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Abstract. Tite exact formalism of microranonical distribution is used
to describe the ideal relalivistie qllantllm gases. A statistical cluster de-
composition is dcvcloped for the calculation oC the phase spaee integrals
with the correet sta.tistics. Analogies with tlle r('al r1assical gases as well
as the applications of the formalism are discuss('d.
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1. Introduction

The thoory of ideal (relativistic) quantum gases has b(,clI often Jcscribed in the
literature 11 ,2]. In particular, the general thoory for Bose and Fcrmi gases has bccn
devcloped on the basis of the canoniea1 [3] and the grand canonical ensemble (4).

From thcsc approaches, which are the thermodYllamieal (lIleS, orle can develop
for the ideal quantum gases a formalism very similar to that for real c1assical gases,
such as a cluster decomposition and a virial expansiono These analogies exist since
ideal Bose and Ferrni gases have the properties of real gases (i.c wilh interactions)
if considered from the standpoint of c1assical statistics. Little attention, however,
has becn paid on the formalism based on the microcanonical distribution, where
the conservalion of energy and momentum are fully takcn iuto account (5CC,ho\','-
ever, [5.6,7]).

In this paper we develop a general statistical approach for tlle i(leal relativistic
quantum gases based 00 lhe fully microcanonical dislribution. \\'hile this formalism
can be used foc the calculation of the phase space intcgrals, the othcr previously
consiticrNi thermoc1ynamicai anes are not applicahlc to this prohll'm, since the)'
lack of the constrainls oCcnergy-momentum conservation. \Ve show that OBe can
develop an exacl stalistical cluster dccompositioll for the iclcal rdativistic quantum
gases in the formalism oC the microcanonical dislributioll. Corrections to the usual
phase space integrals due to the quantum statistical effects are given. Thc quantum
statistics has effecls on problcms such as thc stati5tieal bootstrap moJel [8,91, as
well. The formalism dcveloped in this paper for the calculation of the phase space
integrals with the cluster dccomposition caIl be directly applied in thc Frautschi
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formulation [9J of the statistical bootstrap roodel [8] with the corred quantum
statistics [10]. Systcrns such as neutron stars should be considered in accurd with
the corred statistics, due to Pauli's principIe.

In Section 2 we study the expressions for the phase space integrals, taking fulIy
into account the quantum statistics. Our treatment is a strict relativistic one and
we evaluate them in a c10sed form for two limiting cases, nameIy, in the extreme
rc1ativistic limit and nonrelativistic limit; in the general relativistic case, we express
it in the forro of a one dimensional integral over modified Bessel functions.

\Ve derive an exact statisticaI cluster decomposition for the Bose and Fermi
gases. In the most general case, we give the corrections lo the usual phase space
integral due to the quantum statistical effects.

In Section 3 we discuss the idcal rc1ativistic quantum gas s)'stem in the ther.
modynamical description for completeness. \Ve derive an exact express ion for the
coefficients of the cluster decomposition in terms of the modified Bessel Cundions.

The virial expansion then follows directly from these exact expressions. In the
nonrelativistic case our exact formulas reduce to the ones airead)' given in the
Iiterature [1-4).

2. Microcanonical formalism

Taking fully inlo account the differcnt type of statistics, we consider an ideal rela-
tivistic gas system consisting of v-kinds oC noninteracting particles, each oC which
has jI,,'¡, N2, •.. , Nv particles with masses JlI, p2,"" ¡Iv, respectively. Let a set of
vectors %.(qj,qj, ... ) characterize aH possible momenta and polarization of every
spin states of a particle of j-th kind. Sincc the particles are noninterading, the
set of vectors qj characlerizcs aH the possible statcs of the given system, and the
corresponding set of occupatioll numbers nj(qj) defines completely the state of the
wholc s)'stem. We start with the precise expression oC the rhase space volume of
the systcm with fixcd total energy-momentum four vector Q = (E, Q); it is given
by [6]

"N¡N"(Q) = I>S' {Q - t L>jnj(qj)} tIÓ {Nj - LTlj(<J.i)} flj{n;(clj)),
(n} )=1 qj ]=1 qj

(1)
wl1ereqj is the energy-rnomenlum four-vector qj = (tj,qj) and the summation over
qj mus over aH possible values oC this vector and polarization states. nj{nj(qj)}.
denotes the degeneracy of a state with given <}j. Both for Bose and Fermi gases,
we havc nj = 1, on account oC the indistinguishability oCparticles, while for a gas
o1>eyingBoltzmann statistics we have

(2)
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The summalion over {n} in Eqs. (1) and (2) runs over aH possible values 01 lhe
occupation numbers. In the case of Bose-Einstein and Boltzmann statistics {n}
runs over 0,1,2, ... ,00, while in the case of Fermi-Dirac statistics {n} runs over O
and 1 only.

The problem consisls on lhe calculalion 01 UN,...N,(Q) ID Eq. (1). In order
to carry this out, we define the 4-"¡imensional Laplace-transforrn, or generatinr
lunclion 01UN,...N,(Q) (5)

GN¡...N,(/3) = J e-PQd'QuN¡ ...N,(Q)

= ¿IT exp(- ¿/3qjnj) Ó{Nj- ¿n,('Ij)} ¿fl,(n,('Ij)),
In} }=1 qj qj qj

(3)
where f3 is a time-like four vector. In thermodynamical language, f3 is an inverse
temperature f3 = tr, with k denoting the Boltzmann constant. Using the Fourier-
representation fol' the Kronecker 6

Ó{N, - ¿nj('Ij)} = 21~1.'r exp {iaNj -i¿nj('Ij)a} da, (4)
qj o qj

we get

"
GN, ..N,(f3) = TI GN¡(f3),

j=l

where

I 1.'rGN¡(f3) = 2~ o exp{iNja+<I>j(f3,a))da,

and <l>j(f3,a) is defined as

é'¡(P,.) =¿IIe-n¡(q¡)(P'¡+;.)flj(nj('Ij)).
In} qj

Changing the variables ,\ = e-iO' in Eq. (6), we get

(5)

(6)

(7)
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where the integration is taken counter-clockwis~ along the contour 1..\[ = 1. Surnming
in Eq. (7) over {n} we get

00 1:+1L TAl: L e-fJqjl:; Bose-Einstein and Fermi-Dirac
'=1 q¡~j(¡3,'\) = AL e-fJqjl:+ln Nj!;

q¡

Boltzmann,

(9a)

(9b)

where I = 1 (-1) lor all partides obeying Bose-Einstein (Fermi.Dirac) .tati.ties.
The result lor Boltzmann statisties (9b) is obtained ilone keeps only the k = I term
and adds In Nj! in the corresponding expressions 01 Eq. (9a).

\Ve now replace the surnmation by the covariant integrals according to [11]

(ID)

where 9j denotes the number of polarization states of the vectors <¡j, and nj is the.
4-dimensional volume, which in the rest frame is expressed by nj = (Vj, O), with
Vi being the space volume occupied by j.th kind 01 partides. (\Ve use h = c = I
units). Evaluating the integrals in the ¡1-rest and n-rest frame and using the Lorentz
covariance we get

~,(¡3,'\) = ¿,\'!,(k,¡3),
1:=1

where

According to Eq. (8), we have

GNj(¡3)= ~! [d~jexp {f,fj(k,¡3),\'}]
J .1:=1 ~=O

Nj

=¿II~{f,(k,¡3)}m.,
m•.

{m) '=1

(11 )

(12)
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where {m} is the partition number of Nj, satisfying L:~lkmk = Nj. The sum-
mation is taken over aH possible {m} of N,. Eq. (12) has the meaning of a cluster
decomposition. Now, if we consider a spccial system consisting of /I-different parti-
eles, ¡.e. NI = N2 = ... = N/I = 1 with different masses ILI, ¡.t2, ... , Il/l, we have, as
is easily shown,

( 13)

This formula represents the generaling function of an ideal re1alivistic gas obey-
ing Bollzmann stalislics [12]. For the sake of simplicity, in whal fo11ow5 we wil!
ealculale the pha.qe space integral s in an explicit form, re5lricting oue attention
to the system with N-identical quantum partieles. First we consider the extreme
relativistic (c.r.) case. Taking the limit (3 ~ Owe gct from Eq. (12)

N { k+1 }m.
G'¡/((3) = " Il-l 8K91

L mk! w{J3k4
{m}k=}

(14)

where w = (2K)3/V.
On lhe other hand, lhe generating fnndion In Eq. (3) can be wrilten as a

J{ -transform [13]:

1nversion of ,he integral of Eq. (1.5) togcther with Eq. (14) yields a c10scd cx-
pression for aít(Q),

where

N (k+l)m. (O)'.'"(Q)
'-'.(Q) " Il' "m.UN = L mk! k4m,t'

{m} k~1

(!!..)m. (::.)m'-I (4rnk _ 4)'s!(3m.-')
(O)""(Q) _ ~w_2 __

Um,t - (3mk - 4 )!(2rnk - 1)!(2rnk - 2)'

(16)

represents the phase space integral for tiJe system with mk particlcs obcying Holtz
mano statistics. Keeping the ter m with k ;:: 1, m) = N, we get the usual phél~W
'space integral

,,}¡'(Q) = ~!,,~)"(Q). (17)
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The nonrelativistie (n.r.) limit oC the formulac are obtaincd taking the limit
(J - 00 in Eq. (12):

( 18)

(19 )

Again Eq. (19) r<---ducesto the usual phasc space integral whcn one restricts
oneself to the first terI1l in Eq. (19). A rigorous formula for aN(Q) can be dcrivcd
without an}' approxirnation

wherc

(20)

m,
X /¡ ((JQ) rr K2((Jk¡,)

j=l

wilh e> o.

a~)(Q,JL) rcprcscnls a rigorous formula for the usual phasc spacc integral, which
was obtaincd earlicr in Ud. [14].

3. Thermodynamical description

For thc sakc of complctencss, we continuc oue discussions OIl an ideal rclativistic
quanturn gas systern in the thermodynamical dcscription. Lct t1S define the cluster
cocfficients of the ideal qllantum ga.'ies as

4>(j, (J) = f(~(J)
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(21 )

Note that </>(j, (3) is a Cunctioll oC the inverse tcrnperaturc {3 only, and does not
depend 011 V. Now

"Gs(¡3) = L rr _1 ,¡v,,(j, I')}mi;
"'J'{m} J=I

(tjm; = N).
J=l

(22)

For a bettn undcrstanding oC the content oC EC}, (22) wc introduce the grand
partition Cunet.ion, which describes all ensemble oC partidcs with varying N:

=:(A,¡3) = L C"UJ)A"
N?O

(tjmJ = N)
J=l

= exp {L \',,(j, ¡3)A;} .
J?l

The average numher oC partic1('S in lhe ensemble (mulliplicity) is given by

Tllc average total cllcrgy ovcr lhe ensemble is giv(,1l hy

E = - :¡3 In =:(.1, ¡3)

= 21'9¡" '. 1J+' [[{2(¡3¡tj) ¡,j{lí, (¡3¡tj) + lí3(¡3¡tj)}] J

(2rr)' L. P ¡3' + 2¡3 A .
J?I

(23)

(24 )

(25)
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In the extreme-relativistic case when /l -+ O,we get

- A
N = (3';

- 8
E = (3';

4Vg ¡i+I,
A = (2)-)2 :L -,-, .v,

j~1 )

12V i+1
8= _g '" L~i,

(211")2~ j'
'-

(26a)

(26b)

lf in Eq. (26b) we put 9 = 2, ¡ = 1, ~ = 1, ¡.t. we consider the black-body radiation
case, we recover the Stefan-Boltzmann law

Setting E to be equal to the given energy ..¡s yields

- '/s A
N = S 8'/"

(27)

(28)

Applying the formalism to the multipartic1e production a + b ~ c+ d + ... (now
s is defined as s = (Pa + Pb)2, where Pa and Pb are tite 4-momenta oí the incoming
particles a and b, respedively), we then have for the average energy w oí secondaries

_ ..¡s l/S 8'/'
W=-=-=s --

N A (29)

Thus the energy dependenccs of the average multiplicity and the average energy
oí secondaries in the extreme relativistic case are the same as in the usual statistical
theory without quantum effeds. The quantum statisticaleffects manifest themselves
only in the energy independent factors A and B.

\Ve derive once more Eq. (24) by a different method which allows to obtain a bet-
ter insight ioto the physical interpretation oC decomposition appearing in Eqs. (12)
and (22). From Eq. (23) we obtain

(30)

FormalIy, m.l: can be interpreled as the average of mI,;, appcaring in various
ensembles of {m}, satisfying lhe condition Ef=1 jmj = N. Average is taken, in



58 Jlonono Yero Mrndoza and Mm~ah Jlaym~hi

this case, over the grand canonical function. From Eqs. (30) and (23) we gel

ffi, = v,,(k,¡JP'.

Then the average numbcr of particlcs is given by

N = ¿jm; = ¿jV,,(j,¡J)V,
j2:1 )2:1

(31 )

(32)

coinciding with Eq. (24). this suggests that we can give to mI.: the physical meaning
of a numher of clusters with k particles. In other words, the system of N-identical
frce particles can be decomposed into mi, m2,' .. , T1lN c1usters in each of which are
contained 1,2, ... ,N particles, satisfying the general relation Ef=ljmj = N. This
situation is very similar to that of the real classical gases. This bappens because
idealllose and Fermi gases possess lhe propertics of re~1gases on account of indistin-
guishahililty of particles, and behave as if they formcd c1usters in the syslem. Thus.
<pU, (J) corrcsponds to the cluster coefficients of the real c1assical gases, while .\ can
be formalIy interpreted as the "'absolute activityn [I.5j of a particle, ¡.e . .\ == elJ.8,
where 11 is the chemical potential of the system (not to be confuscd with the mass of
the particJe). In this way, one can develop for the id{'al quantum gases a formalism
in complete analogy with the one of the c1assical real ga.."es.

One can further go on by inlroducing the pressurc p as

:T = J~:,¿ ,,(j, ¡JP; = ¿ ,,(j, ¡J»-/.
j2:1 j2:1

Frorn Eq. (24) we have

~ = p = ¿j,,(j, ¡J)V.
)2:1

(33)

(34 )

From Eqs. (33) and (34) one can obtain, withoul approximation, the virial
expansion for the ideal rclativistic quantum gases

\\'here

N
P= \1' (35)

¡J, = ¿(-)I:¡m¡-dk-1 +k!I:) m))! rr (j,,(~~)}m¡;
{m} )

(
'+1 )
¿(j - ¡)m; = k ,
)=2 •
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wilh 4>(j, (3) defined as in Eq. (21). In lhe nonrelalivislic approximalion wilh (3 -; 00

our exael formula, Eq. (35), reduces lo lhe one already given in lhe lileralure [1-41.
We end lhe paper by showing lhal Eqs. (24) and (33) are consislenl wilh lhe

conventional thermodynamical formula

N (op)
V = al' T,V'

This can easily be shown from Eqs. (23), (24) and (33) as follows:

N = !...\ iJln 3(.\, (3)
V V 0.\

= .\:.\ [L 4>(j, (3).\'] =: [(3L 4>(j, (3).\']
j;::1 ¡t j;::1

where we used the relation ,\ = e(3p..

Furlhermore, from Eq. (24) we have

hence, we ha.ve explicitly that for the pressure:

This is in agrecment with the formula derived by Miller and Karsch [16].
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Resumen. Se usa el formalismo exacto de la distribución micro-
canónica para. describir 106 gases ideales cuá.ntico-relativistas. Se de-
sarrolla. una descomposición estadística de cúmulos para el cálculo de
las integrales de espacio fase con la estadística correcta. Se discuten
analogías ron los gases clásicos reales y aplicaciones del formalismo




