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Abstract. The connection between the real and imaginary parts of
the nucleon optical potential is explored using the dispersion relations.
The potentials are obtained from phenomenological determinations at
both negative and positive energies. Particular attention is paid to
the radial variation of the potential and its dependence on energy.
Twice subtracted dispersion relations are used to obtain the energy
variation of the imaginary well depth W(E), using as input the energy
variation of the anomaly of the real well depth V4(F) obtained from
phenomenological data. The same dispersion relations are used to derive
a simple expression for W(FE) as a function of the energy from an
expression for the correction to the nucleon’s effective mass proposed
by G.E. Brown [1]. The energy variation of the anomaly of the real
well depth is computed, using as input in the dispersion relations the
phenomenologically determined energy variation of the imaginary well
depth W(E).

PACS: 24.10.Ht; 21.10.Dr

1. Introduction

Some theoretical and empirical developments [1-5] have made possible an under-
standing of some important effects of the nucleon-nucleus interaction related to the
energy dependence of the effective mass of the nucleon in the neighbourhood of the
Fermi energy.

Since 1963 [6], it is known that the phenomenologically determined optical po-
tential for nucleons as a function of the energy shows an anomalous behaviour in
the vecinity of the Fermi energy [4,6-9].

Theoretical studies made by Bertsch and Kuo [10] show that this effect is due to
the dynamical energy dependence appearing in the second and higher order terms
of a perturbation expansion of the optical potential. In particular, in second order
of perturbation theory the so-colled “polarization” and “correlation” terms show
an important energy variation in the neighbourhood of the Fermi energy [2]. The
coupling of the single particle modes to the low lying particle-hole configurations of
the nuclear core produces a dynamical dependence of the nuclear mean field on the
nucleon energy. In the neighbourhood of the Fermi energy, this energy dependence
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seems to cancel out partially the energy dependence of the real part of the optical
potential coming from the non-locality of the first order Hartree-Fock term. Detailed
calculations which include collectivity effects [11-14] confirm the effect predicted by
Bertsch and Kuo [10].

On the other hand, studies made from the point of view of the dynamical theory
of the collective excitations show that the change of the nucleon’s effective mass in
the neighbourhood of the Fermi energy Ep makes an important contribution to the
strength of the giant resonance (3,15,16].

In a previous paper Bauer et al. [4] had studied the energy dependence of the
real part of the nucleon optical potential and shown that it can be well described
by a quadratic dependence over the whole energy range, with deviations around
the Fermi energy that can be attributed to an enhancement of the effective mass as
may be seen in Figs. 1 and 2. The overall energy dependence is associated to the
non-locality of the potential and the behaviour around the Fermi energy with the
higher absorption at these energies.

In the present work, I consider the energy dependence of the imaginary part of
the potential making use of the dispersion relations that connect it to the real part.
This is done in two ways; firstly using the energy variation already found for the
real part [4], and secondly using phenomenological determinations of the imaginary
part. Several phenomenological calculations of this type have already been made for
finite nuclei and infinite nuclear matter [2,5], and it has been shown that the results
are consistent with the phenomenological data for finite nuclei. However, the theory
shows that the anomaly around the Fermi energy is more pronounced at lower
densities and is thus enhanced in the nuclear surface. The real potential therefore
has both volume and surface components, although nearly all phenomenological
analysis use the volume form alone. The phenomenological analysis uses either the
volume or the surface form for the imaginary part, or sometimes a combination of
both forms, and it is found that their relative contributions are not well determined.
It is therefore necessary to pay careful attention to the radial variation of both the
real and the imaginary potentials when examining the way they are connected by
the dispersion relations.

In the next section, the dispersion relations are presented in the form most
suitable for the present purpose. In Secc. 3, the relation between the effective mass
and the optical potential is discussed in Secc. 4 the results of several analysis of
the real part of the potential are used to obtain the imaginary part, and in Secc. 5,
several phenomenological determinations of the imaginary part are used to obtain
the anomaly of the real part around the Fermi energy. The results are discussed in
Sece. 6.

2. Dispersion relations

It is well known that the optical potential is both nonlocal and explicitly energy
dependent [17,18]. The analytical properties of the theoretically derived optical
potentials come from the causality condition imposed on the Green’s function of the
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many body system [19]. They allow the derivation of dispersion relations connecting
the real part of the optical potential with the imaginary part of the optical potential
by means of the Cauchy Theorem

1 b, f VAGTSE] e
v(r’?’E)_Qﬂ,/;;(E'—E) dE". (1)

The potential is analytic on the real axis, so the contour may be taken from —oo
to +oo along that axis.

Since the potential is complex, namely
V(r,r's E) = V(r,+'; E) + iW(r,r"; E). (2)

Eq. (1) can be separated into two dispersion relations connecting the real and imag-
inary parts of the optical potential, i.e.
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In these equations, P is the principal value and V) is the anomalous potential defined
below in Eq. (7). Although some authors have written the dispersion relations for
integration over the energy in the range 0 < £ < oo, a proper antisymmetrization
of the wave function of the many-body system requires that the integration be made
from —oo to co. A careful discussion of this important point may be found in the
papers by Mahaux and Ngo [2].

In order to guarantee the rapid convergence of the integrals and to avoid normal-
ization problems, it is convenient to make a subtraction. In this way the dispersion
relations are written as
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In the case of finite nuclei there is a gap in the integration range from Ep to
E;f [20,2]. In this work, the value of the Fermi energy used to fix the gap is the
average value Ep = 3(Ep — Ef).

The real optical potential V (r,7'; £) can be written as an energy independent
nonlocal potential Vi p(r,r') that may be identificd with the local equivalent of
the Hartree-Fock potential Vg p(r, E) plus a potential Vi(r,r'; E) explicitly energy
dependent that represents the anomalous behaviour of the potential around the
Fermi surface

V(r,r'; E) = Vyp(r, r’) + Va(r, v E) )
or

V(r,r'; E) = Vyp(r,r') = Va(r,?'; E). (8)

A local potential Vi equivalent to the nonlocal Vi(r,7'; ) is obtained following
the papers of Bouyssy et al. [14] and Perey and Saxon [21]. When V; < Wy, the
real local potential equivalent to Vu(r,7'; E) is given by

Va(R,(E - V1)) = /exp(ikL - §)Va(R, 8)dS, (9a)
and the imaginary local equivalent potential is

W(R,(E - V1)) = fexp(ikL - SYW (R, S)dS, (9b)
where R = (r +1')/2, S = (r — ') and ky, is the local wave number defined as
ki = F(Efm- (10)

In this work, I suppose that the effect due to the non-locality of W(R, S; E)
and V4(R, S; E) [22,23,14] produces a smooth energy variation in W(R,(E —Vy))
and V4(R, (E — V1)) which will change only slightly the depth of the potential well
and that the dominant energy dependence in W (R, S; E) and V4(R, S; E) 1s due to
the dynamical dependence on the energy. Therefore, | approximate

W(R,S; E) ~ §(S)W(r; E), (11a)
Va(R, S; E) =~ 6(5)Va(r; E), (11b)
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and identify the local optical potential as

v(r, B) = V(r, E) + iW(r, E), (12)
where the real part is
V(r,E) = Vyp(r,E) + Va(r, E), (13)

and Vyp(r, E) is the local equivalent of the Hartree-Fock potential Vi p(r,r').
The dispersion relations, Eqs. (3) and (6), become
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Since both V4(r, E) and W(r, E) fall to zero at large energies faster than £~! these
integrals are convergent.

For charged particles the electrostatic Coulomb potential must be added to
V(r,r'; E) but as it is real and energy independent the subtracted dispersion rela-
tions Eqs. (14) and (15) remain unchanged.

3. Relation between the effective mass and the local optical potential

It is convenient to express the real part of the local optical potential V(r, E) in
terms of the effective mass m*, which is usually defined as [2]

m* av(r, E)
e o L
m dE (16)
Using Eq. (13)
m* (. _dVap(rE)\  dVa(r,E) }
—(r,E) = (1 i T (17)
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the first term in this expression may be calculated starting from the best quadratic
fit to the scattering potentials obtained by Bauer et al. [4]. It gives, for r = 0, a
constant value = 0.6, which corresponds to the smooth overall energy variation.
The second term represents the anomaly around the Fermi energy.

I have done an estimation of the imaginary part of the optical potential W (0, E)
starting from the effective mass m*. Brown et al. (1] suggest that the anomaly around
the Fermi surface can be represented by a variation of the effective mass of the form

m

* E-E* =&
M 0.6440.36 (1 + |9—i|) ; (18)

with hwg = 41 A/, Making use of Eqs. (17) and (18) we get the correction V4(0, E)
to the real optical potential

Va(0, E) = —0.36 (L_’L) (19)

.

This correction to the potential is inserted in the dispersion relation (15) and the
integration is carried out analytically giving

W ] B—Ee| 1, (15 —EF) (20)
’ T | |E-Ep[\* 2hwg -
- (_JE;"D_)

From Eq. (20), we may observe that Wp(0, £) has a cusp at £ = Ep, this rather
unphysical trait of my result comes from the absolute value |E — Ep| appearing in
Brown’s approximate expression for the correction to the effective mass, and has no
consequence off the very immediate vecinity of Ep. Since V4(0, £), Eq. (19), is of
the volume type, Wp(0, E) is also of the volume type. In the neighbourhood of EF,
Wg(0, E) grows as (E — Ep)In(E — Er) as shown in Fig. 3.

4. Determination of the imaginary potential from the phenomenological real potential

In 1982, Bauer et al. [4], studied the encrgy dependence of the real part of the
optical potential for protons on various spherical or nearly spherical nuclei (Fig. 2
of ref. 4). They found that the energy variation of the real part of the optical
potential can be described as the sum of two terms: the first one with a quadratic
dependence over the energy range —60 MeV < £ < 200 MeV. The second term,
also called the anomaly V4(E) of the real part of the optical potential, contains
the rapid variation of the optical potential observed in the region around the Fermi
energy —15 MeV < E < 15 MeV. The energy dependence of the anomaly of the
real potential V4 (E) was calculated from the correction to the effective mass of the
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FIGURE 1. Depth of the real central optical potential for protons on **Ca as a function of proton
energy. The points for positive energies refer to potentials from the compilation of van
Oers [25], and those for negative energies to potentials fitted to the centroid energies
of bound single-particle states [24]. The full line represents the quadratic fit (—) and
the dashed line (- - -) the anomaly around the Fermi energy.

nucleons proposed by Brown et al. [1]. However, due to the large scatter observed
in the data on the real potential depth V(F) for elastic scattering states and to
the large error bars of the potential well depth V(£), fitted to the centroid energies
of bound single-particle states for many nuclei [24], it is difficult to determine the
energy variation of the anomalous potential with acceptable precision. Therefore,
in order to determine the imaginary potential, I have decided to concentrate my
attention on a single nucleus, namely the phenomenological analysis of protons on
#Ca by van Qers [25], since in this case the scatter observed in the data is rather
small.

The imaginary part of the optical potential W (r, E) was obtained from the
anomaly of the real part of the optical potential V4(r, E) and the dispersion relation
given in Eq. (15).

The anomaly Va(r, E) of the real part of the optical potential for **Ca shown in
Fig. 1, was extracted directly from the phenomenological data. According to Eq. (13)
the anomaly V4(r, E) is obtained subtracting from the phenomenological real op-
tical potential V(r, E) the equivalent local Hartree-Fock potential Vi r(r, £). The
phenomenological real potentials [25], used in the study of the energy dependence
are written as
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FIGURE 2. Depth of volume real correction term for *Ca as function of energy. The full line rep-
resents the anomaly of the real potential V4(r, ) obtained subtracting the quadratic
fit shown in Fig. 1 to the experimentally determined values of the real potential.
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Fi1GuRE 3. Depth of the volume imaginary optical potential for protons on *®Ca, as function of the
energy. The curves represents the results of the numerical computation of the twice
subtracted dispersion relation (—) and to the calculations of the effective mass using
the formula of Brown et al. [1] (- - -).

where f(r) is a form factor of the Woods-Saxon type. The depth of the potential well
V(FE) as a function of the energy is shown in Fig. 1. The real potential Vyp(r, )
was determined following the procedure described in the paper of Bauer et al. [4],
we made a least squares fit of a quadratic form to the experimental points shown in
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Nucleus Vo a boid

0 57.216 + 2.21 —0.333 £ 0.072 0.00025 + 0.0002

TABLE 1. Parameters of the best fit to the depth of the potential well as function of energy.
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FIGURE 4. The volume imaginary potential for “Ca as function of the energy. The curves represent
the results obtained from the numerical calculation of the twice subtracted dispersion
relation, for different values of the nuclear radius.

Fig. 1, excluding those points in the energy range —22 MeV < {(Ecm. — Ecou) —
Er} < 22 MeV. The best-fit values of the parameters are given in Table 1.

The anomaly term V4(E), of the real part of the optical potential, was calculated
from the difference between a curve drawn through the experimental points (dashed-
line in Fig. 1) and the quadratic fit (full-line in Fig. 1).

The anomaly V4(E), shown in Fig. 2, is used as input in the dispersion relation
Eq. (15) and 1 obtain the volume imaginary potential W (E) shown in Fig. 3. The
volume imaginary potential obtained from the numerical calculation is a symmet-
ric function of (Ecm — Ecew) — Ep. The Coulomb energy Fooy), was computed
following the procedure of Giannini et al. [26]. The Fermi energy was taken as
Ep =83 MeV. For values of (Ec.p — Ecou) =~ Er the imaginary potential depth
rises with £ = (Ecm, — Ecou) as (E — EF)?, this behaviour is in agreement with
the phenomenological data contained in the compilation by Mahaux and Ngo [2].
The imaginary potential W(E) obtained from the phenomenological data raises
to a much larger value than the one obtained from Brown’s approximation to the
effective mass, as may be seen in Fig. 3. The radial variation of the imaginary
potential W(r, E) is shown in Fig. 4 for different values of the nuclear radius R.
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5. Phenomenological determination of the imaginary potential

The imaginary potential may be determined three energy regions from differ-
ent experimental data. At negative energies £ < Ep it is related to the widths
[ of the bound states as determined by measurements of the (p,2p) and (e,e'p)
reactions. Just above Ep, it may be obtained from the S-strength functions and at
higher energies from phenomenological optical model analysis of elastic scattering
cross-sections. A compilation of data by Mahaux and Ngo (2], shows that the imag-
inary potential depends parabolically on |E — Eg| around Ep, reaches a maximum
around |E — Ep| = 40 MeV and thereafter falls. A potential of this form, when
inserted into the dispersion relation, gives a real potential in good agreement with
the phenomenological determinations.

I have collected a large amount of data, from (p,2p) and (e,e'p) reactions.
However, the scatter of experimental points is so large that it is not possible to
determine the energy variation of the imaginary potential univocally. The disper-
sion of the data may be due to the actual differences in nuclear structure of the
various nuclei considered, which affect the imaginary potential more strongly than
the real potential. They may also be due to the different form factors used in the
phenomenological analysis, and the ambiguities inherent in such analysis.

Therefore. 1 decided to concentrate my attention on a careful analysis of proton
elastic scattering data which was made in terms of a combination of volume and
surface imaginary potentials. In particular, the analysis of the data made by van
Oers [25], for protons on *Ca and the analysis made by Thomas and Burge [27],
of the elastic scattering of protons on *Ni. The values of the imaginary well depth
determined by these authors are shown in Figs. 5 and 6.

A curve was drown through the points representing values of the imaginary well
depth versus energy. The numerical values of W,(E) and Wp(F) represented by
the curve are then used as input in the dispersion relation Eq. (14) to extract the
corresponding numerical values of the real potential well depths. In order to perform
the numerical integration, it was assuméd that the imaginary potential depths as
function of the energy are symmetrical around the Fermi energy. The resulting real
potentials

Vo(r, E) = Vo(E) f(r)
Vp(r, ) = Vp(E)g(r)

where evaluated at the average geometry radius r = rw A3 The results are shown
in Figs. 7 and 8. At this point, the Woods-Saxon form factors and the derivative
Woods-Saxon form factors are f(r) = % and g(r) = 1. The average geometry radius
for *%Ca is rw = 1.309 fm and for *Nj is given by rw = 1.16 fm. It may be
observed that at low energies the surface term Vp is dominant. At higher energies
both terms are large but have oppoesite sign. Adding the two contributions, we
obtain the anomaly of the real part Vi(r, E) at r = rw A3 which is shown in
Figs. 9 and 10. It may be seen that at low energies there is a sharp maximum
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FIGURE 5. Depth of the imaginary optical potential for protons on
energy. The dots (-) represent the surface potentials and the crosses (x) the volume
potentials, from van Qers [25]. The full line represents an average value of the depth
of the imaginary optical potential obtained by interpolating between the values of the
imaginary potential well derived from experiment.
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FIGURE 6. Depth of the imaginary optical potential for protons on **Ni as function of the energy.
The dots (-) represent the volume potentials and the crosses (x) the surface potentials,
from Thomas et al. [27]. The full line represents an average value of the depth of
the imaginary optical potential obtained by interpolating between the values of the
imaginary potential well derived from experiment.

that comes from the surface contribution, at higher energies the curve falls to small
negative values. In the case of 1Ca, where the contribution to the correction term
Va(r, E), that comes from the volume component is known in a large energy region
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FiGure 7. The surface correction term Vp(r = rw AY3 E) and the volume correction term

V,(r = rwAY3 E) of the real part of the optical potential for 4Ca, evaluated at
the surface radius, as a function of the energy.
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FIGURE 8. The surface correction term Vp(r = rw AY3 E) and the volume correction term
Vi(r = riw A3 E) of the real part of the optical potential for 58N, evaluated at
the surface radius, as a function of the energy.

95 MeV < [ < 150 MeV, the behaviour of the correction term Vi(r, E) of the
real part of the optical potential is better determined than in the case of 8Ni, for
energies I2 < 30 MeV. On the other hand, the average geometry obtained from
the phenomenological analysis allows me to show the behaviour of the correction
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FIGURE 9. Full correction term Vy(r = ryw A3, E) to the real optical potential for CCa evaluated

at the surface radius as a function of the energy.
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FIGURE 10. Full correction term Vi(r = ry A3, E) to the real optical potential for 58Nj evalu-
ated at the surface radius as a function of the energy.

term V4(r, E) to the real part of the optical potential for different values of the
nuclear radius r, as a function of the energy (Ecm — Ecou) — Er. This behavious
of the correction term Vj(r, £) is shown in Fig. 11. It is clear from this plot that
the effect which produces the anomaly on the real part of the optical potential is
localized at the surface of the nucleus and therefore it is predominantly a surface
effect. At energies around 21 MeV, the correction term Vy(r, E =~ 21) does not
change with r in the interior of the nucleus. At energies lower than 25 MeV, the
absorption is mainly a surface effect that goes to zero as we approach the centre of
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FIGURE 11. Energy variation of the correction term to the real part of the optical potential for

40Ca for various values of the nuclear radius.

REAL POTENTIAL IN MEV

3
25
|
20

15 F -

10 t o
L V- L 1 el
10 20 30 40 5 &0 T 80

{Ecw—Ecou ) —Er

FIGURE 12. Energy variation of the real part of the proton optical potential for *Ca for various

values of the nuclear radius.

the nucleus. At energies larger than 25 MeV a volume absorption effect starts to be
important for values of r smaller than 3 fm. At the centre of the nucleus (r = 0,
f(r) = 1, g(r) = 0) the contribution to V4(0, E) obtained from W(E) by means
of the dispersion relation is exclusively of the volume type. It raises from zero very
slowly to a maximum value around 45 MeV as may be seen in Fig. 11. Since this
contribution is important at rather high energies, it is probably not due to the same



Energy dependence of the imaginary part of the nucleon optical potential 217

effect that produces the anomaly in the effective mass. It probably comes from an
enhanced absorption due to the opening of many new channels or giant resonances.

The calculation of the real part of the optical potential as function of the energy,
Fig. 12, shows clearly that the anomaly on the neighbourhood of the Fermi energy
is produced by surface contributions. For values of the nuclear radius smaller than
the surface radius, the anomaly goes to zero and other effect, a volume one, starts
to be important.

6. Conclusions

It was found that there is an inconsistency in the determination of the anomaly
Va(r, E) of the real part of the optical potential extracted directly from the phe-
nomenological data, and the anomaly V4(r, ) calculated using as input in the
dispersion relation, Eq. (14), the phenomenological data of the imaginary potential
W(r, E). The anomaly of the real optical potential extracted from the phenomeno-
logical data is of the volume type, whereas the anomaly V(r, E) calculated using
the dispersion relations is the sum of two terms: a volume term plus a surface
term. This inconsistency in the determination of V4(r, F) is essentially due to the
fact that the phenomenological parametrizations do not take into account the func-
tional dependence of V4(r, ) on the imaginary potential W(r, E') expressed in the
dispersion relations.

The behaviour of the volume imaginary potential obtained inserting in the dis-
persion relation the phenomenologically determined anomaly of the real potential
for *%Ca, is in good agreement with the behaviour observed in the phenomenological
data of the compilation of Mahaux and Ngo [2,5].

At positive energies lower than 30 MeV the anomaly Vy(r, I2) of the real poten-
tial, obtained from the energy variation of the imaginary potential for 1%Ca and 5®Ni
and the dispersion relation Eq. (14), is the sum of a predominantly surface term
plus a small volume term.

It is also found that at low energies ({ Ecm — Fcoul} — £r) < 40 MeV the real
part of the phenomenological optical potential may be written as the sum of two
terms: a volume type term Vg p(r, E) with a quadratic dependence on the energy
over the whole energy range, and a predominantly surface term, Vj(r, F') that raises
from zero at (Fem — Econl) = EF to a maximum values around Fem — Ecou) =
Ep = 25 MeV and then falls to small negative values. This surface effect is of the
same type as the surface effect found by G.E. Brown et al. [1], in the coupling of
vibration collective modes to the single particles motion and in the microscopic
calculation of Wambach et al. [16] and Mahaux and Ngo [2,5]. The parameters of
the real surface term are the same as those of the surface absorption.
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Resumen. La conexidn entre la parte real y la parte imaginaria del
potencial éptico se explora usando las relaciones de dispersion. Los
potenciales se obtienen de determinaciones fenomenoldgicas a energias
positivas y a energias negativas. Especial atencién se dedica a la
variacion radial del potencial y su dependencia con la energia. La
variacién con la energia de la profundidad del potencial imaginario
W(E), se obtiene a partir de la variacién con la energia de la anomalia
del potencial real V4(E) mediante ¢l uso de una relacién de dispersidn
substraida. La misma relacién de dispersién se usa para derivar una
expresion simple para W(E) como funcién de la energia a partir de
una expresion para la correccién a la masa efectiva de los nucleones,
propuesta por G.E. Brown [1]. La variacién con la energia de la
anomalia de la parte real del potencial éptico se calcula usando como
informacién en las relaciones de dispersion la variacién con la energia
de la profundidad del potencial imaginario W(EY), el cual se obtiene de
los datos fenomenoldgicos.





