Investigacidn Revista Mexicana de Fisica 36 No. 2(1990) 294-309

Zero-temperature properties of a spin-polarized
atomic hydrogen fluid

M.A. Solis, M. Fortes
Instituto de Fisica,
Universidad Nacional Auténoma de Meézico,
Apartado postal 20-364, 01000 Mézico, D.F. Mézico

E. Buendia, R. Guardiola
Departamento de Fisica Moderna, Universidad de Granada,
E-18071 Granada, Spain

C.S. Ho,* M. de Llano
Physics Department, North Dakota State University,
Fargo, North Dakota, 58105, USA

William C. Stwalley
Center for Laser Science and Engineering,
Department of Physics, Astronomy and Department of Chemistry,
Universily of lowa, Towa City, Towa 52242, USA
(Recibido el 10 de enero de 1990; aceptado el 15 de febrero de 1990)

Abstract. The ground state energy, the pressure and the sound veloc-
ity are calculated from first-principles for a wide range of densities in
fluid spin-polarized atomic hydrogen. We employ Quantum Thermody-
namic Perturbation Theory (QTPT), whereby the interparticle attrac-
tion is the perturbation, with two pair-potentials for the spin-polarized
state, the Lennard-Jones and Kolos-Wolniewicz forms. Energy calcula-
tions reported in the literature agree with ours in the regime of very
low density, and for higher densities our calculations are below the vari-
ational ones.

PACS: 67.65.+z; 67.40.Kh; 05.30.Jp

|. Introduction

During the past fifteen years, the possibility of producing bulk electron-spin-polar-
ized atomic hydrogen at optimum conditions of density and temperature in order to
observe Bose-Einstein (BE) condensation, has captured the interest of both theorists
and experimentalists, who have tried to predict and observe the properties of this
new quantum systemn. At very low temperature, it has been possible to produce and
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FIGURE 1. Lennard-Jones (LJ) and Kolos-Wolniewicz (kW) potentials between two hydrogen
atoms in the triplet electronic state. Inset: The interaction in the singlet and triplet
electronic states of hydrogen compared with that of two helium atoms.

store atomic hydrogen by introducing it into a magnetic field of the order of 10 T
(tesla). In this way, pairs of atoms are forced to interact via the spin-polarized state
%} instead of the singlet 'SF spin state, the latter (1] being unstable and thus not
leading to recombination into molecular Hy. The rapid three-body recombination
of hydrogen both in the bulk gas, and particularly when adsorbed on the confining
helium surfaces, have unfortunately limited the density thusfar acheived to ~ 5 x
10! em™* and heated the gas above the BE critical temperature T, (in the limit
of weakly-interacting bosons T, = 3.3152p§/(mk) = 74 mK at a density of p =
10*° cm™3) [2].

The ground-state properties of atomic hydrogen have been calculated using a
wide variety of variational methods [3-5] as a first step to understand this system.
In these calculations, it is generally assumed that pair interaction is the L} atomic
triplet potential, Fig. 1. At best, the calculated energies —exact in the low-density
regime— represent upper bounds to the exact energy.

In this work, we report the energy per atom, the pressure and the sound velocity,
as functions of the particle density p, for the ground state spin-polarized atomic
hydrogen. We use the Quantum Thermodynamic Perturbation Theory (QTPT) re-
cently developed [6] which has been successful in the determination of the ground
state energy of *He since it reproduces the Green-Function-Monte-Carlo (GFMC) (7]
results within the statistical errors of the simulations.

In Sec. 2 the QTPT is briefly discussed in a schematic way since detailed accounts
have been published elsewhere [6,12,22]. We only discuss the method appropriate
for a general bosonic system. In Sec. 3 we apply the QTPT to spin-polarized atomic
hydrogen (H|) and we present our results. Sec. 4 is devoted to conclusions.
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2. Quantum thermodynamic perturbation theory

We start with the well-known low-density expansion produced by quantum field
perturbation theory (8] for the ground state energy per boson particle

27k’ pa
m

%(P) = 14 Ci(pa®)? + Ca(pa®) In(pa®) + - + O(P“:;)] = (la)

where Cj and (3 are the pure numbers

4
= 1281, 6'2:8(—#_3‘12),
1572 3

m is the particle mass, which in this case gives

= 48.133716 KA?Z,

35

p is the particle density, and a is the S-wave scattering length associated with the
assumed pair interaction. In general, @ may be either positive or negative. To avoid
imaginary terms in (la) when a < 0, we replace a by its numerical expansion in
powers of an appropriately defined “switching” parameter 0 < A < 1, associated
with the intensity of the attractive part of the potential,

V(r) = Viep(r) + AVaue(7). (2)
Thence
a=aa+a1)\+az/\24:'--=ao(Zﬂ-‘/\‘), (3)
1=0

with:ay= a;fdo; b= 0 1500,
Substituting (3) into (1a) leaves

E  2xh? & ¢
¥ = mad” Za.e.(m)A, (1b)
1=0
where = = (,fmg)'ilT and
ei(z) = 1 + Criz + Cyiz? In(2?) + O(?). (4)

We now have a purely real expression for the energy, even for A large enough
so that a is negative. In (4) the dimensionless coefficients ('}, and Cz; have been
deduced [9] for i = 1,2, ...,6 through the computer algebraic scheme MACSYMA [10]
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in terms of Cy, Ca, aiy, aa,...,as. Clearly, Cijg = C; and Cao = C3. The new
expression (4) for the energy is a double series: it is irregular in the density p,
but regular in the attractive intensity parameter A. Although we have been able
to transform the original energy series so as to have real terms only, this is still a
low density expansion. Extrapolation of (1b) for non-zero 2 and A is undoubtedly
required for to systems like H|. Padé [11] and tailing [12] extrapolants will be
used here. They have proved [13] considerably successful in reproducing the correct
behavior of functions for which only the beginning of an expansion series is available.

Further extrapolations for the density give us the ¢(x) approximants for e;(z),
with 7 = 1,2,...,6, such that the energy per boson, Eq. (1b) will transform into

5 2rh? o
E s Za,e, : (5a)

m(lo

We limit ourselves to 6th order in the power series for A. The ¢;(2) will be dis-
cussed further. For A different from zero, the extrapolations are calculated using
the common Padé approximants. To do this we rewrite Eq. (5a) in the following
way

% _ 2nh? L (Z F x}A) (5b)

with Fi(z) = %IT) such that the respective A-Padé approximants give a sequence
of approximants to the energy per particle designated by

E  2rh® .
N‘rzaﬁ’“)“’ 2)L/M](N), 0<L+M<6. (6)
0

The pair interaction potential V/(r) between particles is separated into attrac-
tive and repulsive parts within the Classical Thermodynamic Perturbation Scheme
according to Barker & Henderson (BH) [14] and Weeks, Chandler & Andersen
(WcA) [15], respectively as

0o —r)V(r)+ A0(r — o)V (r), (BH) (7)
O(rm —r)(V(r)+e) + A0(r — rm)V(r) — él(rm — 1), (WCA) (8)

with 0 < A < 1 (Fig. 2). In other words, for a L1 potential the (BlI) decomposition
is at the zero of the potential, namely o, while the (WCA) splitting is at the zero of
the corresponding force —dV/(r)/dr, namely at ry, = 2165 which is the minimum
of the potential. It has been argued [16] that Eq. (7) is appropriate for describing
dilute gases while Eq. (8) is more appropriate for dense liquids.
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FIGURE 2. Barker-Henderson (BH) and Weeks-Chandler-Andersen (wca) decomposition of the
potential V(r).

As in the earlier classical studies [14,15], the first step consists in an accurate
treatment of the purely repulsive fluid. In the low-density limit this is described by
Eq. (1b) with A = 0, namely,

E oarh? ‘g
N = ma-(z] T 60(1)1 ( d)
eo(z) = 1+ Crz + Caz’ In2? + O(z?). (90)

For identical hard spheres, ag is just the sphere diameter, and all possible Padé-like
approximants €y(x) to the series eg(x) of Eq. (9b) have been studied [17,19]. The
€o(z)’s are defined so that ep(z) —en(x) = O(z?), if a value for the coefficient of the
unknown term, say C3oz?, is assumed. Of the twelve such extrapolants to eg(z), only
two possess acceptable global fits to the boson hard sphere GFMC data (18], each
with just one adjustable constant C'yp. Both forms turn out to be almost coincident
with each other from low to moderate densities (physical, e.g., equilibrium liquid
4He, or fluid spin-polarized atomic hydrogen, or alpha matter, etc.), as well as with
the GFMC calculations; they begin differing at higher densities. Of the two forms, the
approximate having the smallest least-mean-square-fit value with the four available
GFMC data points, turns out to be [19]

1

ia z
ED(J:) =2 (1 = e - a2 ) ’
1 - ZCrl-*;r(ln x4 [C30 — 3C7 [4]/(2C2))

(10)

which gave '3y = 25.110 & 0.287 and a standard deviation of 0.0051 for the fit.
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The form (10) when expanded for small x reproduces (9.). It clearly possesses a
second-order pole at z = 0.7245 + 0.0045.

Since ap of Eq. (9b) scales together with the density p as 2 = (pao)’i‘, at low
enough densities a fluid of soft spheres with an S-wave scattering length a; should
behave like a fluid of rigid spheres of diameter ag. The question is whether this
equivalence persists at higher densities, or nearly so. The answer appears to be
“yes”, even to the extent of postulating that, for all practical purposes, a fluid
of soft spheres described by potentials like (7) or (8) with A = 0 will possess a
finite, ultimate density value at which the system energy-per-particle is essentially
infinite. A real divergence definitely occurs for a classical hard sphere fluid, where
the ultimate density might just be the random-close-packing (or Bernal, z g) density
empirically found, in experiments [19] with ball-bearings, for example, to occur
at a packing fraction very close (to within four digits) to 2/7 = 0.6366, or at a
density of about 86% of the ordered “primitive hexagonal” (closest) packing value
of pp = Zé/c:”, where ¢ is the rigid sphere diameter. The Bernal density for boson
hard spheres, as predicted by (10), is only about 37% of py, a reduction perhaps
attributable to symmetry and quantum effects.

To incorporate the i-th order perturbation corrections, we construct all possible
Padé-like approximants €;(z) such that €(z) — ej(z) = O(z?), where the ¢;(2)
(t =1,2,...,6) are the two-termed series in Eq. (4). One arrives at four distinct
forms, each of which upon expansion for small 2 give back Eq. (4). These are

i) 1+ Criz/(1 - Cyzlna?/Cyy),
it) (1 — Criz — Cyiz®Ina?)?,
iti) (14 Caiz®Inz?)/(1 — Cyiz), and
iv) (1+ Criz)/(1 — Caiz® Inz?).

The density behavior within the physical interval 0.<p < pp of each form is con-
strained by the following conditions: 1) Since the perturbation potential is negative,
both first- and second-order perturbations to the energy must [17) be non-positive
throughout the density interval. 2) The first-order contribution, moreover, must
clearly increase monotonically in p. 3) In every order, the contribution must be
finite; specifically, ¢;(x) forms with vanishing denominators in 0 <z <zp = (pBag)
are immediately discarded. The above constraints are rigorous; additional condi-
tions can be imposed on physical grounds as follows: 4) Classical thermodynamic
perturbation theory [28,29] suggests that e;(z5) = constant, and ¢(zg) = 0, for
t 2 2, namely good Stell-Penrose behaviour. 5) Throughout the physical region,
€(x) > e41(2).
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3. Results and discussion

We have considered two pair interaction potentials between hydrogen atoms in the
spin-polarized triplet state *$}: Lennard-Jones (1J), with parameters o = 3.689 A
and € = 6.464 K from Ref. [24], and Kolos-Wolsniewicz (kW) [25]. Fig. 1 depicts
these potentials and Fig. 2 displays two ways of decomposing them. For either
decomposition —(BH) and (WCA)— A expansion coefficients of (3) have been cal-
culated [24,25] up to 14-th order using double precision for these potentials. The q,
values to sixth order are given in Table I in angstrom units. Applying the selection
criteria mentioned at the end of Sec. 2, the optimal approximants ¢;(x) to (4) are,
for orders 1 through 6, the forms ,7,1,4i,4 and iz, as defined in Sec. 2 respectively,
for either interaction and splitting, we have summarized the analysis in Tables III,
where the optimal approximants are marked with asterisks and their coefficients C),
and Ca,i=1,...,6, are listed in Table II. We display in Fig. 3 these forms for KW
(BH) case, and compare against the repulsive sphere zero-order extrapolant ep(z).

Note from Fig. 3 that €(x) increases in p. Hence, the first-order energy-per-
particle in the present (soft-sphere-fluid-based) perturbation scheme is E|/N =
(Z:Tﬁzfm)palel(pag)’i’. where a; < 0. This E1/N will decrease faster in p than the
familiar [8], exact first-order (ideal-gas-based) perturbation contribution —27pVy 7
for purely attractive bosons interacting with a rectangular well of depth —V4 and
range R. In second order, we have E2/N = (27rﬁzjnr)pagq{pag)'ll again with az < 0.
Since €x(z) in Fig. 3 is essentially constant in z, F3/N decreases linearly in p,
just as does the exact [27] second-order result —(47/15)pVii R® for rectangular-well
bosons in the ideal-gas-based perturbation theory. This kind of comparison cannot
be continued since the exact results are well-known [8] to diverge for bosons, order
by ‘order, as of third-order, because the unperturbed reference, zero-order state is
the zero-momentum, plane wave (ideal Bose gas) state. On the other hand, our
soft-sphere-fluid-based perturbation result as of third order is not only finite but
also is very close in behavior to that expected from the exactness [28,29] of the
first-order thermodynamic perturbation theory as one approaches close packing,
namely, €i(zg) =0, for i'=2,3;.: -

The energies per particle in Eq. (6), with e;(z) replaced by €(r), Padé-extra-
polated in A, have such rapid convergence that all the sixth-order (L+M = 6) Padé
approximants deviated little from the [6/0] curve for each interaction. In Fig. 4 we
display Eq. (6) as given by the approximants [L/0], L = 0,...,6. (o) refer to the
variational calculation of Ref. 5. The insets are two amplifications. Fig. 5 shows a
very large amplification of all the sixth-order Padé approximants to the energy for
KW (BH) interaction, as well as the fifth-order result [5/0]. For the sake of simplicity,
we adopt the Padé [6/0], as our converged equation of state, namely

2

E Ixhe 5
7= nfag 22eo(2)[6/0)(M)- (11)
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BH WCA
i ai(A) ai(A)
0 2.84129547 2.882743
1 —1.50783058 —1.507586
2 —0.476483648 -0.491292
Ll 3 —0.170703769 —0.183180
4 —0.0619603782 —-0.069353
5 —0.0225296216 —0.026318
6 —0.0081941821 —0.009991
0 2.72895857 2.787960
1 —1.35925915 —1.364790
2 -0.427170825 —0.441966
KW a —0.149354116 —0.162605
4 —0.0527374815 —0.060640
5 —0.0186443233 —0.022657
L 6 —0.00659229887 —0.008468

TaBLE I. Expansion coefficients a; (in A units) for the scattering length a, as defined in Eq. (3),
for the Lennard-Jones and Kolos-Wolniewicz potentials decomposed according to the
BH and wca methods.

E 1 2 3 4 5 6
1 12.03605 | —3.123486 | —10.96471 —15.54253 | —16.44992 | —12.76649
BH 2 | 78.61566 | —~119.4189 | —75.17803 21.0166 133.4027 224.5247
LJ
1 12.03605 | —2.450462 | —9.900332 | —14.4709 —15.90874 | —13.50609
WCA | 2 | 7861566 | —110.627 | —75.23029 6.303165 | 105.2795 | 191.7065
1 12.03605 | —2.271039 | —10.28664 —15.20743 | —16.62314 | —13.68629
BH 2 [ 78.61566 | —108.2831 | —79.86681 7.758237 118.0404 214.0963
KW
1 12.03605 | —1.609827 | —8.959857 —13.71298 | —15.64701 | —14.16162
WCA 2 78.61566 | —99.64543 | —77.0681 —T7.186953 | 84.02801 169.7419
TaBLE II. Coefficients Ciid=19%i= 1,...,6, of the optimum approximants ¢;(z) for the

Lennard-Jones and Kolos-Wolniewicz potentials, decomposed according to the BH and
wca methods.
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KW (BH)
Form Approximant €1 €2 €3 €4 €5 6
0 1+ Kiz+ Kez?Inz? | wp bSPb bSPb bSPb bSPb bSPb
i 1+ HT,?A‘LT’ " * * bSPb f‘iﬂ.ﬁé 50=Ie.3=
i —,_Hlﬁx—;\':: — nmi 5‘]:&.35 E(ie.(a}g - » .
i 14Kaetles’ v bSPb bSPh bSPb bSPb bSPb
i e wiif | Dt [ bSPb bSPb
KW (WCA)
Form Approximant € €2 €3 € 43 ‘6
0 1+ Ko+ Kozt lnz? | wp bSPb bSPb bSPb bSPb bSPb
{ oy YTt 3 % § sspo | ELEAt il
i A ——rr s pole gt . . "
e Lfaatins up bSPb bSPb bSPb bSPb bSPb
W T — poleds | bspe bSPb bSPb
LJ (BH)
Form Approximant € €z € €y €s e
0 14 Kyx+ Kar?Inz? vp bSPh bSPb bSPb bSPb bSPb
g i I . - . bspy | L3 Dole st
It m nmi Ecie_gg g-d:e it - - =
i +—'13"13,'=—'2 i bSPb bSPb bSPb bSPb bSPb
o pohe - podest | sspo bSPb bSPb
LI (WCA)
Form Approximant € €2 €3 €4 €5 €6
0 14 Kiz+ Kaztlnz? | wp bSPb bSPb bSPb bSPb bSPb
i L4 e . g " bspy | B8k Eole it
1 'I—M—l'-;‘:_;,w nmi ?“:18.3:% %colj lal" - - -
i Mhagtina® up bSPb bSPb bSPb bSPb bSPb
i T i | EER PL% | sse bSPb bSPb

TABLE III. Summaries from the density series analyses to determine the optimum approximants ¢,(z), which are
marked with asterisks, for the Lennard-Jones and Kolos-Wolniewicz potentials, decomposed according
to the BH and WCA methods. Abbreviations used: vp = violates positivity; nmt = non monotonically

increasing; bSPb = bad Stell-Penrose behavior.
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FIGURE 3. Optimum approximants €(x), i = 1,...,6 from the analysis for the Kw potential

with the decomposition according the BH method. The roman number in parenthesis
indicates the form of the approximant used among the four defined in Sec. 2. Also
displayed is the approximant €y(x) for the energy of the hard sphere fluid Eq. (10).

In Fig. 6 we show this energy for each interaction and splitting within the density
range [1 to 100] x10~* A~3. Also shown are the results from several variational
calculations, as indicated, Fig. 7 illustrates these results in the density range [1 to
20] x10™* A—3. At such low densities our results agree very well with all variational
calculations reported in the literature. At higher densities our results are below
these given by Miller & Nosanow (M&N) and variational Monte Carlo (MC). Similar
calculations [6] with the QTPT for the *He liquid system agree with Green Function
Monte Carlo (GFMC) calculations within the statistical errors of the simulation.
It would be very good to have experimental results to compare with. For these
densities the importance of the repulsive part of the potential is well known. In our
case, as the hard sphere diameter increases, the energy per boson for a given density
increases too.

The pressure P(p) and the sound velocity vy(p) for the system, as a function
of the density are obtained from Eq. (11) through the following thermodynamic
relations

Plp) = 2 ALEG/N)

. (12)
ez = AP )

dp

The derivatives were performed with the computer algebraic program
REDUCE [30].
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FiGURE 4. Convergence of Padé approximants [L/0], L = 1,...,6, for the energy per hydrogen
atom as a function of density, for the Kw potential and the BH decomposition. The (o)
are the results for Miller & Nosanow for the same system and potential. Inset: Three
different amplifications.
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Ficure 5. Amplification of Padé approximants of 6th order for the energy per hydrogen atom for
the KW interaction with BH decomposition. The strip on which all these approximants
fall is only ~ 0.2 mK.

Our results for the pressure are shown in Figs. 8 and 9, and for the sound velocity
given in Figs. 10 and 11, for densities within the same ranges in which the energy
E/N was given. In these figures we also show the results for the few existent other
calculations. In Fig. 11 the crosses denote results of Lantto & Nieminen for the Kw
potential. In Fig. 8 we do not observe the fluid-solid phase transition predicted in
Ref. [24] at a density of p = 65 cm®/mole = 92.6 x 10~* A~% and a pressure of the
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PX10% (A7)
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Energy curves per hydrogen atom for LJ and KW potentials, decomnposed according to
the BH and wca methods. ([J) Variational results of Miller & Nosanow for the L
potential; (o) same for the KW potential; (A) variational results of Ristig & Lam [3]
for the Kw potential; (x ) results of Lantto & Nieminen [3] for KW potential; () results
of Etters, Danilowicz and Palmer [4] with a variational Monte Carlo method for kw
potential data fit to a Morse potential form.

T OHy N
E/N * KWI(WCA)
oLJ,MBN #_KW(BH)
oK . m.:gL +LJ(WCA)
o KW, MBN P LJ(BH)
XKW, LAN
® a
05
o
o
o
1 < J
0 0 Px10*A) 20

FIGURE 7. Same as Fig. 6 but amplificated in scale.

order of P = 50 atm. This may be a limitation in our calculations. Nevertheless,
from the same figure we can observe that at this density the system is at a pressure
of 21.4, 24.8, 27.7 or 31.1 atm, depending on whether the interaction is KW (BH),
KW (WCA), L1 (BH) or LI (WCA). In the same way, in order to obtain a pressure of
50 atm with (12), densities .010265, .01056, .01090 or .01136 A—3, respectively, are
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LJ{BH)
/KW(WCA)
30 ( Hi LJ (WCQ) / KW(BH)
P(P) « KW,MC
s KW.RaL
Atm x KW LaN
15
e 1 ]
2 %0 px10* (A% !

FIGURE 8. Pressure curves as a function of the density, Eq. (12) for LJ and KW potentials decom-
posed according to the BH and wca methods. (A) results of Ristig & Lam [3] for the
KW potential; (x) results of Lantto & Nieminen [3] for the Kw potential; () results
of Etters, Danilowicz and Palmer [4] with a variational Monte Carlo method for Kw
data fit to a Morse potential form.

KWIBH),LJ(WCA)
KWIWCA)_, Yo L J(BH)

02r
P(P) H
Atm « KW,MC
a KW,RalL
« KW, LaN
0 t+
0 10 pxio* (g 20

FIGURE 9. Same as Fig. 8 but amplified in scale.

necessary depending on the interaction used, namely L1 (WCA), LI (BH), KW (WCA)
or KW (BH).

4. Conclusions

The low-density (ideal-gas-based) series for the ground-state energy of a many-boson
system of particies is rearranged by computer algebra into a double-series. The
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LJ (wca)
/LJ(BH)
KW(WCA)
800 ¥ <KW(BH)
JS(P)’_ H+
m/s
400 |
0 %0 px10%( K i
200
Hi
VS(P)( x
m/s
KW(WCA)
— KW(BH)
100 |

LJ (BH),(WCA)

il |

0 0 pxi0*( A a8

FIGURE 11. Same-as Fig. 10 but amplified in scale. The crosses denote results of Lantto & Niem-
inen [3] for KW potential.

two variables are density and coupling strength of the attractive potential of the
pair-interaction. Thus, in analogy to the classical case. ¢ .. deals with a quantum
thermodynamic perturbation theory QTPT in which the unp turbed fluid is not the
ideal gas but the fluid of hard- (or soft-) spheres, and in wlich ach order correction
to this reference fluid is itself a “low-density expression”. The 'a*ter set of serjes are
extrapolated to higher (i.e., physical) densities through Padé techniques.

Our results agree at very low-densities with all variational calculations carried
out on this bosonic fluid, and at higher densities lie everywhere helow in energy
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as expected. The method should be accurate, in principle, to densities high enough
that the variational descriptions will break down.
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Resumen. A partir de primeros principios, se calcula la energia del
estado base, la presién y la velocidad del sonido dentro de un intervalo
amplio de densidades, para el fluido de dtomos de hidrégeno con espines
polarizados. Empleamos la Teoria de Perturbaciones Termodinimica
Cuéntica (QTPT), para la cual la interaccién entre las particulas es la
perturbacion, con dos potenciales de pares para el estado de espines
polarizados: Lennard-Jones ¥ Kolos-Wolniewicz. Los célculos para la
energia reportados en la literatura coinciden con los nuestros en el
régimen de muy baja densidad ¥, para densidades mads altas, nuestros
calculos se encuentran por debajo de los variacionales.





