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Abstract. \Ve discuss the possibility that the motion of elementary
partides is described by higher arder differential equations induced by
supersymmetry in higher dimensional space-time. \Ve take the specific
example of six dimensions writing the corresponding Lagrangian and
equations of motion.
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Olle oC the main SOUTresof ideas ano disclIssions in tile last twcnty years or so, has
been sllpersymmetry; specially since tIJe proor oC the lIaag, Lopurzanski, Sohnius-
theorcm [1]. In particular, the \Vess-Zumino model [2] has served as a basis í~r the
constTuction oí "rclativistic" lagrangian thf.-'Oriestbat could describe the physicaI
world.

The usual rule Cor writing a supersymmctric Lagrangian Cor a chiral super-
field [31, for example, is lo lake

(1)

and write the kinctic lagrangian as

(2)

whcre ( )n mcans the highest component (maximum possible number oí Grassmann
variables) .
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Plata, La Plata, Argentina and Comisión de Investigaciones Científicas de la Provincia de Buenos
Aires, Argentina.
tCentro Latino Americano de Física-CLAF, Av. Wenceslau Braz 71 (fundos), 22290~Rio de
Janeiro, fU-Brasil.
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We have

~<P= ~oe;9a8<Po + lolal divergence

~ -;¡ '" (i080)s "'_
'l'o~ S! '1'\1'

6=0

Now, the Grassmann variable ()~ ís a WeyI spinor having

(3)

(4)

índependent components in v dimensions (In what CoIlowswe will only consider v
= even number).
The sum over S in Eq. (3) runs lhen fmm S = Olo S = w. In four dimensions S

runs from zero to two and this leads us to Lagrangians which imply at most second
order wave equations. But this is not so Corhigher number oC dimensions. In fact,
the san'Ieconstruction lea.ds again to expression (3) but now in six dimensions. For
example, where w = 4, the equations of motíon are of the fourth order and oC even
greater order for v > 6. The mass term is introdueed via a Lagrangian which is
proporlional lo lhe square of lhe chiral field (3)

where F is the coeflicient of the maxímum number of O-variables.
It is easy to dee that by defining the components t/lltl ... ltS as

<Po = L ~!O.l... O.s1/J., ...•s(x)
'i=o

the mass Lagrangian is given by

w

£m = eL 1/Jltl... ltSt/lOS+l"'O.., + he.
5=0

(5)

(6)

(7)

Eqs. (2) and (5) (or (7)J lead, for each componenl X lo an equalion of molion [4]

(8)

where C, for dimensional reasons, has been substituted by mlo1
•

In four dimensions, (8) is the Klein.Gordon equation, and in six, for example,
we have

(02 - m')X = O (O - m2)(0 +m2)X = O. (9)
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The massive propagator is of course.

1
(p2)"'/2 _ m'" and

1
(p2)"'/2

for massless partic1es. (10)

The Fourier transforms for the massless case have the form [4]

1
G = R2 for v = 4 or v = 6,

G = InR v =8,

G = R. In R with" = w - v > Ofor v > 8.

(11)

(12)

(13)

We see that due to the faet that " > Ofor v > 8 the convolution of two of these
functions has not ultraviolet divergences. The same happens for the massive cases
as for p -+ 00 the mass term has no importan ce.

In this case (massive partic1e) there are no infrared divergences, neither. This
absence of singularities is due to the fad that in a convolution between two Green-
functions the number of integration variables grows linearly with the number of
dimensions, while the denominators grow exponential1y (see Eq. (10)], so the power
of p in the denominator outnumbers those in the numerator (for v > 8). For example,
while in eight dimensions we have w = v = 8, in ten dimensions we have w = 16
(v = 10) (not to speak of v = 26!). These faets show that it is worth while to
100k carefully into theories containing higher order equations such as that given by
Eq. (9).

However, it is well known that this kind of equations presents considerable
diffieulties both of a matbematieal nature and of physical interpretation (see Hawk-
ing [5)). It is advisable then to study first higher order equations in tbe case of
only one significative variáble, where it is possible to address the question of uni-
tarity in a controlled way, describin"g'the scatt~ring data in a precise mathematica1
language [6,7] and looking at the physical implications of the seattering processes.

The general linear differential equation for only one significative variable ta.kes
tbe form

d"4> dn-24> _ n

d n + qn-2-
d

n 2 + ... + qo4>- z 4>,z x - (14)

where a possible qn_l(d"-14>/dxn-1) has been eliminated by means of a transfor-
mation ,p -> ¡,p.

This equation bas n - 1 independent potentials q;, (i = O... n - 2) wben tbey
are well-behaved they tend to zero sufficiently rapid lor x -+ :l:OO¡ 80 tha~ aaymp..
totically (14) tends lo

d
n
4>(O) = zn ~(O)
d n 'P,

X
(15)



26 C.C. Bollini mld J.J. Giambiagi

whose solutioo is

",,(O) _ 0iZZ
<¡JI - e , (16)

with o-? = 1, O'i bcing tllus a Ull, ro()t of unity.
Eq. (l5) of course, ha...,11 indqH'ndcnt solutions that can be exprcsscd in terms

of a sel of ba...,iclineady indcpClldcllt solutions definNI hy ("on<iitions on x = :i:oo.
\Vc define the first Jost function f¡(;;x) as the solution of (1.)) with lhe greatcst

rate of dccrease for x _ -oo.
Thc second Jost function h( z:r) is lhat solution of (14) whi("h, for x _ -00 has

the secono rate of dccrcase (and for :r - 00 has lhe sccon<i rate of increase), etc.,
elc. 18).

In other words

( 17)

where the roots are ordcrcd in such a way that

(18)

It is clear that (18) divides the z-plane in 2n regions, within each region the
incquality (lB) is well defincd bul. as arg z is varied, there are lines for which
Reo; = Reol+lZ and this defines a ray on which the order of roots is ill defined.
There are 2n ray' dividing lhe z-plane in region, wilh an angle (2~/2n) = (~/n).
In particular for fourth ordcr difTcf('lItia! cquations, the z-planc is divided in eight
"octants" cach Ofiewith all anglc of 1r/1 radians [9].

The Jost fundions have discontinuities at those rays and furthermore they can
have poles with corrcsponding rt-'Siducs.the set of aH discontinuitics, including poles
and residucs, íonn lhe so callcd "scallering data" oí the difTerenlial equation (14). It
is shown by mathematicians that lhe knowlcdgc oí the scattcring data is equivalent
to the knowledge of tlle difT{'ntiai c~llIation. In other words the Sel of discontinuitics
(induding poles and residllPS) determines the n - 1 potentials 91of the equation.

However from the point of vi•.w of a physicist, not all thc scattering data are
physical. For instance, in a fourth ordcr difTcrential equation, only the real and imag-
inary axis corrcspond to physical data (i.c., aplane wave going to plane wave) [9].
The othcr rays at 7r/4 and :i:31l'"f4 cOfl"('spond to scattering of wavcs that grow
exponentially (or dcercase) for I - :i:oo. These are unphysical data. Therefore,
in order lo make lhe e<¡ualion a physical one, lhe Josl funcliolls must not present
discontinuities 00 these rays. This imply rclations lo be satisfied by the poteotials
oí Eq. (14) io order ror it to bl~physically acceplable.

Summarizing: Any higher order cqllation of molioo can not io principie be
thought as having physical significance unlcss sorne specific relations exist among
the coefficients. Qne hopc~ lhat supersymmetric thcories may provide the clue to
physically mcaoingful highcr order equations. An)' way, we want to mentioo that
by using the mcthod 1/ - 00 of Ilcf. [ID] in a higlJ('r order equation, we get the
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static limit in lcading approximation and, as a second approximation a second
order equation is obtained. The higher order derivatives appear in the following
approximations (in a ,,-1 development). In this sen se we can say that a higher
order equation has a second order equation as an approximatioo.

With these motivating ideas we start looking for a supersyrnmetric theory io six
dimensioos which is the simplest higher arder case. lo this respect we like to point
out that a more realistic theory that the ooe we are presenting here can be found
in works by P. Fayel [11). .

We wanllo find lhe coupling belwccn lhe chiral superfield, Eq. (1), and a gauge
superfield [12)

v= •'""' D. . .. "8. Aal ...a~ool ... 001L.- al °4 01"'01 '

;9,t=2
(19)

where we have chosen the Wcss-Zumino gauge [12).
A chiral superfield strength for this field is given by

4
Wa¡l1'2 =DDa, Do'2 V

and the corresponding Lagrangian is

(20)

By reducing lhe spinor componenls of lhe gauge superfield defined by (20), usiog
Elie Cartan 's reduetion redpes, we found the following tensor components.
A(~v) (Graviton field) (Il~) mcans symmetric parl and the gauge lransformation

with parameters >.~are

(21)

This gaugc transformation can be used to simplify the Lagrangian by choos-
ing lhe De Donder gauge in which a.A~ = 28" A(."¡. In this gauge

(22)

.41.") (Il'v) = anlisymmelric par!) has lhe gauge transformalioo

(23)

>'p~v = self dual and completely antisymmelric three-vector. The corre-
sponding Lagrangian only oontains the divergence of this tensor, which is
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gauge-invariant

r" ~ a ""A a'a Al".i.•.•.22 - p(F (~vl ~ .

-A: (gravitino field). Under a gauge transformation it transforms as

(24)

(25)

where >-p is a spinor parameter, which can be adjusted so as to have a "'zero
gamma trace" gauge

(-y"C)a~A~ = O. (C = lran'po,ilion malrix)

In this gauge, the Lagrangian is

(26)

-BIJ Complex gauge invarianl vector field. Ils Lagrangian is

-A~ real vector field with gauge transformation

A~ = A" + a"A,

and lhe Maxwell iype Lagrangian

(27)

(28)

(29)

AÁ~p real gauge invariant seU-dual three-vector field. The Lagrangian is

BOl photon field. A complex gauge invariant spinor field with Lagrangian

D Finally: an auxiliary gauge invariant scalar field with Lagrangian

Of coursc, for a more realistic theory it is necessary to work with non-abelian
gauge groups, in particular Yang-MiIls type theories for the standard model and aIso
introducing supergravity; but our aim is oot so much to construct a realistic theory,
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but rather to show the plausibility of using higher order equations in a theory that
could be renormalizable and unitary.
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Resumen. Discutimos la posibilidad de describir el movimiento de
partículas elementales por medio de las ecuaciones diferenciales de
mayor orden inducidas por la supersimetría en el espacio-tiempo de un
número mayor de dimensiones. Escribimos el Lagrangiano correspondi-
ente y las ecuaciones de movimiento para el ejemplo específico de tomar
seis dimensiones.




