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Abstract. We show that a c1assicalvariational principie does not exist
for a rigid heat conductor in EIT. Then, we formulate a restricted
variationaJ principie that would lead to the time evolution equations for
the nonconserved variables in the mexican EIT formalismoThe principIe
is illustrated for the case of a rigid heat conductor, and íurther applied
to a simple viscous fluid. The structure of the principIe permits us to
diseuss sorne aspeets oí the extended thermodynamie spa.ce.

PACS: OS.70.Ln; 44.10.+;; 03.40.Gc

1. Introduetion

A variational formulation of the physical behavior of any system is an alternative
description when the equations of evolution balance, boundary conditions, etc., oC
the system are pursued. It may represent at least two advantages: to summarize
a subject suggesting analogies and generalizations, and to lead to a method for
obtaining approximate solutions to the problem permitting the use of additional
information, such as might be availabIe from intuitionitl considerations [1,2].

The }¡istory of the search for variational principIes encompassing fluid mechan-
ics begins in the mid of 19th century. Perhaps, Lord Kelvin's variational principIe
(valid for an incompressible, inviscid fluid in irrotational flow) was the start of
the development of the so caBed. classical variationaI principies of convective pro-
cesses [3). Further eiTorts werc directed to inelude compressible fluids androtational
flows [4,5,6). In al! these, works the fluid was considered inviscid.

The indusion oC dissipative effects in the transport phenomena leads to a con-
troversy about the existence of classical variational Cormulations in the framework
oí linear irreversible thermodynamics (LIT).

Now it scems to be accepted that fluid flows involving dissipation do oot admit
that kind oí variational principies [7]. This resulted in a lot 01 approaches known as
non-dassical variationai principIes, which could have had their root8 in Onsager's
formulation of Fourier's Law oC heat conduction [8]. His principIe (formolated for
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heat conduction in anisotropic media) is that the function

A(q,t) = :/(q)+ ~S'(q) - ,p(q,q)

is a maximum with respect to variations of q when the temperature distribution T
is prescribed. The terros on the right hand side are entropy accumulation, out ftow
and generation, respectively.

Following after Onsager's is the Prigogine's theorem of minimum entropy pro-
duction [91, which as,ert, that for prescribed time independent conditions the total
entropy production

p= J "dV (1)

is a minimum at the stationary state (he considered purely dissipative processes),
where (J denotes the entropy produdion per unit time and volume. Rosen [10] was
inspired by Prigogine's theorem and he makes the integral f (q. qJ2k )dV stationary
with respect to variations in q with certain constraints, for transient heat conduction
in isotropic media, q prescribed on surface, k independent of q, T and ~ held fixed
through the region V. Later, Glandsdorff and Prigogine [11) extended Eq. (1) to a
general criterio n of evolution which ¡neludes convection terms. For time independent
boundary conditions their criterion reacis

(2)

where the thermodynamic forces Xi and the ftows JI inelude mechanical processes.
In spite of del> in Eq. (2) being an inexact differential it is possible in many cases
to obtain a total differential near stationary states by using the concept oí local
potential firstly introduced by Glansdorff et al. (11). This concept was further de-
veloped by Glansdorff and Prigogine 1131 and the underlying idea is to define the
functional in terms of two types of dependent variables u and uo. The latter is called
th ,tationary variable. The functional would be given by

l(u, uo) = J C(u, uo) dV, (3)

where C. is a general lagrangian density whose Euler-Lagrange derivative would
reduce to the equations of the system. The variables Un are held fixed during the
variation process and an additional condition must be satisfied after the variation
has been carried out

u = Un. (4)

Here two comments are required. First, the soIutions derived from the variational
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method with the condition (4) are sulliciently close to the stationary state of the
system (or average state) uo, and second, in order for this stationary state to be a
minimum the next inequality must be valid

1(u, uo) > 1(uo, uo). (5)

During the 70's in a series of three papers, Lehon and Lambermont [14,15,16J
applied the local potential concept to purely dissipative processes first, and in the
last they worked with multicomponent chemically active mixtures in transient state.
In the energy representation the fundional to be varied in their principie is written
in terms of a lagrangian density £, which depends on the center oC mass velocity v
and the Legendre transCormoC the internal energy per unit volume Ut'. Thus, the
independent variables are the temperature and chemical potential /J

r. = !pov. v - u,(T,I'), (6)

here p is mass density and the superscript O indicates that it must be kept fixed.
during the variation. Through restrided variations taken with respect to /J, v and
T the associated Euler-Lagrange equations are the balance oC mass, momentum
and energy respectively and the boundary conditions. Three types oC different vari-
ations are used simultaneously when each oC /J, v or T is varied: no restricted
variations, variations leaving constant time derivatives and those leaving constant
spatial derivatives. At this point, it must be remarked that neither the Glansdorff
and Prigogine nor the Lebon and Lambermont principIes are extremal principies ií
inequality (5) is not satisfied, and in that case they only permit to determine the
stationary state of the system [17j. Second, the theoretical importance of the local
potential Cormalismis emphasized when it is introduced. as an evolution criterion in
order to predict system performance.

In addition to the ones mentioned aboye, other approaches employing stationary
variables have becn presented [18J. Venkateswarlu and Deshpande (191 have given a
unified local potential formulation of fluid mechanics which ineludes all mentioned
so Car.Garrod [20Jeliminated. the restriction oí exactlYilinear flow equations inte,?"
ducing a variational principIe that is useCul for nonuniform and nonlinear steady
flows.

The interest 00 variational Cormulatioos for irreversible phenomena has reached
the theories which are looking up for an adequate description of phenomena beyond
LIT [21,22J. As it is well known, no unique version of such theories exists [23,24,25j.
In this work the mexican version oC the extended irreversible thennodynarnics
(EIT) (26) will be assumed. The basic ideas behind it are: 1) the extension of the
spacc oC state variables to inelude; as independent variables, the locally coDserved.
densities and the Castor nonconserved variables, 2) a fundion r¡ is defined in this
new spacc, r¡ is taken as an entropy-like Cunction, 3) starting with these assumptions
together with a postulated balance equation for q and the generalized Gibbs equa-
tion, it is possible to derive a set oí time evolution equations (or the nonconserved
variables oC the extended space, 4) the partial derivatives of J] appearing in the
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generalized Gibbs equations along with the flux of Tf are functions oí the variables
oí the extended space and therefore oí the scalar invariants constructed with the
nonconserved variables [26], 5) lhe produclion of ~ may depend additionalIy on
parameters not belonging to the extended space according to thc elosure assump-
tion [27], and 6) the scalars of the thcory are obtained by expanding funetions
around a local equilibrium state and truncating the expansions with sorne order
criterion. This task must be rnade with logical consistency [28].

Our work lies in the context describe<! aboye. The objeclive is to investigate the
existence oí variational principIes immersed in the Cramework oí EIl'. And through
these principies to elucidate on the nature oí the entropy-like funelion and the
physical properties oC the extended thermodynamic space.

In the next Section we begin by showing that no classical principie exists for the
time evolution equations in the frarnework of EIT in the particular case oí a rigid
heat conductor. Seelion 3 is devoted lo develop a nonelassical variational principie
oí restrieled type ror the sarne system. This principie is íormulalcd in terms oC a
functional that involves the entropy-Iike change minus its produelion. The restriele<!
character oí the principie consists in that variations are carried out on fast variables
keeping constant both the tangent space and the conserved component oí the ex-
tended space. In the Section 4, the principIe is applied to the welI worked system: a
simple viscous fluid making evidenl the importance of the elosure assumption (27)
in the formalismo Finally sorne cornmcnts are found.

2. Time evolution equation of a rigid conductor and the c1assical variational principIes

For simplicity, we first discuss the ideas for a simple system. Let us consider a rigid
infinite heat conductor at rest and with constant density p(r, tl. The entropy-like
funelion will depend on a Iocally conserved density, the internal energy e and a
nonconserved quantity, lhe heat flux q:

~= ~(e, q).

The time evolution equation of first order for the heat flux is [26):

dq ,
-t'dt=RVT+q,

(7)

(8)

where tll is the reJaxation time Corq and T is the local temperaturc. Eq. (8) is the
complement of the energy balance

de
p dt + v. q = O. (9)

We now inquire whether a elassical variational principie exists for the set (8)
and (9). In order to answer this question we make use oC the method oí Fréchet



A variational approoch lo the time evolution equations... 75

derivalives [29]. Lel-N(u) be a dilferenlial operalor

N(u) = O, (lO)

which may be nonlinear. N(u) is lhe gradienl of a eerlain funclional F(u), if lhe
syrnrnetry condition is satisfied

J '¡'N~4>dV= J 4>N~'¡'dV,

where the Fréchet derivative N~oí the operator is defined as

N'" = r N(u + '4» - N(u)
.'+' - (~~ ----,---

= [aa N(u + '4»] .
( (=0

In the case that u is a set oí functioos of n parameters

the syrnmetry condition takes the form

aJ' . al' ( aJ'~--=---+2"k -- ,aU',j aU'j {Jur,1

aJ' aJ' ( aJ' ) ( aJ' )- = - - "j -- + "j"k -- ,au, aUI aUI,j aUI,jk

(11)

(12)

(13)

(14.1)

(14.2)

(14.3)

where J' = Oare lhe dilferenlial equalions from Eq. (lO), lalin indices go from one
to four, a subscript comma denotes partiaI differentiation.

Aeeordingly, if Eqs. (8) and (9) salisfy condilions (14) lhen a classiea! varialiona!
principie exists for them.

Inlrodueing a 4-veclor r = (W" W2• w,.W.) = (q. T), Eqs. (8) and (9) can be
transformed to a suitable form

J' = pe" W.,. +W." = O.

(15.1 )

(15.2)

Here the equality -J¡W, = W',4 has been used (static conductor), greek índices ron
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froID one to three. With this definition fo~J' we can now verify ir Eqs. (14) are
satisfied.

The derivatives for Eq. (14.1) are ...J-,-J' = Oand ...J-,-J' = O;and Eq. (14.1)
on 'J* OHljk

is thus satisfied. Eq. (14.2) reduces to ~J' = -...4-,1', sinee the second term ofOH,,; otl'lJ

the right hand side (rhs) vanishes. The derivatives are (1 = 1,2,3)

if s = 1,2,3

if s = 4
and

ifs=l,2,3

if s = 4.

therefore Eq. (14.2) is nol satisfied when s = 4. The remaining derivatives become
(1 = 4)

if s = 4
and al'

aW'J =

ir s = 1,2,3

if s = 4

henee, Eq. (14.2) is again not satisfied.
Finally, Eq. (14.3) reduces to

aJ' aJ'
aw, = aw,'

since the third term oí the rhs vanish<"S and ~ is a constant. It is nol difficult lo
IJ

see that Eq. (14.3) is satisfied for all indices.
Therefore we have that there does nol exist a c1assical variational principie Coc

the time evolution equations oí a rigid heat conductor Coc the imposed conditions
in the framework oí EIT I oC course this also occues in LIT [7}. We are impelled lo
look roc the existence oí a nonclassical principie Coc the same systcm, which wc do
in the next Section.

3. A non c1assical variational principie of the restricted type for a rigid heat conductor

We formulate a restricted variational principie for the rigid heat conductor in the
conditions described in Seco 2. The functional is dcfincd in terms of thc change and
production of the entropy.like function r¡ as follows,

l(e, q) = J (p ~~ -,,) dV, ( 16)

being a the cntropy-like production per unit time and volumc. The entropy.likc
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change is obtained from the generalized Gibbs equation

pd'l = 01 de + "2' dq. (17)

Q¡ are functións oí the extended thermodynamic space (e and q). Substituting
Eqs. (9) and (17) inlo Eq. (16), we oblain

I(e,q) = J [-V'(Olq)+VOI.q+02' ~7-al dI'., (18)

where use has been made oí

V. (olq) = OIV, q + VOl' q.

If there does not exist perpendit:ular component oC the heat flux on the suríace
of lhe conduelor 8H (infinile conduclor)

(this term could be retained in arder to give the boundary condition Cor the heat
flux, in that case an additionaJ term would appear in Eq. (16) related to a prescribed
value for q on lhe surface 8H), lhen Eq. (19) reduces lo

I(e,q) = J [VOl' q + "2' ~7-al dI'. (19)

What follows now is to search Corthe consequences on the Cunctional (16) when
the nonconserved component of the extended thermodynamic space is slightly mod-
ifieci. By construction it would be expected that I(e,q) remains invariant, since
we substract the nonconserved part oC the change of entropy-like function. The
variations which we carry out are independent oC spacc-time and this implies, as it
may be verified, that times derivatives and gradients are fixed during the variation
process, i. e. these restricted variations take place in the thermodynamic space
exclusively. Then the variational principie reads

where the superscript I indicates the rcstricted sense oC the principie.
So, equating the restricted variation {/ on the functional oC Eq.

yields

(20)

(19) lo zero

(21)
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here we have used 6'(V'0I) = O and 6'(f,q) = O, as it has becn mentioned. This
is a nonapproximated time evolution equation for the heat flux in the rigid hcat
conductor in the framcwork of EIT, but it is not very useful because we do not
know the explicit form of the O'¡ and (j.

Now, following the mexican EIT procedure, the coefficients 0', together with the
production (j are expanded in lerms of the scalar invariant 9 ;:::q . q

0'1 ;::: 0'10 + 0'119 + 0'129
2 + .

02 = (020 + 0219 + 02292 + )q

" = "1 + "29 + "39
2 + ...

(22.1)

(22.2)

(22.3)

If the integrand of Eq. (20) is to be expanded up to some order in the powers of
the nonconservcd variablc, then lhe series of Eqs. (22) must be developcd up to a
consistent order 128J. In particular, when the integrand of Eq. (20) is cxpandcd up
to order two, the a¡ are rcquired up to the lowest order and the production (j up to
arder two: al ;::: 0'10, 0'2 ;::: O'20q and (j ;::: (j29 (by compatibility with LIT (jI ;::: O).
Then, Eq. (21) reduces to the known time evolution equation ror the heat flux in
the rigid heat condudor (26)

where if we make the next identification

(23)

0'10;::: T-1, and (a2)-' = k,

Eq. (8) is recovered. Thus, we have seen how variations on the nonconservcd vari-
ables leaving invariant the tangent space of the extended thermodynamic space give
the time evolution equations of the fast variables as "Euler-Lagrange" derivatives
of fundional (19).

Now we apply the method to a simple viscous fluid, showing the procedure IOr
the manipulation of a functiona] which depends on two scalar dCllsities and three
nonconserved variables: a scalar, a vector and a second rank tensor. We al50 make
evident the important role which the c10sure hypothcsis [271is playing iu the EIT's
formalismo

4. A non c1assical variational principie of the restricted type for a simple viscous fluid

One of the 'y,terns that has been ,tudied more deeply within the framcwork of EIT
is tbe simple viscous fluid. Tbe closure assumption {27J for this system should be
necessarily invoked, not so in tbe case of the rigid heat conductor, because it is
required to consider the spatial unhomogeneties for the description of the fluid. \Ve
show how this hypothesis can be used to realize the restrictcd variation.



A l'Uriatimwl ap¡HYN1('hlo the time ct'olulion eqlJ.alions. . . 79

Let us consider a simple visrOlIS fluid which is ciel'rribed by thc balanre equations

ami

dp .
-=-\"J.
di

dY ~p-;¡¡ = -\'1'- \'. T

de ~
Pdl =-\"q- T :\'Y-I'\"Y-T\"Y,

(24.1 )

(24.2)

(24.3 )

~
with j tlle mass flux, v lhe velority, p the pressur(', T the trace Icss viscous tensor
"lid T the trare of viscous tensor.

In this ca.<;ethe gcneralized C;ibbs equation for '/ is

d1J de dp dT dq....... d7
p- = 01- + 01- + OJ- + 0",' - + 05: -di'~ ~ ~ ~ ~ (25)

The gCfleralized state equatiolls o, mllst han' a dl'tefmined form accordingly
with their tensorial character. Thus ttl(' \'('ctors call \)(' written as

tllt' tensors:

~
n'l = 0,11ft+ O.f!q' T.

•.....• - ---
() 5 = OSI T + n,",!ftCl + 053 T T + 0;,1 T . Clq

(26.1 )

(26.2)

and the sralars, tllt' f'lltropy.like prodllction and ni} an' fUllctioIlS of lhe six scalar
invariants COllstrllded with a scalar T. a vector q aul! a second rank trace less tensor~
T:

!JI = T.

!/! = q. q.

~ ~
93 = T : T ,

~
9, = q. T . q,

~ ~ ~
!l5 = tr( T • T . T ),

!J6 = q'(~'~) 'q.

(27.1)

(27.2)

(27.3)

(27.4)

(27.5)

(27.6)

Hemcm\)(,f that (T call depend 011 otl\('r illlporlanll,aramcters, i.e. lhe tangent space
is nol fully spalllH'd by the extended tlwrmodynamic spac(' [27]. In lhe case we are
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dealing with we can consider

Pl=\7.V, p, = (Vv)' and P3 = (Vv)",

as the relevant pararneters, where ( )" and ( )4 are the syrnmetric and antisyrnmetric
tensor part respectively. These pararneters belong to the tangent space and therefore
they are not going to be varied.

Thus, subsliluling Eqs. (24) and (26) in (25) lo inlroduce Ihe resull in Eq. (20)
and using the independence among the variations on the nonconserved variables,
we get the following system of equations

oa3dT d o d _ o
0= a,V.v+ -- + -q.q-a'l + -q.q. T -a"ogl di dt og¡ dt og,

d +-t +-t a d +-t a d +-t t-t +-t a
+ - T : T -a51 + - T : qq-a52 + - T : (T . T )-a53& ~, & ~,& ~,
d_ _ o _ o o

+-T :(qT 'q)-a,,+T :VV-al+TV.v-a¡
di ogl og, og,

o o+ (V .v)-a, - -u,og, ogl

'o o d •..• '0 o+ (V . v)¿-a,-g, + -q. (q' T)¿-a,,-g,. og, oq di . og, oq• •

d.... •..•~ o o d •..•¿' o o
+-T: T L-O:SI-9i+qq:-T -052-9,

di . og, oq di. og, oq
• •

d •..• __ ~ o o ~ o o+ - T : (T . T ) L., -a53-g, + TV, v L., -al-g,di . og, oq . og, oq, .
d •..• _ ~o o _ ~o o

+ d- T :(qT . q) L., -oo"o-g, + T :Vv L., a--:al-og,
I . g. q . g. q• •
,. o o

-¿-a-9il. og, oq•

(28.1)

(28.2)
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and

+-+ d +-+ d +-+ +-+ +-+ t 8 8
+2"53T '-d T +-T :(T' T)I:-a "53-::-R'9.

t dt . 9. a T•
d..... d..... •...• 'a a+ "54 -d T : qq + "1 \7v + -d T : q( T . q) I: -a "54 -::-R'9,
t t . 9. aT•

•...• 'a a 'a a+ T : \7v I: -a "1-::-R'9. + T\7 . v I: -a "1-::-R'9,. ~ 8T - 9i 8T• •
'a a '"aa+ (\7. v) I: -a "2-::=9, - I: -a "-::=9.,
. 9i 8T . 9i 8T• •

(28.3)

whereL1 == Lo with i = 3,5,6; L: == L. with i 'f 1,3; L1" == Lo with i = 3,5,6
and including the terms with parameters; Ll" == LI with i 'f 1,3 and including
the terms with parameters.

This system is a formal set of time evolution equations for the nonoonserved
variables. But again, it is not profitable in order to solve a specific problem.

Now, proceeding in a simil.r w.y as in the last .edion, we develop [d~/dt - "J
up to seoond order, so that

0'1 = 0'10, (29.1 )

02 = 020, (29.2)

03 = 0'31T, (29.3)

04 = 040Q, (29.4)
.....

(29.5)Os:;:: QSOT.

Here, we h.ve used compatibility with LIT [28), .nd morenver for the sake of m.tb.
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cmatical simplicity, both local tCIllIl('raturc and prcssure have becn considcred in
o} and 02. The cocfficicllts Ctl] are onl)' functions of the local equilibrium variables.
In the case of the production tl'rm the cxpansion considercd is

~
a = a}91 + (J292 + (J393 + (J.tl'I!J1 + (JsP192 + (J6PIg.l + (J7qq : P 2

+ (Jgqq : P3+(Jg7: (7. P"l}+aI07: (7. P3), (30)

again the (Ji are only functions of tlw colPwr\'cd variables. Thus. if ECls.(29) and (30)
arc' substitulcd in Eq. (28) we r('(o\'('r lhe known time evolution cquations for the
fluxcs of the fluid, namely,

d '"'('1' 1) '"' ~ ~040 -q = - \- - + 2112q + :!trS v . vq + 2(J¡q' 11 2 + 2(Jgq. P 3,
dt

d •....• I •....• t-+...... •....• •....••....•
050 di T = - T- 'Vv + 2(J.l T + 2a6 \7 . V T + 2(Jg T . P 2 + 2alo T • P 3.

(31.1)

(31.2)

(31.3)

In these ec¡uations we observe tI\(' coupling bctween tIJe hcat and moment fluxcs
and thc dosurc tefln". It is neccssary lo point out that a comparison of Eqs. (31)
\.....ith other results [28,101 is not cOlllpidC', bC'CauscthC'spalial inhornogencitics of the
fluxes are abselll in our results. ''¡"('t,the principal terms are prc'Scnt in Eqs. (31). Ir
the integrand [d11/di -a] is devcloped 1I(l to zeroth order, thc r~lIlts of local cquilib-
riulIl would be found again, Vp to first arder, wc cannot construct the entropy-like
produclion. Thus, in tia'se f'a~wsW('af(' reproducing previolls results {28J. The struc-
ture of thc Eqs. (28) permits to I)f('dict a coupling IwtWI'('1ltlle tlm'e ('quations whell
\\'C go to the third order, but this devC'lopmcnt will not ,ontrihutc significantly to
darif)' the physical meaning of 11,

5. Remarks

\Vc have secn that a c1assical variational principie doe's not exist for the equations
that describe the evolutioll of a systnn in EIT. This was not surprising since lile
same fad occurs in the framework of LIT [7]. Thus, \V(' werc impelled to search a
nonclassical principIe for those I'Cjuatiolls.

\Ve postulated a variatiolli\J principIe of the r~lricl('(1 IYIH' Eq. (20), wherC'
the role of the functional is pli\YI'd by the cntropy-like change rninus its produc-
tion summed over all physical space. The restrict('d variations take efreet onl)' on
nonconserved variables leaving fixed time and spatial derivatives and the conserv{'(1
local variables. So, the "'Eulcr-Lagrangc" derivatives of a gcncralizcd Lagrangian
Eq, (16) are the time evolution equations ror the rast variables,

Our principie has a visible resemblance with that of Onsager [8]. However, WC

lo oot indude the surfacc tenn (outfiow) in t1lc funcliollal be,ause our variation on
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it vanished. That term scems to have been introdueN in an ad !toe manner in the
Onsagcr's formulation. On the other hand, OUT variation proeess and the Onsager's
run by parallel ways. Nevertheless, not.e that OUT variations become to be justified
in the new extended formalismo

Jt must be pointed out that our principie is general while it does not suppose any
explicit form of the generalized lagrangian. On the contraey, two recent works [21,22]
present a variational principie in other EIT formalism which has rcsemblance with
Hamilton's action functional, but it is very particular bccallse it contains in a hand-
sorne manner spccial relaxation termo Another difTcrencewith prcvious variational
principIes [16] lies in that a1l fast variables are varied simultaneously and only one
type of restricted variations is usoo during the proccss. l\.foreover,the form in which
the functional 1is constructcd has a physical significance: the generalized lagrangian
is constitutcd by the conserved part of the cntropy.like change.

As it is well known, sorne authors have argued that the fundion 1] must he con-
sidered as a generalized entropy fundion, because it reduces to the entropy fundion
of LIT when the extended thermodynamic space is projected onto the conserved
space [24,26,28]. The fact that 1] is acting out as the outstanding thcrrnodynamic
fundion in our rcstrided variational principie strengthens that condusion.

The goal of this work is to have found a restricted variational principie that leads
to the time evolution equations of the nonconserved variabk'S in the framework of
EIT, in spite that the restriction on spatial and time derivatives irnpeded liS to
look out spatial and time unhomogen('ities. Nevertheless, our analysis eolightens
sorne physical aspcels of thc cxtended space. For instance: that Eqs. (21) aod (28)
be satisfied means that the conserved part of the 1] change ha.~remained invariant
wheo the nonconserved subset of the extended thermodynamic space is varied. This
fael may be 1I1ldcrstood as if the description of the evolution of the system given
by Eqs. (21) or (28) is near to that given by the corresponding equations in the
con~en'ed subset of the extended thermodynarnic space. Therefore, these equations
are valid in the ncighborhood of the local cquilihrium st ••tc. This conclusion is
inherited by the time evolution equations for the nuxes, Eqs. (23) and (31). Ilenee,
EJT is a phenomenological thcory describing systerns not too far from the local
equilibrium statc.

By the gencrality of the variational principie presented in this work, the specific
conclusions of the t\\'o examined. systems are susceptihle to he transferred. to anothcr
systems described with the mexican formalism of EIT, amI could be used as a
variational method to approximate solutions to transient problems.
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Resumen. Mostramos que no existe un principio variacional clásico
para un conductor rígido de calor en TIE. Formulamos un principio
variacional restringido que conduce a las ecuaciones de evolución tempo-
ral para las variables no conservada. .• en la versión mexicana de TIE. El
principio se ilustra para el caso del conductor rígido de calor y después
se aplica al fluido viscoso simple. La estructura del principio n05 permite
discutir algunos aspectos del espacio termodinámico extendido.




