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Abstract. We review the appearance of the Virasoro algebra in the
context of classical and quantum bosonic string theory. The classical
algebra is closely related to the Lie algebra of vector fields on the
circle as a differential manifold, which suggests a deep and beautiful
connection between physical and geometrical objects.
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1. Introduction

The Virasoro algebra [1] plays an important role in string theory since it arises as
the algebra of the conformal group in one and two dimensions [2] where, unlike
three or more dimensions, it is infinite dimensional (in fact in two dimensions the
algebra consists in two commuting Virasoro algebras), and at the classical level
conformal transformations are the residual symmetries of the gauge-fixed metric
1o =diag (1, —1) on the world-sheet after use of reparametrization and Wey! invari-
ances. At the quantum level, effects due to normal ordering of operators break these
symmetries producing an anomaly which is the origin of the central (or c-number)
term in the algebra. In the path integral formulation of the quantum theory, func-
tional integration over ghost (and antighost) fields is introduced to represent the
[Fadeev-Popov determinants, which appears as a consequence of gauge fixing. The
energy-momentum tensor receives a contribution from the ghosts which through
Fourier transformation lead to an additive modification of the Virasoro generators.
The algebra generated by the modified operators is the conformal algebra i.e. the
effect of the anomaly cancels) only at the dimensionality of space-time D = 26.
These results correspond to the bosonic string. In the supersymmetric case the
theory is anomaly-free at D = 10. In the following we restrict our discussion to the
hosonic case.

[t is the purpose of the present article to review the appearance of the Virasoro
algebra in the context of the classical and quantum bosonic string theory (Part I)
and to connect the anomaly-free algebra with geometrical objects (Part II). In
Seces. 1-3 (Part 1) we discuss the Nambu and Polyakov actions, and the classi-
cal (without anomaly) and quantum (anomalous) Virasoro algebras. In Secs. 4-9
(Part I1) we derive the Lie algebra of the vector fields on the circle which is the
unique (up to diffecomorphisms) real 1-dimensional closed (compact without bound-
ary) connected differential manifold. It is the complexification (Sec. 9) of the algebra
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which coincides with the anomaly-free Virasoro algebra. We do not intend an ex-
planation of the (possibly deep) reason of the above connection. Some discussion is
given in Refs. [2,3]. General introductions to the subject of string and superstring
theories can be found in Ref. [4].

Part |

1. Nambu action and classical Virasoro algebra

Let M = (R?,g;) be D-dimensional Minkowski space (g, is the Lorentz metric
g =diag (1,—1,...,-1)), T and T closed intervals of the real line and S! the
circle. An open string path is a continuous function (map) ¥ from I x T into M i.e.
T IxT ~s M,(7,0) — E(7,0) with ¥ € Map (Txf, M). For ¥ we have the ordered
set of functions & = (27,... ,zP=1) where the z#’s are the coordinate functions of
M given by z# = r# o ¥ with v : R? — R being the p-th coordinate function on
R?. We have (1,0) — (2%(7,0),...,2P~Y(1,0)), 2#(7,0) = r*(E(r,0)) € R. An
open string world-sheet I'y; is the image of T x 7 by the path ¥ i.e. I'y = B(7T x 7‘).
For a closed string path one has £, : I x §' = M, (,0) — X.(7, o). In what follows
we disquss open strings. The discussion of closed strings is analogous.

Let ¢ be a diffeomorphism of T x T ie. a smooth (C* continuously differ-
entiable) bijective function ¢ : T x T - IxT.A reparametrization of ¥ by
¢ € Diff (T x T)‘ is the open string path ¢*(X) given by ¢*(¥) : T x T - M,
(r,0) — E(é(,0)) i.e. ¢*(Z) = L o ¢ which makes

M

T x T

a commutative diagram. Since ¢ € Diff (7 x Tr), (1 x Tr) =7 x T and the world

sheet remains invariant under reparametrizations:

!

Ty =" (B)TxT) = (Tog)IxT)=S(TxT)=Ty.

*For any smooth manifold M, Diff (M) is a group, subgroup of Aut (M): group of automorphisms
(f : M — M bicontinuous) of M considered as a topological space. Diff (M) is a topological

group, though not closed in Aut (M).
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An action S for a path ¥ is a function S : Map (I x T,]\f[) — R, E— S(E)
which is invariant under reparametrizations: S(¢*(X)) = S(X). It is easy to see that
this requirement is satisfied by the Nambu action [5]

T] T
Sn(E) = const. x / d'r/ doy/(zz')? — 22212, (1)
T 0

where & = (8;2#), 2’ = (9,2") and AB = BAwith A, B = &, 2" is the scalar product
in M with the Lorentz metric, AB = (A, B),, = 2‘1‘):—01 A*BY(gp)u = A*B,. We

chose T = [r;, 7] and T = [0,7]. The usual value for the constant in Eq. (1) is
—Ty/e where Tj is the string tension and c the velocity of light. It is common to
choose units such that ¢ = 1 and Ty = 1/7. The equations of motion and the edge
conditions are obtained by making a variation of the string path, ¥ — X' 4 §X,
subject to the condition §£(ry,e) = §E(7s,0) = 0. One obtains

pr+ P:, =0
with
(#2')2' — 2%
TrpT = . 5 . 1
((IIr)_ _ .7:21:’2)1/2
(#2")& — 22z’
Tls = o
((zx")? — z2'2)1/2
and

Po(7,0) = po(7,7) = 0.
The expressions for p. and p, lead to the identities (constraints)

$f2 .’1-','2

p"xf:f-’ﬂing'i”ﬁ:f’g"'ﬁ:o-

The reparametrization invariance allows to impose two conditions on the string
path ¥. The “conformal gauge” is defined by the conditions

' =1t + 2% =0,

which lead to equations of motion, edge conditions and constraints respectively
given by

i—2"=0, Z(r,7r)=4(7,00=0 and (2xz)?=0.
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For p, and p, one obtains 7p, = & and 7p, = —z'. The world-sheet solutions
I'y are

Cosno | et —
1m(a#e in(r r,)),
n

(r,0) =¢" +pH(r—m) -2
n=1

with ¢*, p* € R, af € C integration constants, and the constraint equations are given
by 0 = -2 Euel e~in(rio) implying L, = 0, m € Z. The Virasoro generators
were defined as

1 z
Lm == "5 aﬁam—n”,
nel

with af = p* and of = /nah = af.,, for n € I*. As for any mechanical system
one introduces a Lie algebra of Poisson brackets structure in the phase space of the
system, p, and z are conjugate maps and then it is natural to set

{pr(r,0),2%(r,0")} = y"é(0 - o),

{ph(7,0),%(7,0")} = {a#(r,0),2"(r,0)} =0,
(n*¥ = (g1 )*") which lead to

{ak,a%} = imbm,—an™ for m,n € T — {0} and {p*,2"} = y*.

A straightforward calculation using the familiar properties of Poisson brackets
{AB,C} = A{B,C} + {A,C}B and {A,B} = —{B, A}, leads to the classical
Virasoro (Lie) algebra

{Lm,ln} = —i(m — n)Lpyn, mi,n € L.

A final remark is the following. It is natural to define the extension ¥ : [r;, Ts] x
[-m,7] = M of the string path ¥ through the equations £(r,—0) = £(r,0) =
E(r,0), £(1,—0) = £(r,0) = £(r,0) and £'(r,—0) = —¥(r,0) = -T'(,0),
where o € [0,7], Y= 0:L, ¥ = 8,8, ¥ = a,,f; and £ = 4,5, Then the two
constraints are expressed by the unique equation (z + ') = 0 (or (% — #')? = 0),
and the Virasoro generators are the Fourier transforms

1 s

N —ix(r4o) ik 4 22
L i _qdae (z + z')~
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2. Polyakov action

The introduction of the Polyakov action [6] (see also Ref. [7]) and its associated
method of quantization involves a deep change in the description of the dynamics
of the string. While in the Nambu theory the world-sheet I's is the image in M
of the string path L, in the Polyakov approach the world-sheet is considered a
one-dimensional complex-analytic manifold (a Riemann surface) and the theory
describes fields z# (x = 0,1,...,D — 1), which are O-forms “interacting” with a
metric hqap (a, = 0,1) with Lorentz signature defining a Riemannian structure
on the manifold. In this context, (7,0) = (£°,£') are coordinate functions on the
manifold i.e. elements of local charts, and the “reparametrization group” is not a
group but a pseudogroup of transformations [8] (general covariance). In this section
we briefly review the classical equations of the approach and show that the Virasoro
generators are the Fourier transforms of the energy-momentum tensor associated
with the “matter fields” z*.

The Polyakov action is
1
Sp = —g7 [ € VREI(E) 8 X*(€) 952*(€) v

where h(£) = — det hog(€) and h*Phg, = §°,. Since no derivatives of hag appear
in the action, the equations of motion for the metric coincide with the definition of
the energy-momentum tensor T, of the matter fields, and lead to the vanishing of
this tensor

2r 6
T ({) = ——Imsp(ha’g,x“) = 0,

where §/6h°F is the functional derivative with respect to il
One obtains

L= —%haﬂh’“s@-,,z"ﬂgx,. + Oqx* O,
with

T®, = h*PT, g = —h*Pz* (2, 5+ h*Pzh x5 =0.

For the solution Eaﬂ of Tag = 0 we have E,,ﬂ = 27,5/7?67.,5 with 7,8 = 2% a2, 9,
and then Sp(hqp,z*) = Sn(z*). We want to emphasize however, that though the
Nambu action has been recovered, this is a pure formal result, since both approaches
have different geometrical basis. General covariance allows to set hqg = e‘nag with
Nap = diag (1,—1). Then Too = T11 = %(x"z +2'%) and Ty; = Ty = &z’ which lead
to the constraint equations in the Nambu theory. According to the remark at the
end of Sec. 1, we see that the generators L, of the Virasoro algebra are the Fourier
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transforms of the linear combination %(T(m + T11) of components of the tensor 7,5
associated with the extended fields z.

3. Quantum Virasoro algebra

To go from the classical to the quantum theory in the operator formalism we have to
make the replacement of Poisson brackets of canonical variables by commutators of
the associated operators in the Hilbert space V of state vectors, i.e., { , } — [, ]/th.
One obtains [am, %] = —mém _on* k1, [p*,2¥] = thy*¥1, where 1 is the identity
in V. From the classical expressions for the generators L,, we see that for m # 0 no
order ambiguity exists ap@m—_n = @m_nay and the quantum L,, operators have the
same dependence on the a,-operators as the classical Ly,'s have on the a,,s € C.
For m = 0 there exists however an ambiguity, since classically

1 1 p
Ly = 503 - 3 Z (ahop + apal)
nel*t

Z (vanon + yagzan) = Lo(z,y),
nel+t

Bo | —

with z,y € C, z+y = 2, and ok does not commute with o’ when the c-numbers are

replaced by operators. The normal-ordered operator : Ly := %ag % Yokt aﬁTanu
differs from the naive quantization of Ly(x,y) in an infinite constant times the
identity i.e., Lo(2,¥)|quant. =t Lo : +%th(Znez+ n)l (D = dimM appears here

since a#(rlu = aﬁTam‘ — Dnh1). However, there is no prescription in the theory by
which Lp|quant. should be obtained from its classical counterpart in this way. The
usual procedure is to make the assumption that in any expression involving Ly one
can write for it the normal-ordered : Ly : plus a finite constant (which in each case
has to be determined by physical conditions) times the identity (for simplicity of
notation, we write in the following Lg for : Ly :). We apply these arguments to the
evaluation of [Ly, L,]. following the analysis in Ref. [3].

In the classical theory one obtains

1
{Lmy Ln} - EZ(k(“m—k"k+n) -+ (m - A')(”k“m—k+n))-
kel

In each term of the two infinite sums in the r.h.s. the factors aa commute at the

quantum level unless m = —n. For m # —n one changes k 4+ n = k' in the first
sum and obtains Ist. sum = 3 ez (K~ n)op_ppnor = 3 pez(k — n)agom_gin;
then Ist. sum + 2nd. sum = (m —n)3 ;.7 OkQmyn—t = —2(m — n)Ly4n and the
replacement { , } — [, ]/th leads to [Ly, L,] = h(m — n) Ly 4n. For m = —n one

obtains in the r.h.s. Lo, which is determined up to a constant. Then, for arbitrary
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m,n € Z,

Ly, Ln) = h(m — n)Lmtn + A(m)ém —nl.

Once A(m) € R is fixed, this algebra is known as the central extension of
the Virasoro algebra, and the constant term is known as the anomalous term. Let
m = 0; for n = 0, 0 = A(0)1, then A(0) = 0. From [Lm,L_m] = —[L-m, Lm] it
follows A(—m) = —A(m). Then A(m) has to be fixed only for m > 0 (or m < 0).
From Jacobi identity [Lg,[Lm,Ln]] + [Lm,[Ln, Lk)] + [Ln, Lk, Lm]] = 0 and for
k+m+n = 0one finds A(k)(m —n)+ A(m)(n—k)+ A(n)(k—m) = 0 (a). Putting
k =1 and for n > 2 one obtains A(n+1) = ((24n)A(n)—(2n+1)A(1))/(n—1). Then
the subset {A(1), A(2)} fixes the set {A(n)},cz+ i.e., we have to determine only
two constants. It is easily verified that for k4+m+n =0, A(€) = c1£ + c3€* satisfies
(a) for any ¢; and c3. To fix these constants one takes vacuum expectation values
( )o for the commutators [Li,L_1] = 2hLo + A(1) and [Lg, L_3) = 4hLo + A(2),
where the vacuum state |0) satisfies p|0) = 0, ak]|0) = 0 and (0/0) = 1. From
the expansions of the L, we have ([Lj, L_j]}o = A(j) (since (Lo)o = 0) and a
straightforward calculation leads to A(1) = 0, A(2) = Dh*/2. Solving for the ¢;’s
gives ¢ = —c3 = DE%/12. Then

2
%m(m2 a 1Y, ik

[Liny Lp) = R(m —n)Lpyn +
We notice that the anomaly is a quantum correction (O(hz)) to the “leading term”
proportional to k. The replacement [, | — ih{ , } and the subsequent limit » — 0
lead to the classical algebra.

Part |l

4. 81 as a differential manifold

We start by considering S! as the subset of R? given by the points
§'= {(z,9)l=* +¢* =1}.

In this way, S' can be seen to be a real connected Hausdorff one dimensional
compact topological manifold (S',741) without boundary (g1 is the topology of
S1). In fact, S! inherits the (metric) topology from R?, the open sets of S being
the intersections of S! with the open sets of R? (arbitrary unions of open balls
Be(zo,90) = {(z,¥)|(z — 20)* + (y — y0)* < €} of R?). S! is connected since it is not
the disjoint union of two non-empty open sets of its topology, Housdorff since any
two different points of S! have non-intersecting open neighbourhoods, and compact
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FIGURE 1. Minimum atlas on S!.

since any open cover (collection of sets of the topology such that its union contains
S') contains a finite subcollection which is itself a cover.

We define an atlas (not maximum) on S! as consisting of the two charts (U, ¢)
and (V,¥) with U = S" — {0}, V = S — {0'} elements of the topology (Fig. 1) and
¢t p! given by

¢ 1:(0,21) = U, t ++ (cost,sint),

vl (=n,m) oV, t — (cost,sint).

Both ¢~! and ¥~! are continuous functions from open sets of the real line to
open sets of the circle. Their inverses are also continuous. Therefore S! is locally
homeomorphic to R'. The smooth structure of the manifold is seen as follows. The
transition function

Wog™!:p(S' = {0,0'}) = W(S! - {0,0}),

L, R T
t—Wog ()=

t—27r, m<t<2r

(Fig. 2) is given by a power series (only the first linear term of the series exists, the
sthers being identically zero). Therefore S! is a real-analytic (C*) manifold. For
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FIGURE 2. Plot of the transition function ¥ o ¢=1.

the derivatives of the transition function we have

n

sl ¢~ Ht)) = a1, 1<nel, te(0,7)U(r,2x).

The first derivative does not change sign which means that the manifold is ori-
entable, the existence (though vanishing) of the other derivatives means that the
manifold is smooth.

In what follows, and only for easy of calculations, we shall consider S! as a topo-
logical subspace of C' i.e. §1 = {z||z] = 1}. We shall then parametrize the points
of S by the complex numbers €'** with ¢t € R. Also, C*®(A, B)(C¥(A, B)) will
denote the set of smooth (analytic) functions from the manifold A to the manifold
B. In particular, with pointwise sum and product, C®(R!, R!') and C*®(S!,R!) are
commutative rings with unit e: A — R, p— 1 (A = R' or §), and if multiplication
by numbers (R') is included, the structures are infinite dimensional real associative
algebras. In the present context, R! is given the usual smooth manifold structure
through the minimum atlas (R!,id|g:).

5. Projection of R' onto S!
Define the function*

R — S foy gRE,

“This is a particular case of the covering of the n-torus (n€ I+) by R" through the projection
wat R — T S 0waisa G B8 Y, k) s (et . ef®*tn) For n = 1 we have the
1-torus T' = 1 - sphere S!.
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We have n(t + n) = n(t), n € I ie., 7 has period 1 (later we shall also use
#:R' = S! t — €' which has period 2r). 7 is called a covering of S! by R.
Notice that x((n,n 4+ 1)) = §* — {1}, 7 is many-to-one, onto and = € C*(R', S').
For any p € S!, #71({p}) is called the fiber of p and is denoted by F§. Also notice

that R! = Upest F,f i.e., R! can be considered as a bundle of fibers, and each fiber
is in a one-to-one correspondence with the integers Z, the fiber of the bundle. We
have then the structure of a smooth fiber bundle £, which can be represented by

the diagram
£ — 5,80

A function f € C®°(S,R!) is called a section of the bundle if 7 o f = id|g:.

Let f € Cm(Sl,Rl). 7 induces

** 25 R = O WL RY),
fror'(f): R =R,
t =t (f)(t) = (fom)(t),

i.e., one has the diagram

Rl

It is easy to see that 7*(f) has period 1. In fact, for n € Z, #*(f)(t + n) = f(=(t +
n)) = f(x(t)) = 7*(f)(t). We denote by C°(R',R!) and C52(R',R") the rings of
smooth functions from R! to R' with period 1 and 27 respectively, and it is clear that
these sets are subrings of the ring C®(R!,R!). Also, we have 7* : C®(S! R!) —
CPRV,RY).
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6. Definition of the vector field d/df

Let pe S' and A € F§. Define the map

ie L 0(S",RY) = C(S", RY),

d
fro NS R,

prs S(1)(p) = (D)o = s
= 2riz- (/)] i

where t is the usual coordinate function on R! and % is the base of the tangent

space TR to R! at the point £. It is easy to see that if X' € F§ and A #£ X de,
A=A+ nwith 0#n € Z then

d

— (T (F)(E))e=r4n =

o L (#(£)(E)hr

dt

ie. 3‘% is well defined. Also, 7 € C¥(R',5") and f € C*(S',R") imply for €
C*°(R!,R!) and then %(f) € C*=(S1,R!) as it must be. We have the

Proposition: % is a derivation i.e., it obeys the Leibnitz rule and it is R-linear.
Proof: i) z£(f(2)9(2)) = (/)9 + f(29") i-e. F5(f9) = F(S)a + f(0); i)
#(af(z) + ﬂg(z)) = af'(z) + Bg'(z) i.e. fglaf + Bg) = afy(f) + Big(g), for all

a B € R QED.

Let x(R') be the modulo of vector fields on R! over the ring C*°(R!,R!). For
any V € K(R } we have V = 903— with ¢ € C®°(R',R!) and V : R! — T,R!,
t— (t,p(t ) 2) € {t} x TyR" where T,R! is the tangent bundle of R'. Call !{(Sl)
the modulo of vector fields on S! over the ring C*°(S?, R!). From the above analysis
it is clear that 3'% € £(S") and for any X € x(S!) we have X = r,bx% with ¢¥x €
C>(S',R') and X : S* = 1.5, p— (p,¥x(p) 5 (p)) € {p} x TspS, where T, S" is
the union of all tangent spaces to S! and 7,5 is the tangent space at the point p.
T.S! together with the left projection 7y : T, 81 — S, TrI'I({p'}) = { i T,d = B,
has the structure of a smooth vector bundle, 7(S1): tangent bundle of the circle,
with fiber R! and structure group 0 = ({1},-). In this context x(S!) is nothing
but the space of smooth sections of the bundle since X € «(S!) is smooth and
710 X = id|g1. We write x(S!) = C*®(T,S!). 7(S?) is a product (trivial) bundle,
since T, S is topologically homeomorphic to S! x R'. These facts are represented
by the diagram
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TS =8 %

7. A theorem on C*°(S1,R?) 5!

Let = : R! = S, t — €"* as before and let p: S S Y withY arbitrary set. We
consider the diagram

¥

() @

R‘—-——bSl
g

ie, (@) :RY 2 Y, t (por)(t) = p(e?™). For n € Z, 7*(p)(t +n) = T*()(t)
i.e. () has period 1. Denoting F(S',Y) (F1(R',Y)) the set of functions from
SY(R!) to Y (with period 1) we have =* : FSSI,Y) — F(RLY), ¢ — 7*(p).
Consider now the map a : Fy(R,Y) = F(5§.Y), ¢ a¥) : S' 5 Y, p—
a(y)(p) = w(’\)IAeFf,' We have the

Proposition: 7* 0 a = id|p, (g1 y) and a o 7* = id|p(g1 y) i.e. #* = a”! provides
a set isomorphism between F(S5',Y) and F(R',Y).

Proof: i) 7* o : Fi(RY,Y) = Fy(RY,Y), ¢ — *(a(¥)) = a(¥)or: R - Y,
t = (a(y) o m)(t) = a(¥)(p) = ¢(i')|,,ef§ = P(t + n)l,ez = ¥(t); the result

holds for all ¢ € R!, then (7* o a)(y)) = 4. i) aox* : F(SY) - F(SLY),
o= alr*(¢)) = alg o) : 5 = ¥V p = alpom)(p) = (pom)Nlyeps = #lp); the

result holds for all p € S, then (a o 7*)(p) = ¢. QED.
In the above proposition, let ¥ = R! and F = C®. Then we have

Theorem A: Let w: R — S, t s €™, Then 7* : C(S,R!) — TR ),
@ — 7 (p) = por is a set isomorphism.

Similarly, we have
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Theorem B: Let # : R! — S, t — €. Then #* : C*(S',R!) - CR(R!,R'),

@ 7*(p) = p o is a set isomorphism.
Most important, we also have
Theorem C: #* : C®(5",R') — C2(R!,R!) is a linear space isomorphism.

Proof: #* is a bijection, C*°(S?,R!) and C52(R',R') are linear spaces, and for

any a, B € R, #*(ag + B) = a#*(p) + B (1) since (a + Bi) 0 # = a(p 0 7) +
B(¢ o 7).QED. (Notice that #* does not give an algebra isomorphism i.e., #* is not
a ring homomorphism since 7* (@) # 7*(@)7*(¢).)

The isomorphism between smooth functions on the circle and smooth periodic
functions on the real numbers allows us to rewrite the vector fields on S' entirely
in terms of functions belonging to C52(R',R!). In fact, from the theory of Fourier
series, for any X € x(S!) we can write

X = agxco + Z anXcn + Buxsn) : C(RY,R!) - C2(RL,RY),

n=1

o0

fe X(f) = aoxeo(f) + Y_(anxen(f) + Baxsa(f)) : (R! = RY),

n=1

A — apxeo(f Z Q’nXCﬂ f}()‘ ) + Baxsn)(f)(A ))

d
= agx + Zanx cos nt—(f(t))l, A+ Bax sinnt—(f(1)) le=a,

n=1

with

adx + Z aix +Bix) < o (Parseval inequality).

Clearly, the structure (£(S')), +;R!,.) is a vector space, with the fields

{0, 6ns8n} oq
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acting as a basis. The linear space operations are given by

+:5(S") x k(") = K(S), (X, Y) = (cox +aoy)eo + Y ((anx + any)en

n=]
+ (ﬂnx + ,Bny)sﬂ)1
R x n(Sl) — n(S’I), (A, X) — (Aapx)eo + Z((/\aﬂx)cﬂ + (ABnx)sn)-

n=1

For X € #(S') we can also write

X = pxp: CR(RL,RY) - CR(R,RY), [ (pxp)(f): R, - R,

A tpx(f)%(f(t))h:;\

with px € C52(R',R") given by px = aoxCo+ Y ov(@aXCn+Bax5n), Co(A) = 1,
Cn(X) = cosnld, Sy(A) =sinnd, n > 1.

8. Lie algebra of vector fields

On the vector space (k(S'),R') we define the associative product * : x(S!) x
K(S1) = k(S1), (X,Y) - X Y : C2(R',R!) — C(R!,RY),

[ (X+Y)(f):R' = R,
d d
A ox(t) ey (8) 75 (f(2))le=a

= oxex (0 (/()lr

with

exee(t) = ex(t) (v () + ox(Dev (DL,
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whick makes (k(S'), +,*) a ring; and the non-associative Lie product

[, ]:&(8") x x(S) — &(S"),
(X,Y)~ [X,Y]=X*Y -Y*X:CQ(RLR) - C2(R!, RY),

fe X, Y)(): R, - RY,

N X VI = o650 lems
with

erlt) = ex() S (oy(0) - S(ex(Der(t),

which makes the structure (k(S!),+,[, ];R!,-) a Lie algebra, the Lie algebra of the
vector fields on S'. In fact, as can be easily verified,

1) [X, Y] = -[Y,X],
i) (X, [Y,Z]) + [Y, [Z2,X]] + [Z, X, Y]] = 0.
For the basis vector fields one has c,(f)(A) = cosnt(%f(t))h:,\, n >0,

i FI0x) = sinnta‘%(f(t))hzh n > 1, and a straightforward calculation of their
Lie products leads to

[y em] = %(" —m)Snim + %(n £ m)3|n—mlsg(n —-m),
[$n,8m] = —3(n — M)spim + 3(n + M)sjp_pmisg(n —m),

[Cn'!sm] = _%(n - m)cﬂ+m =+ %(n 2 m)ctn—mh

where

n—-m, n>2m +1, n=>2m
In—m| = . sgn—m)=

m-—n, n>2m -1, n<m

and sg = 0 € (S?). This result is known as the Witt algebra of the vector fields
on the circle or equivalently the algebra of smooth sections of the tangent bundle
of the circle. The structure constants can be identified by writing the previous
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commutators in the form

o0
[Cmfvn] = Z(O’gz‘fmrcr + BrmrSt)s
r=0
00
[SH*SW!] L4 Z(a;:nrcf + ﬂ;fnrsr)v
r=0
00
o — c
[Cn, 5‘"1] = Z(ansmrcf + ﬁ:inrsf)'
r=0
One obtains
Ct(.(' ﬂfﬂ
a## ’fjs-’
urd ﬂ(‘! —
0 %[n —m)br ngm + .lz{n + m)sg(n —m)b, | _m
- 0 ué(n —m)b; ngm + %(" + m)sg(n — m)br |n_m|
—%(n — m)8pnpm + %(n +1m)é, |n—m| 0

It is instructive to compare this algebra with the Lie algebra of & s m Lie
group. The former is a highly non-trivial infinite dimensional algebra, while the
latter is a trivial (all the Lie products vanish) one dimensional algebra, since as a
vector space the algebra is the tangent space to the circle at the identity of the
group (C 32 =1).

9. Complezification

To complexify the previous algebra we define the set x(51)¢ = {aoco+ 2 pey (Ouen
Bnsn)} with {ag,an,Ba}iz; C € and lal2 + 32, (Jal2 + |Aal?) < oc. The usual
sum and product by complex numbers make £(S1)° a linear space with the same
basis as x(S!), namely the vector fields ¢, and sp; however the elements of #(S")'
considered as vector fields can not represent fluxes on S since now the fields have
complex coefficients and no complex flux can be carried on the circle which is a real
one-dimensional manifold. We go now to the basis {{o, {4y 12, la = o, lan = cn
i5n. Onehast_u= €%

It is clear that the structure

(6(SV) 40 5 JiCss)

is a complex infinite dimensional Lie algebra, and for the Lie products of the hasis
vectors one gets

[bm, Cn] = —i(m — 0)lmyn, m,n € 4
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which is the Virasoro algebra without the central term. (TFor the linear combinations
{4y, n > 1, 0oneobtains £y, (f)(A) = ei"'t%f(t)h:A which (up to a factor ¢) coincide
with the infinitesimal generators of diffeomorphisms of S! given in Eq. (2.1.86) of
Ref. [3] in terms of the angular variable 6.)

Conclusions

In the context of bosonic string theory we discussed the appearance of the Virasoro
algebra, both in the classical and in the quantum cases. The classical algebra is free
of anomalies while the quantum algebra has an extra term (central charge), which
appears due to an operator order ambiguity in one of the generators of the algebra
(Lg) in the transition from classical to quantum mechanics. The classical algebra is
then shown to coincide with the complexification of the Lie algebra of the vector
fields on the circle S! considered as a differential manifold (Witt algebra). The vector
fields on a manifold are the sections of the tangent bundle of the manifold. One
thus obtains a relation between physical objects (classical propagating strings) and
geometrical ones (a vector bundle structure). Recent developments in the geometric
approach to the quantum theory of closed bosonic strings can be found in Ref. [9],
where the group of diffeomorphisms of the circle plays a central rdle.
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Resumen. Se presenta la derivacion del Algebra de Virasoro en el
contexto de las tcorias cldsica y cuantica de cuerdas bosénicas. El
algebra clasica estd estrechamente relacionada con el dlgebra de Lie
de los campos vectoriales sobre el circulo como variedad diferenciable,
lo que sugiere una bella y profunda conexién entre objetos fisicos y
geométricos.





