinusoidal shape of the function becomes a square function. the
zero crossing technique has ben used by Crane [3] and by Moore [4].

The wavefront shape is obtained by measuring the phase ® at some reference
point on the wavefront (reference signal) and then at several other points on the
wavefront (test signal). A practical implementation of this method uses a clock that
starts when the reference signal passes through zero and stops when the test signal
passes through zero. The ratio of the time the clock runs to the known period of
the irradiance signal gives the wavefront deviation respect to the reference point.

4.2. Phase lock

The phase lock method can be explained with the help of Fig. 10. Let us assume that
an additional phase difference is added to the initial phase ®(z,y). The additional
phase being added, has two components, one of them with a fixed value and the
other with a sinusoidal time shape. both components can have any predetermined
desired value. Thus

é=®(z,y)+ 6(x,y) + asinwt (6)

then, the irradiance I(z,y) would be given by

I=1h+1+2y L ;cos[®+ 6+ Asinwi] (7)

and this function can be expanded in series as follows:
§ e di 50T Ig{cos(tb + 8)[Jo(A) + 2J5(A) cos 2wt + .. ]
— sin(® + 6)[2J1(A) sinwt + 2J5(A) sin 3wt + .. .]}‘ (8)

Here, J, is the Bessel function of order n. the first part of this expression represents
harmonic components of even order, while the second part represents harmonic
components of odd order.

Let us now assume that the amplitude of the phase oscillations A sinwt are much
smaller than 7. If now we adjust the fixed phase é to a value such that ® + 6 = nr,
then sin(® + &) is zero. Hence, only even harmonics remain. This effect is shown
in Fig. 10, near one of the minima of this function. This is done in practice by
slowly changing the value of the phase ¢, while maintaining the oscillation A sinwt,
until the minimum amplitude of the first harmonic, or fundamental frequency, is
obtained. then, we have § + ® = nx. Since the value of § is known, the value of ¢
has been determined.
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FIGURE 11. Averaged signal measurements with the integrating phase shifting method.

Another equivalent manner, would be to find the inflection point for the sinu-
soidal function, as shown in Fig. 11, by changing the fixed component of the phase,
until the first harmonic have their maximum amplitude. Then, siné = 1.

4.3. Phase stepping

This method consists in measuring the irradiance values for several known incre-
ments of the phase. there are several versions of this method that will be described
later. The measurement of the irradiance for any given phase takes some time, since
there is a time response for the detector. Hence, the phase has to be stationary
during a short time in order to take the measurement. Between two consecutive
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measurements, the phase may change as fast as desired in order to get to the next
phase with the smallest delay. Let us assume that an irradiance I; is measured when
the phase has been incremented from its initial value ® by an amount o, as shown
in Fig. 11. Thus

Li=1L 41+ 2/ Illzcos(¢+a.‘). (9)

The mathematical treatment will be completed in the next section, when de-
scribing the integrating phase shifting method, because the phase stepping method
may be considered as a particular case of the first.

4.4. Integrating phase shifting

This method, also called integrating bucket, is very similar to the phase stepping
method, with the only difference that the phase changes continuously and not by
discrete steps. The problem with the phase stepping method is that the sudden
changes in the mirror position may introduce some vibrations to the system.

In the integrating phase shifting method the detector continuously measures the
irradiance during a fixed time interval, without stopping the phase, but since the
phase changes continuously, the average value during the measuring time interval
is measured. Thus, the integrating phase stepping method may be mathematically
considered a particular case of the phase stepping method, if the detector has an
infinitely short time response, such that the measurement time interval is reduced
to zero. Like in the phase stepping method, the phase may be shifted using a saw
tooth profile as in Fig. 2.c, or a triangular profile, as in Fig. 2.d, to avoid sudden
changes.

Let us assume, as in Fig. 11 that the average measurement is taken from a =
a; — AJ2 to @ = a; + A/2, with center value a;. Then, the average value of the
irradiance would be given by

1 a+A/2
I, = — {[. +Ig+2\/1112cos(¢'+a)] da
A a—-A[2
= I + Iy 4+ 2y/ 11 I2sinc(A/2) cos(P + ) (10)

As it is expected, this expression is the same as Eq. (9) for the measurement
with phase steps, when A = 0, since the sinc function has a unit value. If the
integration interval A is different from zero, the only difference is that the apparent
contrast of the fringes is reduced. Then, we will consider this expression to be the
most general.

a) Four Step Method. The values of the irradiance are measured using four
different values of the phase, a;, equal to: 0, 7/2, 7, 37/2, as shown in Fig. 12.a.
In this manner, the following four values of the irradiance are obtained: I4, Ip, I¢,
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FIGURE 12. Six different manners to shift the phase using phase steps.

and Ip

Ty=5L+4 1+ 211 Iysinc(A)2) cos ®,

Ip =5 + Iy — 23/ 11 I sinc(A/2) sin @,

(10)
Ic =5+ I — 2y/111;sinc(A/2) cos ®,
ID = 11 + [2 + 2\}' [1]’_) SIHC(A/z) sin (b,
From these equations we may obtain
o1 [ Ip(z,y) - IB(-T-»II)}
®(z,y) = tan™! { , (11
— Ialz.y) = Ic(z,y) ’

It is interesting to notice that this result is independent of the integration interval
A.

b) Three Step Method. Since we have only three unknowns Ij, I and ¢ in
Egs. (9), three measurements would be enough to determine the phase ®. (Fig. 12.b).
Hence, we may write

In=h+L+2/11; SinC(A/Q)COs(Q + 7&’/4),
= I+ I + 2y/I1 I sinc(A/2)[cos ® — sin 9] /V/2,

Ip=L+1,-2/111, sinc(A/2) sin(® + 37/4)
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= I + I + 2/ 11 Iy sinc(A/2)[— cos ® — sin ®]/V/2,
Ic = I + I — 23/T1 I sinc(A/2) cos(® + 57 /4),
= I + I + 2¢/T1 Iz sinc(A/2)[— cos ® + sin 8] /2, (12)

Fron: these relations we may obtain

1 [ Ic(=z,y) = Ig(z,y)
®(z,y) = tan”" {IA(x,y) — Ip(z,y) } "

¢) Three 120 Degrees Steps. The three measurements do not necessarily have to
be separated 90 degrees. The phase separation between them may be 120 degrees,
as shown in Fig. 12.c. The phase may be found as follows

Ip = I + Iy + 2y/Ti I sinc(A /2) cos(® + 120°),
= I} + I + 23/, I sinc(A/2)[— .5 cos ® — .866 sin D),
Ip = Iy + I + 2/T I sinc(A /2) cos(® + 240°),
= I + I + 2¢/T1 Iy sinc(A /2)[—.5 cos ® + 866 sin B,
Ic = I + I + 2/, I sinc(A/2) cos @, (14)
which gives the following result for the phase,

V3(I4—1Ip
1
9= tan {IA+IB—QIC ' (1%)

d) Two Steps Plus One. This is an interesting Three step method, suitable
for systems with vibrations, like in the test of large astronomical mirrors [10]. The
phase of one of the beams is rapidly switched between two values, separated by
m/2. This is done fast enough to reduce the effects of the vibration. A third reading
is taken any time later, to measure only the sum of the irradiance of the beams,
independently of their relative phase, by using an integrating interval A = 2x. Thus,
we may write

In= 1 + I + 2¢/Ti l sinc(A/2) cos @,
Ig = Iy + I 4+ 2y/11 I sinc(A/2) cos(® — ,'2),
=N + I+ 2/T1 I3 sinc(A/2) sin @,
Ic=1hL+1, (16)
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which gives the following result for the phase

@:Lan_l{%g}, (17)

e) Carré Method. Another phase shifting method, suggested by Carré, takes
four equally spaced measurements, two increasing the phase and two decreasing it,
as shown in Fig.12.d

Ia=1+ I+ 24/ 1112sinc(A[2) cos(P — %Q)’
]B — 11 + I: + 2\/ ]1]2 SinC(A/?)COS(Q — %a)’
Ic =1 + Ir + 2/ 1 I siuc(A[2) cos(® + %a),

Ip =T + I+ 2\/I1 Iy sinc(A/2) cos(® + 3a), (18)

From these equations, the phase can be obtained as follows

(19)

W a(lp = Ig) +{da~Ip)
s {tani(ln ~tg] = [Ia ‘ID)}’

4.5. Synchronous detection

The frequency and the wavelength of the function in Fig. 8 are both well known,
since we know the speed with which the phase of the reference wave is shifted. hence,
it is possible to use a method described in communication theory, called synchronous
detection. In this method the signal is correlated with a sinusoidal signal with the
same frequency as the signal to be detected. This methods have been used with
success for many years in radio communications and can be performed in many
ways. As pointed out by Bruning [5,11] a mathematically equivalent method is to
make a sampling of the irradiance function and then, a fitting of these data points to
a sinusoidal curve with the known frequency. Once the fitting is made, all maxima
and minima are determined, Hence, the problem is solved.

With this method N measurements of the intensity are made, for N different
phase shifts. The number N is greater than or equal to three. In general, the phase
shifts may be of any magnitude, and not necessarily with the same phase interval
separations between them, as shown by Greivenkamp [12]. Then, the fitting of the
data to the closest sinusoidal function with the known frequency is obtained by
means of a least squares procedure on a computer. Let us assume that we have taken
N measurements of the irradiance I, equally spaced on a period of the irradiance
function, with phases a; added to the initial phase @, in such a way that the new
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phase in each measured point is ¢ = ® + oy, where
o = — (20)

with i = 1,2,3,..., N. (Figs. 12.e and 12.f). Then, it is possible to show with
elementary Fourier theory that the phase ® to be determined is given by

3 Lisinay

tan® = —=———
an Y. I cos o

(21)

Another synchronous detection method, closer to the traditional electronic meth-
ods, would be to measure the irradiance function in a continuous manner. then
the signal is electronically filtered with a band pass filter, in order to obtain the
desired fundamental Fourier component of the signal. The phase is then measured
by electronic means. However, the new sampling procedures just described and also
called digital methods, are much more accurate.

5. Conclusions

The new electronic phase shifting digital techniques have improved the accuracy
of the interferometric measurements by at least one order of magnitude. Besides,
with the help of the new imaging devices and microcomputers, not only the pre-
cision is better, but also e measurements can be made in real time. Unfortunately
the equipment requirements are considerable greater than that for the traditional
interferometric methods, making them more expensive. We hope that new research
will make phase shifting interferometry cheaper and easier to perform.
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Resumen. Los métodos interferométricos permiten medir la forma de
una superficie con muy alta precisién, usando como unidad de medida
la longitud de onda de la luz. Por otro lado,las superficies Gpticas mas
comunes son las esféricas, aunque las asféricas, es decir, las que no son
esféricas, son cada vez mas comunes. Estas superficies asféricas tienen
generalmente la forma de una cénica de revolucién. El determinar en
forma rdpida y precisa los errores que pudiera tener una superficie
asférica es un problema poco sencillo y cada vez es mas necesario
resolverlo. La razén es que las superficies asféricas son cada dia mds
necesarias y de alta precisién en los instrumentos épticos modernos.
La interferometria de corrimiento de fase tiene alrededor de diez
afios de haber sido introducida, con una ventajas extraordinarias con
respecto a los métodos tradicionales, cuando se aplica a la medicién de
superficies asféricas. Aqui se presenta una revisién de estos avances.





