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Abstract. We show that a classical variational principle does not exist
for a rigid heat conductor in EIT. Then, we formulate a restricted
variational principle that would lead to the time evolution equations for
the nonconserved variables in the mexican EIT formalism. The principle
is illustrated for the case of a rigid heat conductor, and further applied
to a simple viscous fluid. The structure of the principle permits us to
discuss some aspects of the extended thermodynamic space.
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1. Introduction

A variational formulation of the physical behavior of any system is an alternative
description when the equations of evolution balance, boundary conditions, etc., of
the system are pursued. It may represent at least two advantages: to summarize
a subject suggesting analogies and generalizations, and to lead to a method for
obtaining approximate solutions to the problem permitting the use of additional
information, such as might be available from intuitional considerations [1,2].

The history of the search for variational principles encompassing fluid mechan-
ics begins in the mid of 19th century. Perhaps, Lord Kelvin’s variational principle
(valid for an incompressible, inviscid fluid in irrotational flow) was the start of
the development of the so called classical variational principles of convective pro-
cesses [3]. Further efforts were directed to include compressible fluids and rotational
flows [4,5,6]. In all these, works the fluid was considered inviscid.

The inclusion of dissipative effects in the transport phenomena leads to a con-
troversy about the existence of classical variational formulations in the framework
of linear irreversible thermodynamics (LIT).

Now it seems to be accepted that fluid flows involving dissipation do not admit
that kind of variational principles [7]. This resulted in a lot of approaches known as
non-classical variational principles, which could have had their roots in Onsager’s
formulation of Fourier’s Law of heat conduction [8]. His principle (formalated for
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heat conduction in anisotropic media) is that the function

Ala,t) = 5:5(a) + 5:5°(a) -~ 4,

is a maximum with respect to variations of q when the temperature distribution T’
is prescribed. The terms on the right hand side are entropy accumulation, out flow
and generation, respectively.

Following after Onsager’s is the Prigogine’s theorem of minimum entropy pro-
duction [9], which asserts that for prescribed time independent conditions the total
entropy production

P=/adV (1)

is a minimum at the stationary state (he considered purely dissipative processes),
where ¢ denotes the entropy production per unit time and volume. Rosen [10] was
inspired by Prigogine’s theorem and he makes the integral [(q-q/2k)dV stationary
with respect to variations in q with certain constraints, for transient heat conduction
in isotropic media, q prescribed on surface, k independent of q, 7" and %% held fixed
through the region V. Later, Glandsdorff and Prigogine [11] extended Eq. (1) to a
general criterion of evolution which includes convection terms. For time independent
boundary conditions their criterion reads

d<b=jdVZJi-dxiSO, (2)

where the thermodynamic forces X; and the flows J; include mechanical processes.
In spite of d® in Eq. (2) being an inexact differential it is possible in many cases
to obtain a total differential near stationary states by using the concept of local
potential firstly introduced by Glansdorff et al. [11]. This concept was further de-
veloped by Glansdorff and Prigogine [13] and the underlying idea is to define the
functional in terms of two types of dependent variables u and ug. The latter is called
th stationary variable. The functional would be given by

I(u,ug) = fﬁ(u, up) dV, (3)

where L is a general lagrangian density whose Euler-Lagrange derivative would
reduce to the equations of the system. The variables up are held fixed during the
variation process and an additional condition must be satisfied after the variation
has been carried out

u = ug. (4)

Here two comments are required. First, the solutions derived from the variational
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method with the condition (4) are sufficiently close to the stationary state of the
system (or average state) ug, and second, in order for this stationary state to be a
minimum the next inequality must be valid

](u,llo) > I(UQ,Uo). (5)

During the 70’s in a series of three papers, Lebon and Lambermont [14,15,16]
applied the local potential concept to purely dissipative processes first, and in the
last they worked with multicomponent chemically active mixtures in transient state.
In the energy representation the functional to be varied in their principle is written
in terms of a lagrangian density £ which depends on the center of mass velocity v
and the Legendre transform of the internal energy per unit volume u,. Thus, the
independent variables are the temperature and chemical potential

L= %Pov & (e u,,(T, ﬂ)$ (6)

here p is mass density and the superscript ° indicates that it must be kept fixed
during the variation. Through restricted variations taken with respect to u, v and
T the associated Euler-Lagrange equations are the balance of mass, momentum
and energy respectively and the boundary conditions. Three types of different vari-
ations are used simultaneously when each of y, v or T is varied: no restricted
variations, variations leaving constant time derivatives and those leaving constant
spatial derivatives. At this point, it must be remarked that neither the Glansdorff
and Prigogine nor the Lebon and Lambermont principles are extremal principles if
inequality (5) is not satisfied, and in that case they only permit to determine the
stationary state of the system [17]. Second, the theoretical importance of the local
potential formalism is emphasized when it is introduced as an evolution criterion in
order to predict system performance.

In addition to the ones mentioned above, other approaches employing stationary
variables have been presented [18]. Venkateswarlu and Deshpande [19] have given a
unified local potential formulation of fluid mechanics which includes all mentioned
so far. Garrod [20] eliminated the restriction of exactly linear flow equations intro-
ducing a variational principle that is useful for nonuniform and nonlinear steady
flows.

The interest on variational formulations for irreversible phenomena has reached
the theories which are looking up for an adequate description of phenomena beyond
LIT [21,22]. As it is well known, no unique version of such theories exists [23,24,25].
In this work the mexican version of the extended irreversible thermodynamics
(EIT) [26] will be assumed. The basic ideas behind it are: 1) the extension of the
space of state variables to include; as independent variables, the locally conserved
densities and the fast or nonconserved variables, 2) a function 5 is defined in this
new space, 1 is taken as an entropy-like function, 3) starting with these assumptions
together with a postulated balance equation for n and the generalized Gibbs equa-
tion, it is possible to derive a set of time evolution equations for the nonconserved
variables of the extended space, 4) the partial derivatives of 5 appearing in the
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generalized Gibbs equations along with the flux of  are functions of the variables
of the extended space and therefore of the scalar invariants constructed with the
nonconserved variables [26], 5) the production of n may depend additionally on
parameters not belonging to the extended space according to the closure assump-
tion [27], and 6) the scalars of the theory are obtained by expanding functions
around a local equilibrium state and truncating the expansions with some order
criterion. This task must be made with logical consistency [28].

QOur work lies in the context described above. The objective is to investigate the
existence of variational principles immersed in the framework of EIT. And through
these principles to elucidate on the nature of the entropy-like function and the
physical properties of the extended thermodynamic space.

In the next Section we begin by showing that no classical principle exists for the
time evolution equations in the framework of EIT in the particular case of a rigid
heat conductor. Section 3 is devoted to develop a nonclassical variational principle
of restricted type for the same system. This principle is formulated in terms of a
functional that involves the entropy-like change minus its production. The restricted
character of the principle consists in that variations are carried out on fast variables
keeping constant both the tangent space and the conserved component of the ex-
tended space. In the Section 4, the principle is applied to the well worked system: a
simple viscous fluid making evident the importance of the closure assumption [27]
in the formalism. Finally some comments are found.

2. Time evolution equation of a rigid conductor and the classical variational principles

For simplicity, we first discuss the ideas for a simple system. Let us consider a rigid
infinite heat conductor at rest and with constant density p(r,t). The entropy-like
function will depend on a locally conserved density, the internal energy e and a
nonconserved quantity, the heat flux q:

n = (e, q). (7)
The time evolution equation of first order for the heat flux is [26]:

dq

._th

=KVT +q, (8)

where t, is the relaxation time for q and T is the local temperature. Eq. (8) is the
complement of the energy balance

de
—+V-.q=0.
pytV-a=0 (9)
We now inquire whether a classical variational principle exists for the set (8)
‘and (9). In order to answer this question we make use of the method of Fréchet
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derivatives [29]. Let N(u) be a differential operator
N(u) =0, (10)

which may be nonlinear. N(u) is the gradient of a certain functional F(u), if the
symmetry condition is satisfied

fmew=j$M¢ﬂc (11)

where the Fréchet derivative N, of the operator is defined as

N = lim N(u+ ed) — N(u)

e—0 €

=[§N@+¢ﬂ - (12)

=0

In the case that u is a set of functions of n parameters

us = U,(II,...,IH), (13)

the symmetry condition takes the form

afl 3fa
— ) 14.1
Ou, jx  Ougji ( )
aft _ - af afe
aua,j = 81'-HJ + 2V, (&ijr) : (14.2)
af! B 6f‘ A 6f’ ' 3f'
By~ Ow (311__”) TV (311!.,‘&) ’ (143)

where f! = 0 are the differential equations from Eq. (10), latin indices go from one
to four, a subscript comma denotes partial differentiation.

Accordingly, if Eqgs. (8) and (9) satisfy conditions (14) then a classical variational
principle exists for them.

Introducing a 4-vector I' = (W), Wa, W3, Wy) = (q,T), Egs. (8) and (9) can be
transformed to a suitable form

fe= th,M + kWQ‘a +we =10, (151)

fH = peyWys + Wae =0. (15.2)

Here the equality {{;W; = W) 4 has been used (static conductor), greek indices run
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from one to three. With this definition for f! we can now verify if Eqs. (14) are
satisfied.

The derivatives for Eq. (14.1) are ﬁ:‘fﬂ =0 a.r;d ﬁ,;f" = 0; and Eq. (14.1)
. . a gl _ _ ;
is thus satisfied. Eq. (14.2) reduces to mf = m;;f", since the second term of
the right hand side (rhs) vanishes. The derivatives are (I = 1,2,3)

af! tebis6ja ifs=1,2,3 fe teb1sd4 if9=1,2,3

i I d L =
oW, ot o, ’

kéy; ifs=4 peudisbis + 65 if s = 4.

therefore Eq. (14.2) is not satisfied when s = 4. The remaining derivatives become

(1=1)

af! 05, ifs=1,2,3 af* kbyj ifs=1,2,3

— aﬂd = )
oW, ; pbis, ifs=4 J pbyy ifs=4

hence, Eq. (14.2) is again not satisfied.
Finally, Eq. (14.3) reduces to

o _ o
aw, — ow’

since the third term of the rhs vanishes and 5‘%:: is a constant. It is not difficult to
see that Eq. (14.3) is satisfied for all indices.

Therefore we have that there does not exist a classical variational principle for
the time evolution equations of a rigid heat conductor for the imposed conditions
in the framework of EIT, of course this also occurs in LIT [7]. We are impelled to
look for the existence of a nonclassical principle for the same system, which we do
in the next Section.

3. A non classical variational principle of the restricted type for a rigid heat conductor

We formulate a restricted variational principle for the rigid heat conductor in the
conditions described in Sec. 2. The functional is defined in terms of the change and
production of the entropy-like function 5 as follows,

I(e,q) = f (p% —cr) dv, (16)

being o the entropy-like production per unit time and volume. The entropy-like
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change is obtained from the generalized Gibbs equation
pdn = ayde + ay - dq. (17)

a; are functions of the extended thermodynamic space (e and q). Substituting
Egs. (9) and (17) into Eq. (16), we obtain

d
ea)= | [-V-(alq)wcxl atar- 2ol av, (18)

where use has been made of
V- (iq) =a1V-q+ Ve - q.

If there does not exist perpendicular component of the heat flux on the surface
of the conductor @B (infinite conductor)

/ a1q-ds =0,
aB

(this term could be retained in order to give the boundary condition for the heat
flux, in that case an additional term would appear in Eq. (16) related to a prescribed
value for q on the surface dB), then Eq. (19) reduces to

d
I(e,q):f[Val-q-l-ag-d—?—a dv. (19)

What follows now is to search for the consequences on the functional (16) when
the nonconserved component of the extended thermodynamic space is slightly mod-
ified. By construction it would be expected that I(e,q) remains invariant, since
we substract the nonconserved part of the change of entropy-like function. The
variations which we carry out are independent of space-time and this implies, as it
may be verified, that times derivatives and gradients are fixed during the variation
process, 1. e. these restricted variations take place in the thermodynamic space
exclusively. Then the variational principle reads

6’/ [p‘;—’t’ - o'] dV =0, (20)

where the superscript ' indicates the restricted sense of the principle.
So, equating the restricted variation &' on the functional of Eq. (19) to zero
yields

9 dq 8]
Val + [aaz ¢ E = -a—ga] q= 0, (21)
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here we have used §'(Vai) = 0 and 6'(%(}) = 0, as it has been mentioned. This
is a nonapproximated time evolution equation for the heat flux in the rigid heat
conductor in the framework of EIT, but it is not very useful because we do not
know the explicit form of the ; and o.

Now, following the mexican EIT procedure, the coefficients o; together with the
production o are expanded in terms of the scalar invariant ¢ = q-q

a1 = a0+ anig + anzg’ + -+ (22.1)
ag = (az0 + ang + ang’ +---)q (22.2)
o=01+029+03g" + -+ (22.3)

If the integrand of Eq. (20) is to be expanded up to some order in the powers of
the nonconserved variable, then the series of Egs. (22) must be developed up to a
consistent order [28]. In particular, when the integrand of Eq. (20) is expanded up
to order two, the oy are required up to the lowest order and the production o up to
order two: a1 = ayp, a2 = a0q and ¢ = o029 (by compatibility with LIT o1 = 0).
Then, Eq. (21) reduces to the known time evolution equation for the heat flux in
the rigid heat conductor [26]

di
020(0‘2)_1‘1—? = —(a2)"'Vayo + q, (23)

where if we make the next identification
ayp = T_l, 020(0‘2)-1 — —iq and (Cr-z)_l =k

Eq. (8) is recovered. Thus, we have seen how variations on the nonconserved vari-
ables leaving invariant the tangent space of the extended thermodynamic space give
the time evolution equations of the fast variables as “Euler-Lagrange” derivatives
of functional (19).

Now we apply the method to a simple viscous fluid, showing the procedure tor
the manipulation of a functional which depends on two scalar densities and three
nonconserved variables: a scalar, a vector and a second rank tensor. We also make
evident the important role which the closure hypothesis [27]is playing in the EIT’s
formalism.

4. A non classical variational principle of the restricted type for a simple viscous fluid

One of the systems that has been studied more deeply within the framework of EIT
is the simple viscous fluid. The closure assumption [27] for this system should be
necessarily invoked, not so in the case of the rigid heat conductor, because it is
required to consider the spatial unhomogeneties for the description of the fluid. We
show how this hypothesis can be used to realize the restricted variation.
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Let us consider a simple viscous fluid which is described by the balance equations

dp :
] (24.1)
d

o 3 = W (24.2)
dt

and

de

pE=+V-q—T Vv —pV.v—-1V.v, (24.3)

e . e .
with j the mass flux, v the velocity, p the pressure, T the trace less viscous tensor
and 7 the trace of viscous tensor.

In this case the generalized Gibbs equation for 7 is

dn de dp dr dq .d?
i ala-!-(u +n3dt+ 4-d£+05.W. (25)

The generalized state equations a; must have a determined form accordingly
with their tensorial character. Thus the vectors can be written as

g = aq1q + o429 - ?, (26.1)

the tensors:

— — — —
as=as57 +apqq+aesT T +auT -qq (26.2)
and the scalars, the entropy-like production and a,; are functions of the six scalar
invariants constructed with a scalar 7, a vector q and a second rank trace less tensor
—
T

i =, (27.1)
92=49-q, (27.2)
=TT, (27.3)
w=9q'7q, (27.4)
g=t(7 -7 7), (27.5)
s=q (7 7)aq (27.6)

Remember that o can depend on other important ,arameters, i.e. the tangent space
is not fully spanned by the extended thermodynamic space [27]. In the case we are
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dealing with we can consider

— Lo d

=V vy, pa2=(Vv) and p3=(Vv)?,

as the relevant parameters, where ( )* and ( ) are the symmetric and antisymmetric
tensor part respectively. These parameters belong to the tangent space and therefore
they are not going to be varied.

Thus, substituting Eqs. (24) and (26) in (25) to introduce the result in Eq. (20)
and using the independence among the variations on the nonconserved variables,
we get the following system of equations

V- +§Eﬁd—r+i 4 + T 4 «
S 1 ag dt q qa 41 dq q 6 42
d - Haa +_¢i¢;._ K dH_(H_H)ia
@ Oy T @ (WppemtgT iy T e as
+%‘?:(q? q)—i—las4+ T Vva—al-l-TV véag—lal
a a
HLV V)@;W "9, (28.1)
q q P
O—V’ﬂr1+a.t1"Za wzgitanma+t oq qza 159

o d de deo o
+agpT -Eq-k?orszq'af +2a54d—t'r :qT

d o d 9
e )ZB Gssaqyi-l-'rv Vza—alaig:
a a
(a7 Q)Z g tMagt T vy 157

Z o aqg., (28.2)



A variational approach to the time evolution equations. .. 81

and

a d ~ 9 9
0= d—thi: ag;ﬂagfye 2 EQ'QZ 5;;041;3,1?:_:9:'

do dT+d ‘?)ii a
+a42thq asi g q- : 39,'&425?"?'

o dogwd 0 do o
+ T el Z£a51_‘:‘g'+dt7 .qqZ a—masza—?g;

A T ey DU
dtT +—T.(T-r)¥a—g‘_0535§;g.

d e
+ass—7 1qq+ Vv + —

der e a a
; 7Y e

- o 9 ; 8
+ 7T .Vv;a—gl_alg?g‘+rv-v2 a—laléq:;g,

to
a a
+ (Ve Z ’-1'2_12591 Z 8 —¢1=_r£h, (28.3)

wherey"d = 3", with i = 3,5,6; i = 3, with i #1,3; 17 = ¥, with i = 3,5,6
and including the terms with parameters; ;" = 3, with ¢ # 1,3 and including
the terms with parameters.

This system is a formal set of time evolution equations for the nonconserved
variables. But again, it is not profitable in order to solve a specific problem.

Now, proceeding in a similar way as in the last section, we develop [dn/dt — o]
up to second order, so that

a1 = ay, C(20)
az = as, (29.2)
az = ag7, (29.3)
a4 = a40q, (29.4)
ag = asT. (29.5)

Here, we have used compatibility with LIT [28], and moreover for the sake of math-



82 Federico Vazquez H. and J. Antonio del Rio P.

ematical simplicity, both local temperature and pressure have been considered in
ay and ag. The coefficients a;; are only functions of the local equilibrium variables.
In the case of the production term the expansion considered is

7 = 0191 + 0292 + 0393 + O4p1g1 + O5P1g2 + T6P1gs + 07 1 P 2
+05qq: p3+osT (T - pa)+owT (T Pa), (30)
again the o; are only functions of the conserved variables. Thus, if Eqs. (29) and (30)

are substituted in Eq. (28) we recover the known time evolution equations for the
fluxes of the fluid, namely,

d
QSUET:—T_IV-v-|-20|T+20'4TV-V, (31.1)
d
a7 a=~V(I'™") +200q+205V - va+201q- po+208q- P3,  (312)
d o .
asn-ﬁ? = —T UV + 2037 + 206V - VT + 2097 - Pa+200T - D3 (31.3)
C

In these equations we observe the coupling between the heat and moment fluxes
and the closure terms. It is necessary to point out that a comparison of Eqgs. (31)
with other results [28,30] is not complete, because the spatial inhomogeneities of the
fluxes are absent in our results. Yet, the principal terms are present in Eqs. (31). If
the integrand [dn/dt — o] is developed up to zeroth order, the results of local equilib-
rium would be found again. Up to first order, we cannot construct the entropy-like
production. Thus, in these cases we are reproducing previous results [28]. The struc-
ture of the Eqgs. (28) permits to predict a coupling between the three equations when
we go to the third order, but this development will not contribute significantly to
clarify the physical meaning of .

5. Remarks

We have seen that a classical variational principle does not exist for the equations
that describe the evolution of a system in EIT. This was not surprising since the
same fact occurs in the framework of LIT [7]. Thus, we were impelled to search a
nonclassical principle for those equations.

We postulated a variational principle of the restricted type Eq. (20), where
the role of the functional is played by the entropy-like change minus its produc-
tion summed over all physical space. The restricted variations take effect only on
nonconserved variables leaving fixed time and spatial derivatives and the conserved
local variables. So, the “Euler-Lagrange” derivatives of a generalized Lagrangian
Eq. (16) are the time evolution equations for the fast variables.

Our principle has a visible resemblance with that of Onsager [8]. However, we
lo not include the surface term (outflow) in the functional because our variation on
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it vanished. That term seems to have been introduced in an ad hoe manner in the
Onsager’s formulation. On the other hand, our variation process and the Onsager’s
run by parallel ways. Nevertheless, note that our variations become to be justified
in the new extended formalism.

It must be pointed out that our principle is general while it does not suppose any
explicit form of the generalized lagrangian. On the contrary, two recent works (21,22]
present a variational principle in other EIT formalism which has resemblance with
Hamilton’s action functional, but it is very particular because it contains in a hand-
some manner special relaxation term. Another difference with previous variational
principles [16] lies in that all fast variables are varied simultaneously and only one
type of restricted variations is used during the process. Moreover, the form in which
the functional [ is constructed has a physical significance: the generalized lagrangian
is constituted by the conserved part of the entropy-like change.

As it is well known, some authors have argued that the function 5 must be con-
sidered as a generalized entropy function, because it reduces to the entropy function
of LIT when the extended thermodynamic space is projected onto the conserved
space [24,26,28]. The fact that 5 is acting out as the outstanding thermodynamic
function in our restricted variational principle strengthens that conclusion.

The goal of this work is to have found a restricted variational principle that leads
to the time evolution equations of the nonconserved variables in the framework of
EIT, in spite that the restriction on spatial and time derivatives impeded us to
look out spatial and time unhomogeneities. Nevertheless, our analysis enlightens
some physical aspects of the extended space. For instance: that Eqs. (21) and (28)
be satisfied means that the conserved part of the i change has remained invariant
when the nonconserved subset of the extended thermodynamic space is varied. This
fact may be understood as if the description of the evolution of the system given
by Egs. (21) or (28) is near to that given by the corresponding equations in the
conserved subset of the extended thermodynamic space. Therefore, these equations
are valid in the neighborhood of the local equilibrium state. This conclusion is
inherited by the time evolution equations for the fluxes, Eqs. (23) and (31). Hence,
EIT is a phenomenological theory describing systems not too far from the local
equilibrium state.

By the generality of the variational principle presented in this work, the specific
conclusions of the two examined systems are susceptible to be transferred to another
systems described with the mexican formalism of EIT, and could be used as a
variational method to approximate solutions to transient problems.
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Resumen. Mostramos que no existe un principio variacional clasico
para un conductor rigido de calor en TIE. Formulamos un principio
variacional restringido que conduce a las ecuaciones de evolucién tempo-
ral para las variables no conservadas en la versién mexicana de TIE. El
principio se ilustra para el caso del conductor rigido de calor y después
se aplica al fluido viscoso simple. La estructura del principio nos permite
discutir algunos aspectos del espacio termodindamico extendido.





