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Physical interpretation of the Weert superpotential
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Abstract. Weert [1] obtained a potential for the bounded part of the
Maxwell Tensor which is associated to the Liénard-Wiechert field. We
show that this potential can be interpretated as an intrinsic Angular
Momentum Density for the corresponding Electromagnetic Field.

PACS: 03.50.De; 03.30.4p; 41.10.Fs

1. Introduction

In this paper we deal with electromagnetic field which is produced by a point particle
charge in the Minkowski space. This charge gives the Liénard-Wiechert field (Lw)
from which the Maxwell tensor T;c can be obtained. The last can be separated
in two parts: T jc the bounded one, and T ;. the radiative part (in the sense of
Teitelboim [2])B !

Sec. 2 is devoted to a brief exposition of the Lw field. Weert, [1] constructed a po-
tential K jp. for T jc, this will serve us to propose, in Sec. 3, a physical interpretation

B
of this potential using the Bhabha [4]-Synge [5] region; moreover, if we decompose
K i3 in two parts which satisfy the symmetry of the Lanczos Spintensor [6], we
. b y I

obtain the rupture of T . proposed by Lopez [9], which is very important in the

B
study of the angular momentum of the Lw field. In Sec. 4 we construct a non- local
Superpotential (depending of the past history of the charge) for the radiative part;
and we show the terms of T';. which do not participate in the flux of energy and

R
momentum through the Bhabha-Synge tube.
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F1GURE 1. Kinematics of the world-line.
2. Point charge in arbitrary motion

A charged particle moving in an arbitrary motion in the Minkowskian space, pro-
duced the electromagnetic Lw field with the 4-potential and Faraday tensor given
by

A= qu % Py = qu UK. — U.Ky), (L.a)
and the Maxwell Tensor
The = ¢*w™ | KyUe + KeUy + (a — BY)KG K. + L3, (1.b)
where (Fig. 1):
() = (2,9, 50),  (g5c) = Diag (1,1,1,~1)

7 is the proper timer, ¢°(T) will be the retarded point, v is the 4-velocity, a® the
4-acceleration

K¢ = 2% —¢° (1.¢)
w = — K%, which is the so called retarded distance
W =—-K°¢,, a® = a‘a,

B =w"'(1 — W) known as the Plebaiiski [10] invariant

U, = By, + a., p¢ = w TK® —of,
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Teitelboim [2] proved that Eq. (1.b) can be written as the sum of a bounded
part T'j and a radiative one T'y., namely,
B R

Tye = Tbc 2 Tbc; (20)
B R

such that

T q"]mf'1 %ﬂbr. + (Kpae + Keap) + B(Kpve + Kevp) — w_z(l —2W)KK.|, (2.b)
B 3

and

Ty = g'w™2(a® — w2 W?) K K.. (2.c)

R

Fach tensor possesses the following differential properties

]‘bc.f o 0 (Q'd)
B

Tbr c = U. (2 e)
R

respectively, when it is valued out of the world-line.
Weert [1] proved that Ec. (2.d) comes out from the existence of the superpoten-
tial

JI:'J,,C = —¢* 4w w N (B —4W) (v, x Kp) K +4(a; x K) Ke+9c; Ky — 90 K5 |, (3.0)
where we have used the Lowry [3] notation
A; x B, = A;B. — AcB;, (3.5)
such that
lgbc = f;’;,"c‘]- (3.¢)
From here, (2.d) follows immediately.

In the next section we will study (3.a) in order to give a physical interpretation
of this superpotential. In Sec. 4 we will do a brief analysis of Egs. (2.c-¢).

3. Weert superpotential

Our point charge in arbitrary motion gives an electromagnetic field which possesses
an intrinsic angular momentum (1AM). Here we will prove that K ;. behaves like a
B
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LIGHT-CONE

W= Wg = GTE.

IFigure 2. Bhabha-Synge tube.

density for 1AM when the corresponding lluxes are calculated through a Bhabha [4]-
Synge [5] tube.
The superpotential (3.a) has the following properties

K jpe==Kg;, antisymimetry,
0 B
N ('{‘ =0 null trace,
n’
(4)
Kjjed Kpej+ Kjp=0 cyclic,
B B B
Iy ”f =0 null divergence.
i S )

These properties agree with those of the Lanczos [6] Generator K. for the Weyl
tensor of the space-time. Lanczos calculated K, for weak gravitation fields and in
his analysis, the Dirac equation, for spin 1. appeared. For this reason he called the

potential K. spin-tensor. In our case, I jj. will be associated with the 1AM of the
B

LW field.

Consider the Bhabha-Synge tube (IMig. 2), which is composed by the light cones
with the tops in 7 = 1y and 7 = 7, and a surface of constant retarded distance.
[lirst, let us calculate the K ;. flux through a light cone; the expression is given by

B

Synge [5]

- wao
M, = f K jpe do” = 7/‘ w dw f dQUK jp K€, (5.a)
B 0 B

r=const T=const

where d§2 is the element of solid angle.
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FIGURE 3. Fermi tetrad.

The unitary space-like vector p® has been defined in Fig. 1

c

p¢ = w kS — vt ooy =1, iz =0, (5.0)

Now for any event in the line-universe, p can be written in terms of a Fermi tetrad
e(y)e with v = 1,2,3 (Fig. 3):

d(’.( )c
d: = (I(',‘,.)Ur = ({t E(U)T)HC‘
p° = sinflcos écmc + sinfsin ¢ cmc + cos 0 cmf 5.e)
= P(U)C(n)c = (f’rc(alf)‘f(a)c
and dQ? = sin 0 d0 d¢.
From (3.a), it is clear that
I\'jbcl\’c = 0, (5d)
B

Therefore (5.a) implies :‘"-;I]b = 0, that is, & j, flux vanishes through a light cone.
B
Now we will calculate the K g, flux through the 3-space w = wy = const; the
B

expression is given in Synge [5]

T2
M= ] K e do® = wzf rl'T/ N jbcw,c ds?, (6.a)
1 =gy B - B
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where
w, = Gradient of w = —v. + BK, (6.)

Therefore, Ecs. (3.a, 5.¢, 6.a,b) imply that

8r 5 72
My = ?q'/ (vj % ap) dr. (6.¢)
1 -

This last result agrees with the intrinsic angular momentum of the Lw Field [7].
Therefore, K j3. behaves as a density for such an angular momentum.
B

The superpotential (3.a) aceepts the following rupture

Kpe= K pet Ko, (7.a)
B B B
where
{;’jbr = ¢*w™? [(—ai +w™ Wo;) x K;,} K. (7.b)
and
{fjbc = —w! [gq Ky — g K5 + 3w”1(vj % K;,)Kc]. (7ag)

The potentials in Eqs. (7.b,¢) satisfy all the properties in (4), as the Lanczos Spin-
tensor does.
It is simple to prove that

/ {;(be do® = / Ig’ﬁcdac =00; (8.a)
T=const w=const

and
My = f B a and f {;’jbcdgcz(). (8.)

1 B jbe
w=const T=const

That is, f_\'jbc doesn’t contribute to the 1AM of the electromagnetic field; this means
B

that ﬂ'ﬂ,c is the active part of part of [];’jbc-
B

The result can be obtained by using Stokes Theorem and the Rowe [8] identity

= qg 4 ¥
{;‘;br g (Tw Djbc )‘r, (8.¢)
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where Djj, 1s a tensor used by Synge [5] in another context
Dyarb = (95r Kb — 917 ) Ko + (9ab s — gar Kp) K. (8.d)
Finally using (7.a) in (3.c), the following decomposition is obtained

Ty~ P+ T , (9)
B B

B be

with T =K, .and Tye= K7 _..
Bbe B’ B b . _
Eq. (9) is important at the moment we relate it to the angular moment radiated

by the charge [9].
4. On a rupture for T 4
R

Here we show how the radiative part of T, can be written as the sum of two terms;
one of them doesn’t participate in the energy and momentum flux through the
Bhabha-Synge tube. Moreover, we will give a potential for Ty,

R

The expression (2.¢) can be written in the form

The = Thet Tbc‘ (10.a)
R 1 R
where
T = ¢w ™ Y(a® = 3w W) KK, T =0 (10.b)
Tie= Zqztt-_sli-""]\'bl\'f. T, =1 (10.¢)
R R

It is simple to demonstrate that

/ Ty do® =0, (1l.a)
T =const I
w =const

that is, (10.6) doesn’t contribute to the energy and momentum flux through the
Bhabha-Synge tube. In a similar way

/ (! T% - 22 T7¢) do, = 0. (11.b)
w =const ' '

or
T =const
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Hence Tg,c doesn’t participate either in the momentum fluxes for such tube. Due
to Ecs. (11 a,b) we say that the tensors in (10.b) represent the inactive part of Tﬂb

with respect to the Bhabha-Synge region.

The conservation law is immediately deduced from the existence of the super-
potential:

2 A
K gz —q?w‘z w_2W2(gchb - g ;) + 'LL’-II’V(L‘J' x Ky)(ac — 3w WK,)

+ (a; x Kp)(dw™* WK, — a.)|,

(12.a)
such that
ir“b,: == ]i"bJC,J" (12.0)
Moreover, the identity 7',°, = 0 is a consequence of
R
{bc = ébJCJ’ (13.a)

T

K yje = —2¢Fy;p(a)p(7) a(o)a(y)vedr +p(B) [ a(o)a(y)eg, dr|  (13.b)
R 0 0

in equation (13.b), the sum over a,7v,3 = 1,2, 3 has to be done.
To verify Eq. (13.a), we have to use the following relations

T 710—1[\,]', retarded derivative
Fbj'j =0 © Maxwell equations
Fbjj = quT?K,, null eigenvector
o (13.c)
B o= 0, Fermi tetrad

W = —wp(o)a(o),
= w(v® + p°).

The existence of integrals in equation (13.b) shows the non-local character of
Ii bje; that means that it depends on the past history of the charge. Therefore
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Egs. (2.a, 3.c, 10.a, 12.b, 13.a) imply

Ty = (1\' LT I-(bjc) : (14)
B 1 R 5

WJ

Hence the Maxwell tensor associated to the Lw Field is an ezact divergence.
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Resumen. Weert [1] obtuvo un potencial para la parte acotada del
tensor de Maxwell asociado al campo de Liénard-Wiechert. Aqui
mostramos que dicho potencial puede interpretarse como una densi-
dad de momento angular intrinseco del correspondiente campo electro-
magnético.





