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Abstract. The exact formalism of microcanonical distribution is used
to describe the ideal relativistic quantum gases. A statistical cluster de-
composition is developed for the calculation of the phase space integrals
with the correct statistics. Analogies with the real classical gases as well
as the applications of the formalism are discussed.
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1. Introduction

The theory of ideal (relativistic) quantum gases has been often described in the
literature [1,2]. In particular, the general theory for Bose and Fermi gases has been
developed on the basis of the canonical [3] and the grand canonical ensemble [4].

From these approaches, which are the thermodynamical ones, one can develop
for the ideal quantum gases a formalism very similar to that for real classical gases,
such as a cluster decomposition and a virial expansion. These analogies exist since
ideal Bose and Fermi gases have the properties of real gases (i.e. with interactions)
if considered from the standpoint of classical statistics. Little attention, however,
has been paid on the formalism based on the microcanonical distribution, where
the conservation of energy and momentum are fully taken into account (see, how-
ever, [5,6,7]).

In this paper we develop a general statistical approach for the ideal relativistic
quantum gases based on the fully microcanonical distribution. While this formalism
can be used for the calculation of the phase space integrals, the other previously
considered thermodynamical ones are not applicable to this problem, since they
lack of the constraints of energy-momentum conservation. We show that one can
develop an exact statistical cluster decomposition for the ideal relativistic quantum
gases in the formalism of the microcanonical distribution. Corrections to the usual
phase space integrals due to the quantum statistical effects are given. The quantum
statistics has effects on problems such as the statistical bootstrap model [8,9], as
well. The formalism developed in this paper for the calculation of the phase space
integrals with the cluster decomposition can be directly applied in the Frautschi
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formulation [9] of the statistical bootstrap model [8] with the correct quantum
statistics [10]. Systems such as neutron stars should be considered in accord with
the correct statistics, due to Pauli’s principle.

In Section 2 we study the expressions for the phase space integrals, taking fully
into account the quantum statistics. Qur treatment is a strict relativistic one and
we evaluate them in a closed form for two limiting cases, namely, in the extreme
relativistic limit and nonrelativistic limit; in the general relativistic case, we express
it in the form of a one dimensional integral over modified Bessel functions.

We derive an exact statistical cluster decomposition for the Bose and Fermi
gases. In the most general case, we give the corrections to the usual phase space
integral due to the quantum statistical effects.

In Section 3 we discuss the ideal relativistic quantum gas system in the ther-
modynamical description for completeness. We derive an exact expression for the
coefficients of the cluster decomposition in terms of the modified Bessel functions.

The virial expansion then follows directly from these exact expressions. In the
nonrelativistic case our exact formulas reduce to the ones already given in the
literature [1-4].

2. Microcanonical formalism

Taking fully into account the different type of statistics, we consider an ideal rela-
tivistic gas system consisting of v—kinds of noninteracting particles, each of which
has Ni, Na,..., N, particles with masses py, ga,..., f,, respectively. Let a set of
vectors qj(q’j,q;f, ...) characterize all possible momenta and polarization of every
spin states of a particle of j-th kind. Since the particles are noninteracting, the
set of vectors q; characterizes all the possible states of the given system, and the
corresponding set of occupation numbers n;(q;) defines completely the state of the
whole system. We start with the precise expression of the phase space volume of
the system with fixed total energy-momentum four vector Q = (E,Q); it is given

by (6]

v v
on. (@) =) 6 0 Q =D gmi(a;) p [[ 64N = D nilay) ¢ Qfnilas)},
{n} 3=l q; j=1 q;j

(1)
where g; is the energy-momentum four-vector ¢; = (¢;,q;) and the summation over
q; runs over all possible values of this vector and polarization states. Q;{n;(q;)}
denotes the degeneracy of a state with given q;. Both for Bose and Fermi gases,
we have ); = 1, on account of the indistinguishability of particles, while for a gas
obeying Boltzmann statistics we have

Nj!

Q;{n;(q;)} = m

(2)
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The summation over {n} in Eqgs. (1) and (2) runs over all possible values of the
occupation numbers. In the case of Bose-Einstein and Boltzmann statistics {n}
runs over 0,1,2,...,00, while in the case of Fermi-Dirac statistics {n} runs over 0
and 1 only.

The problem consists on the calculation of oy, n,(Q) m Eq. (1). In order
to carry this out, we define the 4-dimensional Laplace-transform, or generating
function of an,..n,(Q) [5]

B 8 s ] PP Qon, 1, (@Q)

=> [[e (‘ >, ﬂq:‘ﬂ:‘) 6 {N,- = Zn;‘(%‘)} > {n;(ay)},
q;j q; q;

{n} j=1
(3)

where  is a time-like four vector. In thermodynamical language, § is an inverse
temperature § = F}I" with k denoting the Boltzmann constant. Using the Fourier-
representation for the Kronecker é

2r
6{N1—an(q,-)}=;—r]n exp{z‘aN,-ﬁ'an(q,-)a}da, (4)
q; 3

q;j
we get
v
aw,..x,(8) = [[ Gn;(8), (5)
1=1
where
1 2x
Gy;(B) = E-‘JF,/O exp{iNja + ®;(8,a)}da, (6)
and ®;(f, a) is defined as
%) = 3 T emilai)Partiolq; (n;(q;)}. (7)
{n} 9

Changing the variables A = ¢e=** in Eq. (6), we get

1
Gn;(8) = _jc+ A~Ni=1,2i(8.2) g\

27
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N.
= {d_f:r_e*l’j(ﬂ.l)} , (8)
Nj! LdAN A=0

where the integration is taken counter-clockwis= along the contour |A| = 1. Summing
in Eq. (7) over {n} we get

o0 k
Z TTAk Z e_‘aqi,‘; Bose-Einstein and Fermi-Dirac (9a)
i -

0;(8,4) =
A Z e~ Pajk+n Nj!, Boltzmann, (9b)
qj
where vy = 1 (—1) for all particles obeying Bose-Einstein (Fermi-Dirac) statistics.
The result for Boltzmann statistics (9b) is obtained if one keeps only the k = 1 term

and adds In N;! in the corresponding expressions of Eq. (9a).
We now replace the summation by the covariant integrals according to [11]

.
Ze—ﬁqjk i Q'J/ QJqJ d q; e—ﬂij‘ (10)

o (27)? g,

where g; denotes the number of polarization states of the vectors q;, and £; is the
4-dimensional volume, which in the rest frame is expressed by ; = (V},0), with
V; being the space volume occupied by j-th kind of particles. (We use h = ¢ =1
units). Evaluating the integrals in the 3-rest and {)-rest frame and using the Lorentz
covariance we get

=Y M fi(k,B), (11)
k=1

where

9V v
()ﬂk2

fi(k,B) = LA muy Ka(u; k).

According to Eq. (8), we have

Gy (8) = I[M {Zf,kﬂ }]

=, H —{f, kAT, (12)

{m} k= 1™



54 Honorio Vera Mendoza and Masaki Hayashi

where {m} is the partition number of Nj, satisfying ZkN;l kmj = N;. The sum-
mation is taken over all possible {m} of N;. Eq. (12) has the meaning of a cluster
decomposition. Now, if we consider a special system consisting of v-different parti-
cles, i.e. Ny = Na = ... = N, = 1 with different masses y1, 2, ..., fty, we have, as
is easily shown,

Yo gV drud
G1.1(8) = [] s =5 KalwsB). (13)

This formula represents the generating function of an ideal relativistic gas obey-
ing Boltzmann statistics [12]. For the sake of simplicity, in what follows we will
calculate the phase space integrals in an explicit form, restricting our attention
to the system with N-identical quantum particles. First we consider the extreme
relativistic (e.r.) case. Taking the limit 3 — 0 we get from Eq. (12)

S?Tg‘rk"_]
%Hmk { e (14)
where w = (27)3/V.

On the other hand, the generating function in Eq. (3) can be written as a
K-transform [13]:

Gy (B) = 4np~? [) K1(8Q) Q)2 Q¥ o (Q) dQ. (15)

Inversion of vhe integral of Eq. (15) together with Eq. (14) yields a closed ex-
pression for o%"(Q),

(k+1)my (D)E.r.(Q)

Z H FY m]:‘imk z (16)

{m) k=1

where

m mi—1
(" (™ sy
(3mg — 4)(2myg — DI(2my — 2)!

ol (Q) =

represents the phase space integral for the system with my particles obeying Bollz
mann statistics. Keeping the term with k = 1, m; = N, we get the usual phase
*space integral

o5(Q) = oW (Q). (17)
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The nonrelativistic (n.r.) limit of the formulae are obtained taking the limit
B — oo in Eq. (12):

N(2)™ lkt)me Fm
ST w i (erkp)i —ufimik
WO = 2 N rmemgm <™ (182
(k+1)my
i (B)rl
{Z,,,H, o (@ k), (19

my (2r)@0m—1VETTTE ()32
r (3_("‘+—1),) (mykpu)3/2

ol (Qukn) = ()

2w

(Q — kpumy )Oma=3)/2,

Again Eq. (19) reduces to the usual phase space integral when one restricts
oneself to the first term in Eq. (19). A rigorous formula for oy(Q) can be derived
without any approximation

7{k+l}mk
ZH mgkime "m (Q, kp), (20)
l k=1

where

o(Q, ky) = (L%) (4)me= 2% ﬁ ‘/’Hl‘l'oo "

C—100

my
x L(BQ) [[ Ka(Bku)  with ¢ > 0.

i=1

af,f,')(Q,p) represents a rigorous formula for the usual phase space integral, which
was obtained earlier in Ref. [14].

3. Thermodynamical description

For the sake of completeness, we continue our discussions on an ideal relativistic
quantum gas system in the thermodynamical description. Let us define the cluster
coefficients of the ideal quantum gases as

805,8) = L20)
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_ 2gpt M

= @ % K2(Buj). (21)

Note that ¢(j,3) is a function of the inverse temperature 3 only, and does not
depend on V. Now

N
=3 1'[ mf.{w VY™ (Zim, = N) ; (22)
y=1

{m} =1

For a better understanding of the content of Eq. (22) we introduce the grand
partition function, which describes an ensemble of particles with varying N:

=X B) = ) Gr (BN

N>0
N
—ZZH—{‘W B}™; (ijj=N)
N>20{m} =1 y=1
=expl Y V«asu,ﬁw}. (23)
121

The average number of particles in the ensemble (multiplicity) is given by

I CY:)|
N = 2= =Y iV, HA
121
2g2V
9‘“ Z—-—ﬁz Bui)M. (24)
T (2r Bt 3

The average total energy over the ensemble is given by

- ad

E=-55m=(\5)
_ Wt A [Ka(Brg) | pi{Ka(Bri) + Ka(Bui)}] |,
=TT P [ @t o M. (25)
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In the extreme-relativistic case when u — 0, we get

— A 4Vg 'y-""” .

N = — = --.—-—/\", 26a
7 Cr & 7 )

— _12Vg

E=g B= o’ ?)1: S (26b)

If in Eq. (26b) we put g =2,y =1, A = 1, i.e. we consider the black-body radiation
case, we recover the Stefan—Boltzmann law

2
i i, (27)

a= 15

<| t=|

Setting E to be equal to the given energy /5 yields

N _ 38 A
N-S/W. (28)

Applying the formalism to the multiparticle production a+b — c+d+. .. (now
s is defined as s = (p, + py)?, where p, and p, are the 4-momenta of the incoming
particles a and b, respectively), we then have for the average energy W of secondaries

\/E B3/4

=_ VS _ 18
w_w s 5 (29)

Thus the energy dependences of the average multiplicity and the average energy
of secondaries in the extreme relativistic case are the same as in the usual statistical
theory without quantum effects. The quantum statistical effects manifest themselves
only in the energy independent factors A and B.

We derive once more Eq. (24) by a different method which allows to obtain a bet-
ter insight into the physical interpretation of decomposition appearing in Egs. (12)
and (22). From Eq. (23) we obtain

OIE(\,B)  Lnzo Lmy mi 10, FELARN™
9¢(k, B) o D Hf:; Mﬂffj;\’_)_l_l

¢(k, B)

N
= i Y m; = N) (30)
1=1

Formally, 2, can be interpreted as the average of my, appearing in various
ensembles of {m}, satisfying the condition Z;Lljmj = N. Average is taken, in
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this case, over the grand canonical function. From Eqs. (30) and (23) we get
me = Vo(k, B)A. (31)

Then the average number of particles is given by

N=Yjm;=Y jV(i, AN, (32)

121 121

coinciding with Eq. (24). this suggests that we can give to m; the physical meaning
of a number of clusters with k particles. In other words, the system of N-identical
free particles can be decomposed into my,ma,...,my clusters in each of which are
contained 1,2,..., N particles, satisfying the gencra.] relation E —1Jmj = N. This
situation is very s:mllar to that of the real classical gases. Thls happens because
ideal Bose and Fermi gases possess the properties of real gases on account of indistin-

guishabililty of particles, and behave as if they formed clusters in the system. Thus,
#(7,3) corresponds to the cluster coefficients of the real classical gases, while A can
be formally interpreted as the “absolute activity” [15] of a particle, i.e. A = e#?,
where p is the chemical potential of the system (not to be confused with the mass of
the particle). In this way, one can develop for the ideal quantum gases a formalism
in complete analogy with the one of the classical real gases.

One can further go on by introducing the pressure p as

——hm zmw Y 65, BN (33)
g2l
From Eq. (24) we have
N s i
v=P= Jo(s, B)N. (34)
321

From Eqgs. (33) and (34) one can obtain, without approximation, the virial
expansion for the ideal relativistic quantum gases

<|=]

) (35)

where

k+1
B =3 Zm_,—] 1+Em, H{Jfﬁ(Jﬁ} G -mi=k],

{m} =2
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with ¢(j, 3) defined as in Eq. (21). In the nonrelativistic approximation with 8 — oo
our exact formula, Eq. (35), reduces to the one already given in the literature [1-4].

We end the paper by showing that Eqs. (24) and (33) are consistent with the
conventional thermodynamical formula

This can easily be shown from Egs. (23), (24) and (33) as follows:

N _ 1,9InZ(,p)
VoVT oo

) il @ : A55F
=Aar [ 26, AN = BY 45, BV

i>1 721

where we used the relation ) = ef4,
Furthermore, from Eq. (24) we have

#(i,8) = 1

Lt M j
2‘”2’3 j2 2()8#]), (38)
hence, we have explicitly that for the pressure:
2. mditl ;
. %’%7.—21(2(@;3')/\1. (39)
L |

121

This is in agreement with the formula derived by Miller and Karsch [16].
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Resumen. Se usa el formalismo exacto de la distribucién micro-
canénica para describir los gases ideales cudntico-relativistas. Se de-
sarrolla una descomposicién estadistica de cimulos para el cdlculo de
las integrales de espacio fase con la estadistica correcta. Se discuten
analogias con los gases cldsicos reales y aplicaciones del formalismo





