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Abstract. \Ve develop sorne elements of the statistical mechanics foc
mobile dis!ocations, which allow us to give a dynamical description
of the center oC mass oC the mobile dislocation system with Newton's
second law. The two fundamental equations oC plastic deCormation (i.e.
the Orowan equation and the Fuchs and llschner equation) are given a
new interpretation within the statistical mecha.nics Cramework. Also it
is snown that the acceleration of mobile dislocations is responsible Cor
the stability oC the steady states under fluctuations.

PACS: 61.70.Le

1. Introduction

Usually for stcady state dislocation creep the accc1eration of dislocations is ne-
gleeted. However, ror the transient stages of plastic dcforrnation the situation is
quite different. For these stages it is known that the accc1erations of dislocations
is important in cases where stress, a, or the average internal stress, (11¡), changes
with time. During plastic deformation such changcs in the stresses may occur in an
ahrupt way or in a more continuous way. For the first case we llave situations sllch as
a sudden change on the applied stress during a creep test [1], or an internal fridion
tests [2-4L and anomalies in the yield stress of superconductor materials ncar the
transition temperature {5-SJ. The second case usually presents the creep transient
which arises during primary creep. The qualitativc fcatures of the deformation rate,
(i), have been explained considering the acce1eration of dislocations for ccrtain cases
of CROCP transients 19-1 Ij. Essentially Gasca~Ncri, Ahlquist and Nix [10]' and hlejía
and Mencloza [I1] follow the Fuchs and Ilschncr approach 19]' who perforrned a time
dcrivatjou of the Orowan equation obtiuing a mathernatical expressioIl for d(t}/dt,
narnely, starting from

(1 )
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The Fuchs and Ilschner equation reads

d(i) _ b (( ) dpm d(v))
di -" v di + Pm dt ' (2)

where Q' is the average geometrical factor relating the tensile deformation to the
shear deformation for polycrystalline samples, b is the magnitude of the Burgers'
vector, Pro is the mobile dislocation density and, (v) is the a.verage glide velocity of
mobile dislocations.

Eqs. (1) and (2) are the fundamental equations on dislocation creep, and because
of that it is interesting to make a brief mention about their original method of
derivation and their meaning. The derivation of the Orowan equation, Eq. (1), is
base<! on lopological properlies of lhe edge disloealions (12J, and il yields lhe slrain
rale of lhe malerial under plaslie deformalion. On lhe olher hand, lhe Fuchs and
Ilschner equation, Eq. (2), is obtained from a mathematical manipulation of the
Orowan equation (its time derivative), and it yiclds the rate of change of the strain
rateo

From our point of view other interpretations for the fundamental equations on
dislocation creep may be given, and we consider one that is based 00 a statistica1
approach for thc dcscription of the accc1eration of mobile dislocations.

Our main purpose is lo show that the Fuchs aod Ilschner equation is the ap-
propiatc dynamical dcscriptioo for the molion of lhe cenler of mass oC the mobile
dislocation syslem through Newton's second law exprcssed in a volumelric way.
Thercforc, thc Orowan equation may be interpreted in lerms oC the volurnelric den-
sity of linear momentum of the mobile dislocations. Also we show that a thcorelical
explanation of the stability of the steady slales is only possible iC the acceleralion
of mobilc dislocations is takcn inlo account.

2. The second law of Newton and the equation of motion
for the mobile dislocation system

\Ve know that onc-dimensional dislocations are solitons (13,14). The first treatment
in sueh a seheme was developed in 1939 by Frenkel and Konlorova [15J. The dy-
namical bchavoir of the mass center of a system oC solitons is governed by Newton's
sccond law [16). Then the motion oC a "'gas" of one-dimensional dislocations can be
described in teems of the dynamical properties oí its center oí roass. The previous
ideas suggest that, in general, the mobile dislocation system íroro a real crystal
under deíormalion obeys the second law of Newton too. In order to prove such a
hypothesis our analysis starts frútll the equation oC motion per unit length of an
cdgc dislocation. Furthcr, wc develop sorne elements of the statistical mechanics oC
mobilc dislocatiolls.

In order to emphasize the physical ideas, let us consider the plastic deCormation
due to dislocations gliding in a material with only one active slip system.
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The equation of motion per unit length of an edge dislocation [17,18] is

dv
m dt = (T-71I)b- Fd, (3)

where m is the mass per unit length of dislocation (assumed to be constant), v is
the glide velocity, T is the applied shear stress on the glide plane, and Til is the
local internal shear stress which opposes to T. Fd is a dissipative force due to glide,
whieh is ealled the drag force per unit length [lJ. For our purpose it is enough to
know that in general Fd has a zero value only when a dislocation has no gliding
or vibrational movement (an exception is trealed by Flytzanis el al. [19] for the
soliton.like motion of a dislocalion in a lattice at OKelvin degress).

In a solid undergoing deCormation, there exists a local inhomogenous density
oC mobile dislocations gliding at different velocities depending on the local config.
uration oC dislocations they fare. Taking this information in consideration Li [21),
describes certain featufes of plastic deformation by using a distribution function
of the radii of curvature. We generalize such scherne by defining a distribution
function N(r, v) for the number oC unit lengths of rnobile dislocations having a
position between r and r + dr and veiocities between v and u+ du. Then the mobile
dislocation density, Pm, and the average of any function of the system are defined
respeetively by .

Pm = J J N(r, v) d'rdv,

(4)) = J J N(r,v)4>d'rdv
J J N(r,v)d'rdv

(4 )

(5 )

Now, with the theoretical elements previously described, we procccd to analyze
the dynamieal behavior oC the rnobile disloeation system. This can be obtained by
making a surnmation of the volumetric force acting on mobile dislocations when its
density is constant and the volurnetric force necessary to incorporate or desincor.
porate dislocations to the gliding process. During a creep test in general Pm is not
a constant. but we may choose an interval oC time £Jt' small enough so that creation
or annihilation ~vents are negligible and Pro remains constant. If for this £Jt' it is
supposed that aH mobile dislocations glide with an average velocity, (v), then the
volumetric force acting on Pro is given by Pro times the average of Eq. (3), and using
Eq. (5), one gets

(6)

where the principie of superposition of forces [22L was used; this principIe is valid
in the linear theory oC elastieity [231.

If we consider an interval of time dt biggcr than £Jt' then the value of Pro is not
a constant. During this interval of time Pm can change due to an incrernent or a
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decrement in the quantity of mobile dislocations. The incremcnt of Pm is denoted
by dp~ and is duc to gcneration of new dislocations and liberation of dislocations
previously inmovilized. The decrcment 00 Pm is denoted by dp;' and is due to
inmovilization of previously mobile dislocations.

The force per unit length required to acceleratc a newly generated dislocation (or
liberaled one) is mdvJdt as given by Eq. (3). Supposing lhal aH lhese dislocalions
start from rest and reach the average glide velocity, (v), in a infinitesimal fraction oí
dt, and using the principie oí superposition oí íorces, the volumetric density of force
aeting on dp~ is m{v)~. A similar analysis can be done for dp;. This analysis
gives liS the volumetric density of forc{"aeting on a fraetion of mobile dislocations
in order to inmobilize them. This volumetric force is equal to -m{v}~. Then the
total volumetric force on the mobile dislocation system beca use of the total change
in its density is

m(v} (dP;:; _ dp;;.) '" m(v) dpm.
dt dt dt

(7)

Using Eqs. (6) and (7), lhe lolal force per unil volume acling on lhe mobile
dislocalion syslem, (f) is

In other words, using the Orowan equation

(f) = :b:t«)'

(8)

(8.0)

In this frame, the Orowan and Fuchs and Ilschner equations appear with an
aditional interprctation to the one described in seetion 1. The physical meaning of
the Fuchs and Ilschner equation is as follow. Since ~ '" (J), this equation is related
to the volumetric net force which describes the dynamical behavior of the center of
mass of the mobile dislocation system. And, the key element for this interpretation
is that the volumetric linear mornenturn which appears in the second law of Newton
is related to the strain rate as given by the Orowan equation.

In the next section, it will be shown that one condition for the stability of steady
states under fluctuations is given by the Fuchs and Ilschner cquation. This result will
be obtained by using a creep rnodel independent from our rnodel. AIso it is shown
that the acceleration of mobile dislocatioos plays a fundamental role in a plastic
deformation during steady state, contrary to previous theoretical considerations.
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3. Fluctuations. acceleration of dislocations and stability of steady states

Usually, the creep tests are carried on annealed samples by applying constant stress,
(J, and temperature, T, at temperature aboye 0.5 the melting temperature in Kelvin
degrees. During a creep test thc values of (J and T fluctuate around the chosen values,
because of intrinsic characteristics of any experimental system. These changes in
(J and T occur also during steady states and induce microstructural changes in
the sample under plastic deformation, in such a way that the stability of steady
states under fluctuations is an experimental fad commonly observed. A theoretical
demonstration of this fad was achieved only in reccnt times [24].

This demoostratioo due to Mootemayor-Aldrete el al [241was obtaioed by aoa-
Iyzing the implications of the condition of compatibility of two complementary creep
schemes. The first one with a microscopical emphasis on the microscopical defeds of
the crystals under deformation [1]. The second with macroscopical emphasis in the
description of the curves of deformation versus time, during transient and steady
stages of deformatioo [251. Mootemayor-Aldrete el al. have showo that for steady
state creep , the microstrudural-dcfect.vector S is a constant vector, where S is
giveo by S = (S" S" ... S.) with SI = Pm, S, = PT (PT the total disloeatioo
deosity), S3 = R (R the eell size of disloeatioos), etc. Ileoce, all the elemeots of
a defecl configuration which migth be considered relevant for the description of
plastic cleformation are spccificd. Also for steady state this ruodel has shown that
every fundion 4J with S dependence is a150 a constant. There 4J can be (i), or the
crcation rate of entropy of the system, the volumetric dcnsity of kinetical energy of
mobile dislocations, etc.

In this section we apply an approximation of the model dcscribed aboye, in order
to show that the stability of stcady states under fluctuations involves acceleration
of dislocations and needs to be explained by using the FllChs and IIschner equation.

For Steady State the model gives a continuity equation for each component Si
of S

as; ..¿;... as. dSj _ o
al + L: aSj dt - ,

1r'

(9)

where j =f i; also,. every fundion 4J with S dependence obeys the following equation

d4> = ..¿;... !!1.. dSj = o
di ~ aSj dt .

1

(10)

In order to obtain practical conclusions from Eqs. (9) and (10), the vector S
will be approximated by its two first components, then S = (Pro, PT). Following
the Bird, Mukherjee and Doro approach [26], the average vallle of the internal shear
stress, (Ti) is proportiooal to (PT)I/'. From the aoalysis of Ahlquist, Gasca-Neri aod
Nix [27], the average velocity of mobile dislocations is proportional to (o:a - (Ti))".
Therefore, (Pm,PT) eao be traosformed ioto aoother spaee given by S = (Pm, (u)).
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And using Eqs. (9), lhe following sel of condil'íons for lhe slabilily under f1uclualions
Corcomponcnts oí the deCect vector S in steady statc is obtained:

dpm _ apm apm d(v} _ o.
di - 8t + a(v) di - ,

d(v} = a(v) + a(v} dpm = O.
di at aPm dt

(I1 )

Now laking <P as <P = (i) = obpm(v} and using Eq. (10), lhe condilion for
slahilily of (i) is oblained, namely

d(i) a(i) dpm a(i) d(v)-=--+--dt apm di a(v} di

(
dpm d(V})

= ob (v)di +Pmdi = O, (12)

which is thc Fucks and Ilschner equation.
The sel of Eqs. (11) and (12) asure lhal every sleady slate in dislocalion creep

is stable under fluctuations. The equations oC the components oC S, Eqs. (11) can
be interpretcd as follows: when in a given place oC the sample the steady state value
oC Pm changcs, it induces a flux on the other componcnt oC S (that is in (v)) which
will tend to nulliCy the initial variation in Pm Crom its steady state value. Thus we
conclude that the steady state for every Si is the rcsull oCa dynamic equilibrium
between a tendency to build up a deCeel structure and a tcndency to destroy ¡t, just
as would be expected fcom irreversible lhermodynamics [281.

4. Condusions

The analysis oC the previous sections gives us the Collowing conclusions:
i) The dynamic description oC the center oC mass of the mobile dislocation sys-

tem, can be obtained by using Newton1s second law. This analysis, and a statistical
mechanical approach, provides a more intuitive insigth to the physical content oC
the Orowan and the Fuchs and Ilschncr equations.

ii) The acceleration oC mobile dislocations is rcsponsible Cor the stability oC
steady states under fluctuations.

The aboye conclusions encourage further investigation Cor the approach taken
in this papero Here we developed a steady state application, but it is c1ear that the
same approach can be used for the analysis of transient stages like:

1) The study of the dynamical bchavior oC mobile dislocations at the infleelion
point in Sigmoidal Creep Curves Cor v¡scous glide and Cor Power Law.Creep.

2) Further theoretical developmenls of OUT schemc in order to be able lo describe
the lime evolution of the mobile dislocation density during a total unloading test.
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Work aloDg these lines is already in progress. In the first case, aD analysis for
viscous glide in Germanium, and Power-Law creep in Cu-16at%AI; and in the second
case an analysis of experimental data for AI-II %wtZn.
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Resumen. Desarrollamos algunos elementos de la mecánica estadística
de dislocaciones móviles. Ello nos permite dar una descripción de la.
dinámica del centro de masa del sistema de dislocaciones utilizando
la segunda ley de Newton. Dentro del marco teórico de la mecánica
estadística, damos una nueva interpretación de las dos ecuaciones
fundamentales de la deformación plástica. (i.e. la ecuación de Orowan y
la ecua.ción de FUchs e nschner). También se muestra que la aceleración
de las dislocaciones móviles es la responsable de la estabilidad de los
estados estacionarios ante fluctuaciones.




