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A microscopic Landauer diffusion coefficient
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Abstract. Using the methods of Correlated Walks and Quantum Scat-
tering Theory in a perfect one-dimensional lattice we present a deriva-
tion of a microscopic Landauer diffusion formula. For a discrete-time
formulation, an expression for the diffusion coefficient is obtained, de-
pending on the scattering matrix § elements, which describes the quan-
tum properties of the unitary cell. A similar result is obtained for a
continuous-time correlated walk, for which the jump rate is character-
ized by a Poisson pausing-time distribution. In both cases the diffu-
sion coefficient is a Landauer type of equation which depends only on
the properties of the unitary cell such as the reflection coefficient and
microscopic the energy of the incident particle. An example is given
for the diffusion coefficient versus energy in a lattice described by a
Kronig-Penny potential.

PACS: 64.90.+b

1. Introduction

For a long time, the Landauer diffusion formula [1] has been known to be the correct
result for a one-dimensional, non-interacting system of electrons on ordered and
disordered metals. In this paper we present a rigorous derivation of the Landauer
formula for a diffusion process described by a correlated walk.

Before going on, the argument of Landauer [1] which gives the correct result for
the one-dimensional case would be worthwhile reviewing.

Landauer argued as follows. Consider particles incident from the left of an array
“of obstacles of length L, with a total reflection coefficient R. Averaging over several
wavelengths, the density to the left is 1 + R and that to the right 1 — R, giving
a density gradient across the region, dn/dz = —2R/L. The total flux across the
region is equal to the incident flux minus the reflected flux, J = v(1 — R) where v
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is the velocity of the particle. Using the diffusion equation J = —Ddn/dz, one gets
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(1.1)

Eq. (1.1) is the Landauer formula, valid for a general one-dimensional system.

Attempts to derive (1.1) rigorously from linear response theory have produced
some previous unsuccessful results [2], until Anderson et al. [3], and Stone [4] gave
derivations using length an tedious quantum mechanical perturbation theories, prov-
ing that (1.1) is indeed correct, under the framework of quantum theory.

Eq. (1) was derived originally by Landauer having in mind a macroscopic dis-
ordered solid, where the reflection coefficient R belonged to a sample of size L.
However a careful look at Landauer’s derivation shows something that has so far
escaped the attention of researchers, and is the fact that the of length L of the solid
has no restrictions at all. As a consequence the derivation must also be valid even
in the limit where the size L of the material becomes the size of a single atom!.

In other words, we claim that Eq. (1.1) may also be thought as the diffusion
coefficient of a process where particles are incident upon potential barriers of single
atoms at a time, and therefore R has to be the microscopic reflection coefficient
of that potential barrier, and whose analytic expression is well predicted by the
Quantum Theory. Not only that, we also claim that if our assumption is correct,
then since the coefficient D becomes the microscopic coefficient of a diffusive trans-
port process, therefore there must be possible to find, as a mathematical model,
an appropriate stochastic walk such that the microscopic version of the Landauer
coefficient (1.1) can be derived.

It is the purpose of this work to show that such stochastic walk exists and is
given by a particular selection of a correlated walk in a one-dimentional lattice, and
1 — R will become the microscopic jumping probability between adjacent cells.

In Section 2 we show how the quantum theory of scattering gives a relation
between the S-matrix elements and the jumping probabilities, next we show how
these probabilities associated to a correlated walk can be expressed by the micro-
scopic reflection coefficient. In Sections 3 and 4, from the correlated walk model
we derive the Landauer equation as a function of the microscopic properties of the
unitary cell. Finally in Section 5 we give an example where we apply the theory to a
Kronig-Penney type of solid. Here we show explicitly how the Landauer coefficient
depends on the microscopic properties of the particle and barrier.

2. Correlated walk and S-matrix

A standard starting point for the discussion of correlated walk in one dimension is
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the following set of simultaneous difference equations [3,4]

Pi(X,N)=aP(X =1,N—1)+BPy(X —1,N — 1) o
2.1
Py(X,N)=BP(X +1,N 1)+ aPy(X + 1,N — 1)

where P;(X, N) denotes the probability that the walker arrives at the lattice point
X with a previous step-type j (right = 1, left = 2) at the N-th step. In this process
the walker arrives at the lattices point located at a distance aypX, where ag is the
periodicity of the lattice, at regular time intervals 7 so that the time ¢ is measured
in discrete units of 7: ¢t = N7.

The coefficients a and 3 denote step probabilities, such that « is the proba-
bility of stepping right (left) when the previous step was right (left), that is, o« is
the forward scattering probability on each lattice point; analogously 3 denotes the
probability of stepping right (left) when the previous step was left (right), that
means that 3 is the backward scattering probability on each lattice point. Clearly
the coefficients a and  describe an isotropic (non-bias) diffusion process, and they
are normalized in such a way that

at+f=1 (2.2)

Since a and f3 are forward and backward scattering probabilities, they are related
to the quantum properties of the lattice scattering points, in fact a and 3 can be
interpreted as the transmission T and reflection R coefficients of the lattice points,
respectively. The T' and R coefficients are in turn described by the corresponding
scattering matrix S of the unitary cell. From elementary quantum theory we know (7]
that both coeflicients are then given by

a=T =|S5;f
ﬂER:l—T:]_—lSlg]z. (23)
At it is well known [7], the S matrix does not depend on the particular structure

of the incoming particle, it depends only on the dynamical nature of the interaction;
the scattering potential parameters and the energy of the incoming particle.

3. Landauer equation in an infinite perfect lattice

Let us consider the set of equation (2.1) with constant coefficients a and A plus the
initial condition that the walker arrives at the origin from the left at the initial time
N =0,

P(X,N=0)=6,9 Py(X,N=0)=0. (3.1)
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The solution of these equations is obtained as follows:
Let us define the characteristic function Pi(k, N) by
+o0 )
Bk,N)= Y PN  (i=1,2) (3.2)
I=—00

Fourier-transforming Egs. (2.1), we obtain a vector Markov chain equation

P(k,N +1) = T(k)P(k, N), (3.3)

where P is the column vector defined by

= ( Ba(k,N)
P(k,N) = (Pz(k,N)) ; (3.4)
and T'(k) is the transition matrix
1k 1k
T(k) = (}:{:—ik ﬁiik) : (3.5)
The immediate formal solution of Eq. (3.3) is
P(k,N)=T"P(k,N =0). (3.6)

Using the standard methods of linear algebra, we obtain

_ 1
o (@ =2 — (Te® — A 0¥ (A = AN)Re* (3.7)
Re=#(0 - A¥) (Te® = XA — (e — A )A¥

where A, and A_ are eigenvalues of the matrix, 7', given by

Ax(k) = Tcosk+ v R — T%sin’k (3.8)
The total characteristic function defined by

P(k,N) = Py(k,N) + Py(k, N), (3.9)

can now be obtained from (3.6) with the aid of (3.1) and (3.7) as follows

P(k,N) = &ﬁ (Te™ + Rem® — A — (Te'* + Re™* — 2 AY]. (3.10)
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We note that all moments of the distribution can be obtained from the total
characteristic function P(k, N) through the formula

X"y =Y X"P(X,N) = (—i)" [%P(k,}v)] H (3.11)

From Egs. (3.10) and (3.11), after straightforward algebra we obtain

X = TQ;RR [1 s [P = R)N] (3.12a)
(X2 = %N » % [t-@- R)N] (3.12b)

Egs. (3.12) become, in the limit of weak correlation (T'= R = 1/2)
(X)n—=0, (XHy—>N. (3.13)
analogously in the limit of strong correlation (T'— 1, R — 0) we have

(X)v =N, (XYHy - N (3.14)

Both limits are in total agreement with the physically expected behavior of the
probability distribution.

With the help of Eqgs. (3.12) we can now calculate the diffusion coeflicient D in
the usual way

ad (X*)n — (X)3

— 13 =0 N
B 2N (18]
2
_%T _vaT
=t =0 (3.16)

Eq. (3.16) is the Landauer equation for the particular case of an infinite lattice
with perfect periodicity, see Figure 1. Notice that the parameters involved in our
diffusion coefficient are just unitary cell properties. In this sense our diffusion co-
efficient is different from the one described by Landauer himself where he has the
total reflection coefficient R of an array of obstacles of total length L. The general
case of the Landauer formula may be used in a disordered metal, our result (3.16)
may not. However our derivation shows how to generalize for disordered metals: we
have to calculate Eq. (2.1) with stochastic a(X) and S(X). This will be done in the
future.
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FIGURE 1. Diffusion coefficient versus energy of the incident particle. The example is for a Kmmg—
Penney potential where the unitary cell is a potential well given by Eq. (5.1): V(z) =
0<z<b V(z)=-Vo, b <z <b+a Here 2mVpa?/A?V/2 =11,

4. Continuous-time correlated walk

In the discrete-time correlated walk the walker scatters a step right or left per
unit time. We now make a generalization such that the time intervals between
steps are regarded as random variables. We do this by introducing the pausing-time
distribution [9] #(t). Let us consider a walk in which the walker takes n steps at
random times ty,1;,...,t, where the n time intervals T} = t;, Ty = ty—t,...,To =
tn — ta—) are characterized by a common pausing-time distribution ¥(T).

We can set up a general equation for the continuous-time correlated walk with
the pausing time distribution ¥(t) by a generalized vector master equation [10]:

O (PXOY . [ arse—v (TPI( Lt)+ RPy(X —1,t/) — PI(X ))
o (Pz(X,iD ‘fo ot =)\ Rp(X +1.¢) + Pg(x-1,z' Xt

(4.1)
where the kernel ¢(t) is given by

g(t)=L L] R (.3) ] 4 4.2
and L denotes the Laplace operator.

For on arbitrary pausing-time distribution ¥(t), there is little hope for solving
the set of Eqgs. (4.1). However for the very important case of Poisson distribution

P(t) = ae™™, P(s) = ala —s)7, (4.3)
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the problem can be handled in a simple manner [11], because only for this distribu-
tion the kernel ¢(t) becomes

¢(t) = ab(t), (4.4)

which, upon substitution into Eq. (4.1), generates a Markoffian master equation.
The solution is already given in the literature [10], and we get for the diffusion
coeflicient

2
_ aoaz

= TR (4.5)

Since a~! is the average time of the distribution, we see that our Eq. (4.5) reproduces
the Landauer equation (3.16) for discrete times also.

5. An example of diffusion as a function of the energy

As an example of the usefulness of Eq. (3.16), let us calculate, the diffusion coefficient
as a function of the energy E of the incoming particle, for the particular case of a
Kronig-Penney potential with a unitary cell having a potential well given by

V(z) =

0 0<z<h,
(5.1)

-W b<z<b+a.

For this case the S matrix elements of the unitary cell are straightforward to
obtain [7] and we get

-1

T = |8 = g Ll P 2K (5.2)
= |o12|" = i Py sm-ka 5 i
where

kk=+/2mE, &K =2m(E+ W). (5.3)

Substituting Eq. (5.2) into Eq. (3.16) we obtain the diffusion coefficient D as
a function of the energy E of the incident particle. In Fig. 1, we have a plot of D
versus E for the particular case of 1/2mVpa?/h? = 11. In Fig. 1, we see the fast
oscillations the diffusion coefficient has, and the divergent behavior. This divergences
are consequences of the resonances T' ~ 1 involved in the transmission coefficient
T.

In conclusion: it may be seen that a simple random process such as correlated
walk can incorporate the quantum properties of the scattering lattice cells, giving
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the same result as in a calculation made with full quantum density-matrix. In order
to see that this is ideed so, we have to make two further calculations:

First, we need a macroscopic description of the Landauer equation (3.16). That
is, we need to re-write it in terms of the total reflection R and transmission T
coefficients of a macroscopic sample of length L. Since our theoretical description
Eq. (2.1), is an incoherent superposition of probabilities, then it is an elementary
problem of quantum mechanics to prove, that the total reflection and transmission
coefficients of a sample made of M successive potential barriers, each one with
individual coefficient T and R, is given (under the incoherent assumption) by

MR T
"TTornR T TR .

Substituting Eq. (5.4) into (3.16) we have

T w.T
(Ma)z =3L%

vagT_v
2R 2

(5.5)

Here L = May is the total size of the macroscopic sample made of M microscopic
cells of size ag each one.

Second, using the macroscopic description (5.5), we use the Einstein relation to
calculate the electrical conductivity o of a degenerate Fermi gas

ne? _egLZ
kT~ ~ 27h R

o=

(5.6)

And this is the correct one-chanel Landauer formula, derived by Douglas Stone
(Eq. (2.27), reference [4]), for the more general case of disordered metals, using
quantum linear response theory.

In conclusion, we have just given a particular example (crystalline solid) in
which the Landauer equation can be derived using an incoherent stochastic process.
In this case the microscopic properties of the diffusion equation are immediate.
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Resumen. Usando los métodos de caminos correlacionados y Teoria
cuéntica de dispersién en una red perfecta unidimensional, presentamos
una derivacién microscépica de la féormula de difusion de Landauer. Para
una formulacién de tiempo discreto, se obtiene una expresion para el
coeficiente de difusién que depende de los elementos de la matriz §
de la celda unitaria. Un resultado semejante se obtiene para un camino
correlacionado de tiempo continuo con una distribucién de Poisson para
el tiempo de espera. En ambos casos el coeficiente de difusién es un
resultado tipo Landauer que depende de las propiedades microscépicas
de la celda unitaria tales como los coeficientes de transmisién y reflexién
y la energia de la particula. Se da un ejemplo del coeficiente de difusion
en un potencial de Kronig-Penney.





