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Abstraet. Using the methods of Correlated \Valks and Quantum Scat-
tering Theory in a perfect one-dimensional lattice wc present a deriva-
tion of a microscopic Landauer diffusion formula. For a discrete-time
formulation, an expression for the diffusion coefficient is obtained, de-
pending on the scattering matrix S elements, which describes the quan-
tUID properties of the unita.ry cell. A similar result is obtained for a
continuous-time correlated wa.lk, for which the jump rate is charactcr-
ized by a Poisson pausing-time distribution. In both cases the diffu-
sioo coefficient is a Landauer type of equation which depends only on
the properties of the unitary cell such as the reflectioll coefficient and
microscopic the energy of the incident particle. An example is given
for the diffusion coefficient versus energy in a lattice described by a
Kronig-Penny potential.

PACS: 64.90.+b

1. Introduction

For a long time1 the Lanclaucr diffusion formula [IJ has bccn known to be the corrcel
result foc a one-dimensional1 Ilon-interacting system of clcctrons on ordered and
disordered metals. In this paper wc present a rigorous derivation of the Landaucr
formula for a diffusion process described by a correlated walk.

Befare going on, thc argument of Landauer [1] which givcs the cocrect result for
the one-dimensional case would be worthwhile reviewing.

LanJauer argued as follows. COIlsider particIes incident from thc Icft of an arra)'
'of obstacles of Iength L, with a total rcftection coefficient R. Averaging over se .....eral
wavelengths1 the density to the Ieft is 1 + R and tha.t to the right 1 - R

1
giving

a density gradient across the region, 8n/8x = -2Rj L. The total flux across the
regio n is equal to the incident flux minus the reflected flux, J = v(l - R) where v
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is the velocity of the partic1e. Using the diffusion equation J = -D8n/8x, one gets

(1.1)

Eq. (1.1) is the Landauer formula, valid íor a general one-dimensional system.

Attempts to derive (1.1) rigorously from linear response theory have produced
sorne preyious unsuccessful results [2], until Anderson et al. [3], and Stone [4J gaye
derivations using length an tedious quantum mechanical perturbation theories, prov-
ing that (1.1) is indeed correct, under the íramework oí quantum theory.

Eq. (1) was derived originally by Landauer having in mind a macroscopic dis-
ordered solid, where the reflection cocfficient R belonged to a sample of size L.
However a careful look at Landauer's derivation shows something that has so íar
escaped the attention oí researchers, and is the fact that the oí length L oí the solid
has no restrictions at aH. As a consequence the derivation must also be valid even
in the limit where the size L oí the material becomes the size of a single atom!.

In other words, we claim that Eq. (1.1) may also be thought as the diffusion
coefficient oí a process where partic1es are incident upon potential barriers of single
atoms at a time, and thereíore R has to be the microscopic reflection coefficient
oí that potential barrier, and whose analytic expression is well predicted by the
Quantum Theory. Not only that, we also claim that ií our assumption is correct,
then since the coefficient D becomes the microscopic eoefficient oí a diffusive trans-
port process, thereíore there must be possible to find, as a mathematieal model,
an appropriate stochastic walk sueh that the microscopie version oí the Landauer
coefficient (1.1) can be deriycd.

It is the purpose oí this work to show that sueh stochastic walk exists and is
given by a particular selection oí a correlated walk in a one-dimentionallattice, and
1 - R will become the microscopic jumping probability between adjacent cells.

In Section 2 we show how the quantum theory oí scattering gives a relation
between the S-matrix elemcnts and the jumping probabilities, next we show how
these probabilities assoeiated to 'a correlated walk can be expressed by the micr<r
scopic reflection coefficient. In Sections 3 and 4, from the correlated walk rnodel
we derive the Landauer equation as a íunction oí the microscopic properties oí the
unitary cell. Finally in Section 5 we give an example where we apply the theory to a
Kronig-Penney type oí solid. Bere we show explicitly how the Landauer coefficient
depends on the mieroscopic properties oí the partic1e and barrier.

2. Correlated walk and S.matrix

A standard starting point for the -discussion oí correlated walk in one dimension is
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the following set oC simultaneous difference equations [3,4]

P,(X,N) = oP,(X -I,N -1) + ¡1P,(X - I,N - 1)

P,(X,N) =¡1P¡(X+ I,N -1)+oP,(X + I,N -1)
(2.1 )

where Pj(X,N) denotes the probability that the walker arrives at the lattice point
X with a previous step-type j (right = 1, leCt= 2) at the N-th step. In this proccss
tbe walker arrives at the lattices point located at a distance GOX, where Go is the
periodicity oC the lattice, at regular time intervals T so that the time t is measured
in discrete units oC T: t == NT.

The coefficients o and j3 denote step probabilities, such that o is the proba-
bility of stepping right (Ieft) when the previous step was right (Ieft), that ¡s, o is
the Corward scattering probability on each lattice point; analogously j3 denotes the
probability of stepping right (Ieft) when the previous step was left (right), that
mea.ns that j3 is the backward scattering probability 00 each lattice poiot. Clearly
the coefficients o and j3 describe an isotropic (non-bias) diffusion process, and they
are normalized in such a way that

0+¡1=1 (2.2)

Since o and {3are Corward and backward scattering probabilities, they are related
to the quantum properties oC the lattice scattering points, in Cact o and j3 can be
interpreted as the transmission T and reflection R coefficients oC the lattice points,
respectively. The T and R coefficients are in turn described by the corresponding
scattering matrix S of the unitary cell. From elementary quantum theory wc know (7)
that both coefficients are then given by

o;: T = 15,,1'
¡1;: R = I - T = I - 15,,1'. (2.3)

At it is well known [7], the S matrix does not depend on the particular structure
oí the incoming particle, it depends only on the dynamical nature oC the interactionj
the scattering potential parameters and the energy oC the incoming particle.

3. Landauer equation in an infinite perfect lauice

Let liS consider the set oí equation (2.1) with constant coefficients o and j3 plus the
initial condition that the walker arrives at the origin from the left at the initial time
N = O,

P¡(X, N = O) = Er •• P,(X, N = O) = O. (3.1 )
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The solution of these equations is obtained as follows:
Let us define the characteristic fundion P¡(k, N) by

+00

P,(k,N)= L eikXP,(X,N)
%=-00

(i=I,2) (3.2)

Fourier-transforming Eqs. (2.1), we obtain a vector Markov chain equation

P(k,N + 1) = T(k)P(k,N),

where P is the column vector defined by

and T(k) is the transition matrix

(3.3)

(3.4 )

The immediate formal solution of Eq. (3.3) is

(3.5 )

P(k, N) = TNp(k, N = O).

Using the standard methods of linear algebra, we obtain

(3.6)

TN = 1
A+ - A_

(
(Te'! - L )A~ - (Te'! - A+)A~

x Re-i!(A~ _ A~)

where A+ and A_ are eigenvalue!'of the matrix, T, given by

The total characteristic function defined by

P(k,N) = P¡(k,N) + P,(k, N),
can now be obtained from (3.6) with the aid of (3.1) and (3.7) as follows

(3.8)

(3.9)
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We note that all momenls oí the dislribution can be obtained CroID the total
eharaeteristie funetion P(k, N) through the formula

(Xn)N == 'E.xnp(X,N) = (_i)n [::J(k,N)]
x k=O

From Eqs. (3.10) and (3.11), alter straightforward algebra we obtain

T - R [ N](X)N = 2R 1 - (CT - R)

2 T T - R [ N](X )N = RN - 2R.' 1 - (T - R)

Eqs. (3.12) beeome, in the 1imit of weak eorre1ation (T = R = 1/2)

(3.11)

(3.12a)

(3.12b)

(3.13)

analogously in the l¡mit oí slrong correlation (T -+ 1, R -. O)we have

(3.14)

80th limils are in total agreement with the physically expected behavior oí the
probability distribution.

With the help of Eqs. (3.12) we can now ealculate the diffusion coeflicient D in
the usual wa~'

D = lim a~ (X
2
)N - (X);'

N-oo r 2N

a6T vaoT
=2rR= 2R

(3.15)

(3.16)

Eq. (3.16) is the Landauer equation for the particular case of an infinite lattiee
with perfect periodicity, see Figure 1. Notice that the parameters involved in oue
diffusion coefficient are just unitary cell properlies. In this sense oue d¡ffusion co-
efficient is different Crorothe afie described by Landauer himself where he has the
tolal reflection coefficient Roí aD array oí ohslacles oí totallength L. The general
case oí the Landauer formula may be used in a disordered metal, our result (3.16)
may noto However our derivation shows how to generalize for disordered metals: we
have to calculate Eq. (2.1) with stoehastie ,,(X) and (3(X). This will be done in the
future.
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where lhe kernel "'(t) is given by

FIGURE l. Diffusion coefficient versus energy of the incident particle. The example is for a Kronig-
Penney potential where the unitary cell is a potential well given by Eq. (5.1): V(~);:; 0,
O;:; % < 6, V(~);:; -Yo, 6;:; ~;:; 6+a. Here [2mVoa2fh2Jl/2;:; 11.

4. Continuous-time correlated walk

In the discrete-time correlated walk the walker scatters a step right or le[t per
unit time. We now make a generalization such that the time intervals between
steps are regarded as random variables. We do this by introducing the pausing.time
distribution [9J 1/>(1). Let us consider a walk in which lhe walker takes n steps at
randoro times tb t2, ... I tn where the n time intervals TI == t}, T2 == t2 - t}, ... , Tr¡ ==
tr¡ - tn_l are chara.cterized by a common pa.using-time distribution TjJ(T).

We can set up a general equa.tion [or the continuous-time correlated wa.lkwith
lhe pausing lime distribution I/>(t) by a generalized vedor master equation [10]:

!!.- (P¡(X,I)) = J.' dt' ",(t - t') (TP,(X - l,t) + RP,(X -1,1;) - P¡(X,I:))
8t P,(X,t) O RP,(X+l,t)+TP,(X-l,t)-P,(X,I)

(4.1)

"'(1) = e' [ .,j,~.)];
1 - 1/>(.)

(4.2)

and C. denotes the Laplace opera.tor.
For on arbitrary pausing.time distribution t/J(t), there is Httle hope (or solving

the set oCEqs. (4.1). However ror the very important case of Poisson distribution

,j,(.) = 0(0 _ .)-1, (4.3)
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the problem can be handled in a simple manner (U]' because only for this distribu-
tion the kernel ,p(t) becomes

,p(t) = 06(t), (4.4)

which, upon substitution into Eq. (4.1), generates a Markoffian master equation.
The solution is already given in the literature [lO], and we get for the dilfusion
coefficient

D = a5°~.2 R (4.5)

Since 0-1 is the average time ofthe distribution, wesee that our Eq. (4.5) reproduces
the Landauer equation (3.16) for discrete times also.

5. An example of diffusion as a function of the energy

As an example ofthe usefulness oí Eq. (3.16), let us calculate, the diffusion coefficient
as a function oí the energy E of the incoming particle, for the particular case of a
Kronig.Penney potential with a unitary cell having a potential well given by

V(x) = {O
-Vo

OS x S b,

b < x S b+ a.
(5.1 )

For this case the S matrix elements of the unitary cell are straightforward to
obtain [71and we get

where

[

'] -11 k' - k"1+¡( kk' ) sin'k'a (5.2)

/¡k;: J2mE, /¡k' ;: J2m(E + Vol. (5.3)

Substituting Eq. (5.2) into Eq. (3.16) we obtain the dilfusion coeflicient D as
a Cunction oC the energy E oC the incident artic1e. In Fig. 1, we have a plot oC D
versus E for the particular case of 2mVoa2/h2 = 11. In Fig. 1, we see the fast
oscillations the diffusion coefficient has, and the divergent behavior. This divergences
are consequences of the resonances T "" 1 involved in the transmission coefficient
T.

In conclusion: it may be seen that a simple random process such as correlated
walk can incorporate the quantum properties of the scattering lattice cells, giving
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the same result as in a calculation made with íull quantum density-matrix. In order
to see that this is ideed so, we have to make two íurther calculations:

First, we need a macroscopic description oí the Landauer equation (3.16). That
is, we need to re-write it in terms oí the total reflection n and transmission T
coefficients oí a macroscopic sample of length L. Since our theoretical description
Eq. (2.1), is an incoherent superposition oí probabilitics, then it is an elementary
problem oí quantum mechanics lo prove, that the total reflection and transmission
coefficients oí a sample made of Al successive potential barriers, each one with
individual coefficient T and R, is given (under the incoherent assumption) by

MR
R=------

1 +(M -1)R

Substituting Eg. (5.4) intn (3.16) we have

T= T
1+(M-I)R

(5.4)

vao T v T v T
D = -- = -(Mao)- = -L-2R2 R2R (5.5)

Bere L = Al ao is the total size oí the macroscopic sample made of Al microscopic
cells of size ao each one.

Second, using the macroscopic description (5.5), we use the Einstein relation to
calculate the electrical conductivity (] of a degenerate Fermi gas

ne2 e2 L T
a=-D=--

kT hhR (5.6)

And this is the correct one-chanel Landauer formula, derived by Douglas Stone
(Eg. (2.27), reference [4]), for the more general case of disordered metale, using
quantum linear response thcory.

In conclusion, we have just givcn a particular example (crystalline solid) in
which the Landauer equation can be derived using an incoherent stochastic process.
In this case the microscopic properties of the diffusion equation are irnmediate.

References

1. Landauer, R., Phi/os. Mag. 21 863 (1970).
2. Fisher, D.S. and Lee, P.A., Phys. Rev. B 23 6851 (1981); Economu, E.N. and

Soukouüs, C.M., Phys. Rev. Let/. 46 618 (1981).
3. Anderson, P.\V., Thouless, o.J., Abrahams, E. and Fisher, D.S., Phys. Rev. B 22

3519 (1980).
4. Stone, A.D., ""Localization and Low Temperature Transport in Disordered One-

Dimensional System" Ph.D. Thesis, MIT, (1983).
5. Goldslein, S., Q. J. Mech. Appl. Matn. 4 129 (1951).
6. Godoy, S.V., J. ehem. Phys. 18 11 (1983).
7. Merzbacher Eugene, Quantum Mechanics, 2nd. edition, John Wiley, New York,

(1961).
8. Ishihara A., Statisticai Physics, Academic-Press, New York (1971).



384 Salvador Godoy aud Shigeji Fujita

9. Montroll, E.W. and Weiss, G.JI., J. Mal. Phys. 6 178 (1966).
10. Godoy S.V., Huelz, F., and Fujita, S., Acta Phys. Austr. 55 189 (1984).
11. Bedeaux D., Lakatos K., Shuler, K.E., J. Math. Phys. 12 2115 (1971).

Resumen. Usando los métodos de caminos correlacionados y Teoría
cuántica de dispersión en una red perfecta unidimensional, presentamos
una derivación microscópica de la fórmula de difusión de Landauer. Para
una formulación de tiempo discreto, se obtiene una expresión para el
coeficiente de difusión que depende de los elementos de la matriz S
de la celda unitaria. Un resultado semejante se obtiene para un camino
correlacionado de tiempo continuo con una distribución de Poisson para
el tiempo de espera. En ambos casos el coeficiente de difusión es un
resultado tipo Landauer que depende de las propiedades microscópicas
de la celda unitaria tales como los coeficientes de transmisión y reflexión
y la energía de la partícula. Se da un ejemplo del coeficiente de difusión
en un potencial de Kronig-Penney.




