Investigaciin Revista Mezicana de Fisica 36 No. 1(1990) 100-107

Some implications of the second law of Newton
on dislocation creep

J.A. Montemayor-Aldrete
Instituto de Investigaciones en Materiales, Universidad Nacional Auténoma de Mézico,
Apartado postal 70-360, 04510 Mézico, D.F.

G. Cocho and E. Orozco
Instituto de Fisica, Universidad Nacional Auténoma de Mérico,
Apartado postal 20-364, 04510 Mézico, D.F.

(Recibido el 27 de febrero de 1989; aceptado el 10 de noviembre de 1989)

Abstract. We develop some elements of the statistical mechanics for
mobile dislocations, which allow us to give a dynamical description
of the center of mass of the mobile dislocation system with Newton's
second law. The two fundamental equations of plastic deformation (i.e.
the Orowan equation and the Fuchs and Ilschner equation) are given a
new interpretation within the statistical mechanics framework. Also it
is shown that the acceleration of mobile dislocations is responsible for
the stability of the steady states under fluctuations.

PACS: 61.70.Le

1. Introduction

Usually for steady state dislocation creep the acceleration of dislocations is ne-
glected. However, for the transient stages of plastic deformation the situation is
quite different. For these stages it is known that the accelerations of dislocations
is important in cases where stress, o, or the average internal stress, (o;), changes
with time. During plastic deformation such changes in the stresses may occur in an
abrupt way or in a more continuous way. For the first case we have situations such as
a sudden change on the applied stress during a creep test [1], or an internal friction
tests [2-4], and anomalies in the yield stress of superconductor materials near the
transition temperature [5-8]. The second case usually presents the creep transient
which arises during primary creep. The qualitative features of the deformation rate,
(€), have been explained considering the acceleration of dislocations for certain cases
of creep transients [9-11]. Essentially Gasca-Neri, Ahlquist and Nix [10], and Mejia
and Mendoza [11] follow the Fuchs and Ilschner approach [9], who performed a time
derivation of the Orowan equation obtining a mathematical expression for d(¢)/dt,
namely, starting from

(é) = abpu (o). (1)
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The Fuchs and Ilschner equation reads

ﬂé}— =ab ((v)d;—tm + Pm%) ) @)

where « is the average geometrical factor relating the tensile deformation to the
shear deformation for polycrystalline samples, b is the magnitude of the Burgers’
vector, py is the mobile dislocation density and, (v} is the average glide velocity of
mobile dislocations.

Egs. (1) and (2) are the fundamental equations on dislocation creep, and because
of that it is interesting to make a brief mention about their original method of
derivation and their meaning. The derivation of the Orowan equation, Eq. (1), is
based on topological properties of the edge dislocations [12], and it yields the strain
rate of the material under plastic deformation. On the other hand, the Fuchs and
Ilschner equation, Eq. (2), is obtained from a mathematical manipulation of the
Orowan equation (its time derivative), and it yields the rate of change of the strain
rate.

From our point of view other interpretations for the fundamental equations on
dislocation creep may be given, and we consider one that is based on a statistical
approach for the description of the acceleration of mobile dislocations.

Qur main purpose is to show that the Fuchs and Ilschner equation is the ap-
propiate dynamical description for the motion of the center of mass of the mobile
dislocation system through Newton’s second law expressed in a volumetric way.
Therefore, the Orowan equation may be interpreted in terms of the volumetric den-
sity of linear momentum of the mobile dislocations. Also we show that a theoretical
explanation of the stability of the steady states is only possible if the acceleration
of mobile dislocations is taken into account.

2. The second law of Newton and the equation of motion
for the mobile dislocation system

We know that one-dimensional dislocations are solitons [13,14]. The first treatment
in such a scheme was developed in 1939 by Frenkel and Kontorova [15]. The dy-
namical behavoir of the mass center of a system of solitons is governed by Newton’s
second law [16]. Then the motion of a “gas” of one-dimensional dislocations can be
described in terms of the dynamical properties of its center of mass. The previous
ideas suggest that, in general, the mobile dislocation system from a real crystal
under deformation obeys the second law of Newton too. In order to prove such a
hypothesis our analysis starts from the equation of motion per unit length of an
edge dislocation. Further, we develop some elements of the statistical mechanics of
mobile dislocations.

In order to emphasize the physical ideas, let us consider the plastic deformation
due to dislocations gliding in a material with only one active slip system.
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The equation of motion per unit length of an edge dislocation [17,18] is

dv
moy = (r —m)b— Fy, (3)

where m is the mass per unit length of dislocation (assumed to be constant), v is
the glide velocity, 7 is the applied shear stress on the glide plane, and 7 is the
local internal shear stress which opposes to 7. Fy is a dissipative force due to glide,
which is called the drag force per unit length [1]. For our purpose it is enough to
know that in general Fy has a zero value only when a dislocation has no gliding
or vibrational movement (an exception is treated by Flytzanis et al. [19] for the
soliton-like motion of a dislocation in a lattice at 0 Kelvin degress).

In a solid undergoing deformation, there exists a local inhomogenous density
of mobile dislocations gliding at different velocities depending on the local config-
uration of dislocations they face. Taking this information in consideration Li [21],
describes certain features of plastic deformation by using a distribution function
of the radii of curvature. We generalize such scheme by defining a distribution
function N(r,v) for the number of unit lengths of mobile dislocations having a
position between r and r+ dr and velocities between v and v +dv. Then the mobile
dislocation density, pm, and the average of any function of the system are defined
respectively by

pm = f j N(r,v) d*rdv, (4)

B [ [ N(r,v)¢d’rdv
() = J [ N(r,v)drdv’ (5)

Now, with the theoretical elements previously described, we proceed to analyze
the dynamical behavior of the miobile dislocation system. This can be obtained by
making a summation of the volumetric force acting on mobile dislocations when its
density is constant and the volumetric force necessary to incorporate or desincor-
porate dislocations to the gliding process. During a creep test in general pp is not
a constant. but we may choose an interval of time ét' small enough so that creation
or annihilation events are negligible and py remains constant. If for this &t' it is
supposed that all mobile dislocations glide with an average velocity, (v), then the
volumetric force acting on py, is given by pp, times the average of Eq. (3), and using
Eq. (5), one gets

mpm ok = pul(r = ()b = (F, ©)

where the principle of superposition of forces [22], was used; this principle is valid
in the linear theory of elasticity [23].

If we consider an interval of time dt bigger than 6¢' then the value of py, is not
a constant. During this interval of time p,, can change due to an increment or a
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decrement in the quantity of mobile dislocations. The increment of py, is denoted
by dpf and is due to generation of new dislocations and liberation of dislocations
previously inmovilized. The decrement on pp, is denoted by dpy and is due to
inmovilization of previously mobile dislocations.

The force per unit length required to accelerate a newly generated dislocation (or
liberated one) is mdv/dt as given by Eq. (3). Supposing that all these dislocations
start from rest and reach the average glide velocity, (v), in a infinitesimal fraction of
dt, and using the principle of superposition of forces, the volumetric density of force

+ . ’ .
acting on dp}, is m(v)%’{“. A similar analysis can be done for dpp,. This analysis
gives us the volumetric density of force acting on a fraction of mobile dislocations

in order to inmobilize them. This volumetric force is equal to -——m(v)g-f{;l. Then the
total volumetric force on the mobile dislocation system because of the total change
in its density is

dpd.  dpm\ _ dpm

Using Eqgs. (6) and (7), the total force per unit volume acting on the mobile
dislocation system, (f) is

(1= mon g4 mio) % = Gimemo)) = 00 ®

In other words, using the Orowan equation

(=20, (8.)

In this frame, the Orowan and Fuchs and Ilschner equations appear with an
aditional interpretation to the one described in section 1. The physical meaning of
the Fuchs and Ilschner equation is as follow. Since %? ~ (f), this equation is related
to the volumetric net force which describes the dynamical behavior of the center of
mass of the mobile dislocation system. And, the key element for this interpretation
is that the volumetric linear momentum which appears in the second law of Newton
is related to the strain rate as given by the Orowan equation.

In the next section, it will be shown that one condition for the stability of steady
states under fluctuations is given by the Fuchs and Ilschner equation. This result will
be obtained by using a creep model independent from our model. Also it is shown
that the acceleration of mobile dislocations plays a fundamental role in a plastic
deformation during steady state, contrary to previous theoretical considerations.
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3. Fluctuations, acceleration of dislocations and stability of steady states

Usually, the creep tests are carried on annealed samples by applying constant stress,
o, and temperature, T, at temperature above 0.5 the melting temperature in Kelvin
degrees. During a creep test the values of o and T' fluctuate around the chosen values,
because of intrinsic characteristics of any experimental system. These changes in
o and T occur also during steady states and induce microstructural changes in
the sample under plastic deformation, in such a way that the stability of steady
states under fluctuations is an experimental fact commonly observed. A theoretical
demonstration of this fact was achieved only in recent times [24].

This demonstration due to Montemayor-Aldrete et al [24] was obtained by ana-
lyzing the implications of the condition of compatibility of two complementary creep
schemes. The first one with a microscopical emphasis on the microscopical defects of
the crystals under deformation [1]. The second with macroscopical emphasis in the
description of the curves of deformation versus time, during transient and steady
stages of deformation [25]. Montemayor-Aldrete et al. have shown that for steady
state creep , the microstructural-defect-vector S is a constant vector, where S is
given by S = (8;,52,...5,) with S1 = pm, S2 = pr (pr the total dislocation
density), S3 = R (R the cell size of dislocations), etc. Hence, all the elements of
a defect configuration which migth be considered relevant for the description of
plastic deformation are specified. Also for steady state this model has shown that
every function ¢ with S dependence is also a constant. There ¢ can be (), or the
creation rate of entropy of the system, the volumetric density of kinetical energy of
mobile dislocations, etc.

In this section we apply an approximation of the model described above, in order
to show that the stability of steady states under fluctuations involves acceleration
of dislocations and needs to be explained by using the Fuchs and Ilschner equation.

For Steady State the model gives a continuity equation for each component S;
of S

aS; 4 aS; dS;
ot 65 dt

1#1

where j # i; also, every function ¢ with S dependence obeys the following equation

09¢ dS;

3s; dt (0

In order to obtain practical conclusions from Eqs. (9) and (10), the vector S
will be approximated by its two first components, then 8 = (pm, pr). Following
the Bird, Mukherjee and Dorn approach [26], the average value of the internal shear
stress, (7;) is proportional to (p)!/%. From the analysis of Ahlquist, Gasca-Neri and
Nix [27], the average velocity of mobile dislocations is proportional to (ao — (7;))".
Therefore, (pm, pT) can be transformed into another space given by 8§ = (pp, (v)).
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And using Egs. (9), the following set of conditions for the stability under fluctuations
for components of the defect vector S in steady state is obtained:

dpm _ Opm | Opm d(v) _
dt ot Ov) dt '

d(v) _ (o) , v} dpm

dt t ' Bpm dt

(11)
=

Now taking ¢ as ¢ = (¢) = abpu(v) and using Eq. (10), the condition for
stability of (é) is obtained, namely

de) _ 9E) dom _ 3(2) div)
dt

 Opm dt (v) dt

ik ((v)‘{;—tm+pm%§’—)) =0, (12)

which is the Fucks and Ilschner equation.

The set of Eqs. (11) and (12) asure that every steady state in dislocation creep
is stable under fluctuations. The equations of the components of S, Egs. (11) can
be interpreted as follows: when in a given place of the sample the steady state value
of pm changes, it induces a flux on the other component of S (that is in (v)) which
will tend to nullify the initial variation in py from its steady state value. Thus we
conclude that the steady state for every S; is the result of a dynamic equilibrium
between a tendency to build up a defect structure and a tendency to destroy it, just
as would be expected from irreversible thermodynamics [28].

4. Conclusions

The analysis of the previous sections gives us the following conclusions:

i) The dynamic description of the center of mass of the mobile dislocation sys-
tem, can be obtained by using Newton’s second law. This analysis, and a statistical
mechanical approach, provides a more intuitive insigth to the physical content of
the Orowan and the Fuchs and Ilschner equations.

ii) The acceleration of mobile dislocations is responsible for the stability of
steady states under fluctuations.

The above conclusions encourage further investigation for the approach taken
in this paper. Here we developed a steady state application, but it is clear that the
same approach can be used for the analysis of transient stages like:

1) The study of the dynamical behavior of mobile dislocations at the inflection
point in Sigmoidal Creep Curves for viscous glide and for Power Law-Creep.

2) Further theoretical developments of our scheme in order to be able to describe
the time evolution of the mobile dislocation density during a total unloading test.
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Work along these lines is already in progress. In the first case, an analysis for

viscous glide in Germanium, and Power-Law creep in Cu-16at%Al; and in the second
case an analysis of experimental data for Al-11%wtZn.
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Resumen. Desarrollamos algunos elementos de la mecénica estadistica
de dislocaciones méviles. Ello nos permite dar una descripcién de la
dindmica del centro de masa del sistema de dislocaciones utilizando
la segunda ley de Newton. Dentro del marco tedrico de la mecdnica
estadistica, damos una nueva interpretacién de las dos ecuaciones
fundamentales de la deformacién plastica (i.e. la ecuacién de Orowan y
la ecuacién de Fuchs e Ilschner). También se muestra que Ja aceleracién
de las dislocaciones méviles es la responsable de la estabilidad de los
estados estacionarios ante fluctuaciones.





