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Higher order equations of motion*
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Abstract. We discuss the possibility that the motion of elementary
particles is described by higher order differential equations induced by
supersymmetry in higher dimensional space-time. We take the specific
example of six dimensions writing the corresponding Lagrangian and
equations of motion.

PACS: 11.30.Pb; 04.50.+h; 14.80.Ly

One of the main sources of ideas and discussions in the last twenty years or so, has
been supersymmetry; specially since the proof of the Haag, Lopurzanski, Sohnius-
theorem [1]. In particular, the Wess-Zumino model [2] has served as a basis for the
construction of “relativistic” lagrangian theories that could describe the physical
world.

The usual rule for writing a supersymmetric Lagrangian for a chiral super-
field [3], for example, is to take

$(0,8,2) = 3% 40(0, ) (1)
and write the kinetic lagrangian as
L = (¢9)p, (2)

where ( ) p means the highest component (maximum possible number of Grassmann
variables).
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We have

9 = aoewaaéo + total divergence

Now, the Grassmann variable 8, is a Weyl spinor having
w=27"1 (4)

independent components in v dimensions (In what follows we will only consider v
= even number).

The sum over S in Eq. (3) runs then from S = 0 to S = w. In four dimensions S
runs from zero to two and this leads us to Lagrangians which imply at most second
order wave equations. But this is not so for higher number of dimensions. In fact,
the same construction leads again to expression (3) but now in six dimensions. For
example, where w = 4, the equations of motion are of the fourth order and of even
greater order for v > 6. The mass term is introduced via a Lagrangian which is
proportional to the square of the chiral field (3)

Lm = C}|p +he, (5)

where F' is the coefficient of the maximum number of #-variables.
It is easy to see that by defining the components tpa;..a5 as

1
$o = ﬁﬂ‘*l v 2 0%y ag(®) (6)
=0 "~

the mass Lagrangian is given by
w
Ln=C) tPay-asPass-au +he. (7
S$=0
Egs. (2) and (5) [or (7)] lead, for each component X to an equation of motion [4]
(0% -m*) x =0, ®8)
where C, for dimensional reasons, has been substituted by m“.

In four dimensions, (8) is the Klein-Gordon equation, and in six, for example,
we have

(O*-mYHX =0 (O-mH)(O+m?X =0. (9)
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The massive propagator is of course.
1 1 .
and ——— for massless particles. (10)

(pZ)w,"Z — mw (pZ)uIZ

The Fourier transforms for the massless case have the form [4]

G=$ forv=4orv=_6, (11)
G=lnR v=38, (12)
G=R*InR witha=w—-v>0forv>8. (13)

We see that due to the fact that a > 0 for v > 8 the convolution of two of these
functions has not ultraviolet divergences. The same happens for the massive cases
as for p — oo the mass term has no importance.

In this case (massive particle) there are no infrared divergences, neither. This
absence of singularities is due to the fact that in a convolution between two Green-
functions the number of integration variables grows linearly with the number of
dimensions, while the denominators grow exponentially [see Eq. (10)], so the power
of pin the denominator outnumbers those in the numerator (for v > 8). For example,
while in eight dimensions we have w = v = 8, in ten dimensions we have w = 16
(v = 10) (not to speak of v = 26!). These facts show that it is worth while to
look carefully into theories containing higher order equations such as that given by
Eq. (9).

However, it is well known that this kind of equations presents considerable
difficulties both of a mathematical nature and of physical interpretation (see Hawk-
ing [5]). It is advisable then to study first higher order equations in the case of
only one significative variable, where it is possible to address the question of uni-
tarity in a controlled way, describing the scattering data in a precise mathematical
language [6,7] and looking at the physical implications of the scattering processes.

The general linear differential equation for only one significative variable takes
the form

d"d' du—2¢
dzn T Itgge Tt wd =2, (14)
where a possible go—1(d"~'¢/dz"!) has been eliminated by means of a transfor-
mation ¥ — fi.
This equation has n — 1 independent potentials g;, (i = 0...n — 2) when they

are well-behaved they tend to zero sufficiently rapid for z — +oo; so that asymp-
totically (14) tends to

dr¢()
dr®

= z"¢©), (15)
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whose solution is
¢£0) o ea;zr‘ (16)

th 1ot of unity.

with af = 1, a; being thus a n
Eq. (15) of course, has n independent solutions that can be expressed in terms
of a set of basic linearly independent solutions defined by conditions on z = +oo.
We define the first Jost function fi(zz) as the solution of (15) with the greatest
rate of decrease for r — —oo.
The second Jost function fy(zx) is that solution of (14) which, for £ — —oo has
the second rate of decrease (and for + — oo has the second rate of increase), etc.,
etc. [8].

In other words
fi(zz) — ™%, (17)
where the roots are ordered in such a way that
Reajz > Reazz > .-+ > Reapz. (18)

It is clear that (18) divides the z-plane in 2n regions, within each region the
inequality (18) is well defined but as arg z is varied, there are lines for which
Reaj = Reayy 2 and this defines a ray on which the order of roots is ill defined.
There are 2n rays dividing the z-plane in regions with an angle (27/2n) = (7/n).
In particular for fourth order differential equations, the z—plane is divided in eight
“octants” each one with an angle of /4 radians [9].

The Jost functions have discontinuities at those rays and furthermore they can
have poles with corresponding residues. the set of all discontinuities, including poles
and residues, form the so called “scattering data” of the differential equation (14). It
is shown by mathematicians that the knowledge of the scattering data is equivalent
to the knowledge of the diffential equation. In other words the set of discontinuities
(including poles and residues) determines the n — 1 potentials g; of the equation.

However from the point of view of a physicist, not all the scattering data are
physical. For instance, in a fourth order differential equation, only the real and imag-
inary axis correspond to physical data (i.e., a plane wave going to plane wave) [9].
The other rays at /4 and +37/4 correspond to scattering of waves that grow
exponentially (or decrease) for z — +oo. These are unphysical data. Therefore,
in order to make the equation a physical one, the Jost functions must not present
discontinuities on these rays. This imply relations to be satisfied by the potentials
of Eq. (14) in order for it to be physically acceptable,

Summarizing: Any higher order equation of motion can not in principle be
thought as having physical significance unless some specific relations exist among
the coefficients. One hopes that supersymmetric theories may provide the clue to
physically meaningful higher order equations. Any way, we want to mention that
by using the method ¥ — oo of Ref. [10] in a higher order equation, we get the
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static limit in leading approximation and, as a second approximation a second
order equation is obtained. The higher order derivatives appear in the following
approximations (in a v~! development). In this sense we can say that a higher
order equation has a second order equation as an approximation.

With these motivating ideas we start looking for a supersymmetric theory in six
dimensions which is the simplest higher order case. In this respect we like to point
out that a more realistic theory that the one we are presenting here can be found
in works by P. Fayet [11].

We want to find the coupling between the chiral superfield, Eq. (1), and a gauge
superfield [12]

4
V= Os--0:,A% 0007 ... 0%, (19)
s,1=2

where we have chosen the Wess-Zumino gauge [12].
A chiral superfield strength for this field is given by

4

Weaias = DDy Do,V (20)

and the corresponding Lagrangian is
Lw= falazaam‘walazwu;;aq + he.
By reducing the spinor components of the gauge superfield defined by (20), using
Elie Cartan’s reduction recipes, we found the following tensor components.
A(uy) (Graviton field) (uv) means symmetric part and the gauge transformation
with parameters A, are

Aiuu) = A(,‘y) + 3,.)\,, + 6.,)\“ e r]”yaﬁ,\u (21)

This gauge transformation can be used to simplify the Lagrangian by choos-
ing the De Donder gauge in which 8,4} = 28" A(,,). In this gauge

L22 %= O A DA). (22)
Aw)  ([wv] = antisymmetric part) has the gauge transformation
ALW] = Ap) + Aoy (23)

Apur = self dual and completely antisymmetric three-vector. The corre-
sponding Lagrangian only contains the divergence of this tensor, which is
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gauge-invariant

Ly 2 8,0" Ap, 10”0, A, (24)
(gravitino field). Under a gauge transformation it transforms as

A = A% + (COv,0)P 2, (25)

where A3 is a spinor parameter, which can be adjusted so as to have a “zero
gamma trace” gauge

('y“C)agA'g =0. (C = transposition matrix)
In this gauge, the Lagrangian is
L3~ 4i0* AS050, A, + 1105 AGAL. (26)
Complex gauge invariant vector field. Its Lagrangian is
L24~2B"3,0°B, — B"0B,. (27)
real vector field with gauge transformation
AL = Ay + 0, (28)
and the Maxwell type Lagrangian
33 = FPFu;  Fu =840 — A, (29)
real gauge invariant self-dual three-vector field. The Lagrangian is
Y, ST GGy =0 Ay
photon field. A complex gauge invariant spinor field with Lagrangian
L34~ iB°3%B,.
Finally: an auxiliary gauge invariant scalar field with Lagrangian

£44 = .Dz.

Of course, for a more realistic theory it is necessary to work with non-abelian
gauge groups, in particular Yang-Mills type theories for the standard model and also
introducing supergravity; but our aim is not so much to construct a realistic theory,
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but rather to show the plausibility of using higher order equations in a theory that
could be renormalizable and unitary.
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Resumen. Discutimos la posibilidad de describir el movimiento de
particulas elementales por medio de las ecuaciones diferenciales de
mayor orden inducidas por la supersimetria en el espacio-tiempo de un
nimero mayor de dimensiones. Escribimos el Lagrangiano correspondi-
ente y las ecuaciones de movimiento para el ejemplo especifico de tomar
seis dimensiones.





