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Abstract. The main fealL!res oC sigmoidal transients, not only for vis-
cous glide but also Cor Power-Law Creep are explained in a physical way.
Also the experimental data Cor the average interna1 stress, (O'¡), and the
mobile dislocation density, Pm, at the inflection point oC sigmoidal creep
curves CorGermanium and Cu-16al%AI are fully described. Finally, the
stress and temperature dependence oC the total plastic deformation at
the inflection point for sigmoidal cr<'Cpcurves in Cu-l1.5at%Al are also
catered ror.

PACS: 81.40.Lm

1. Introduction

Usual1y, Cor lhc theorelical analysis oC plastic deCormation during transienl creep
stagcs, the acceleration oC dislocations is taken into account. In Cact, thcre are many
microscopic and phcnomenological models which cotlsider such accelcration in arder
to explain sorne aspccts of the plastic deformalion proccss [1-16]. Qne oC these
models as discused in ReL [161,leads to the Fuchs and llschller equation [91, namely

d(i) _ b (( )dPm d(v))
dt - o v dt + Pm di ' (1 )

where (i) is the strain rate, n is the average goometrical factor relating the tcnsile
deCormation to the shear deformation Corpolycrystalline samples, b is the magnitude
of the Durgcrs' veelor, Pm is the mobilc dislocation density and, (v) is the average
glilie velocily of rnobile dislocalions. This equation was obtaincd by dcvcloping some
clernents of lhe Statistical !\..fechanicsof Mobile Dislocalions. The physical meaning
oC Eq. (1) in this Cramework is related to lhe volumetric net force which describes
the dynamical bchavior oC thc center oC mass oC the mobile dislocation system, (f).
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FIGURE l. Types oC curves in a tension creep test. The curve "N" is named a normal creep cun'e,
the second curve "S", named a sigmoidal creep curve, and finally the curve "1", named
¡nverted creep transient. The normal creep curve have three stages: 1, primary transient
stage; JI, the steady state stage where the strain rate, (i) is constant, and, the tertiary
creep stage, IU, a situation where creation and evolution oC cAvities control! the sample
deformation giving place eventually to rupture.

Further, (f) is given by,

(2 )

A key element for this intcrpretation is that the volumctric linear mOITlcntum,
p, which appcars in the Second Law of Newton, is related to the strain rate as givcn
by the Orowan equation [17]. That is

(3)

From our point of view1 this statistical mechanical approach prO\'ides a more
intuitive insight to the physical contcnt of the Orowan ano the Fuchs and Ilschner
equations than the one previously considered.

Our main purpose in this paper is lo apply the theorclical framework jllst rcfered
lo in order to analyze sorne transient sitllations in dislocation creep. \Ve will restrict
oruselves to the study of the inflcction point in sigmoidal creep curves not only for
viscous glide but also for Power-Law Creep. The theoretical results will be uscd to
analyze sorne creep data in Ce [7) CIl-16at%AII18].
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2. Theory

lo this section, we develop a model to study the dynamical behavior oí the mobile
dislocation system at the inflection point oí sigmoidal creep curves (Fig. (1)]. Our
model considers that in the early primary traosient stage oí deformatioo the only
differeoce betweeo viscous glide and Power-Law Creep is due to the depeodence oí
the glide velocity 00 the average effective stress, (ut:). lIere (ut:) is giveo by (J - (O"j)
with u the applied stress and (u.¡) the average of the internal stress, taken as usual
to be [191.

(4)

where Ji is the shear modulus oí the material.
Usually creep tests are carried out on annealed samples; then we can assume

that during the first minutes oí the test, the annihilation events are negligible as
compared to the creation oí dislocations. Therefore, considering that all the disla-
cations are mobile, the changc in Pm is due to the creation of ncw dislocations. And
according to Montemayor-Aldrete el aJo [20] the creation rate of dislocations, p~, is
glven as,

(5)

where u is the mean value for the self-energy of dislocation per unit leogth.
On the other hand, the mobile dislocations glide with an average glide veloc-

ity (v). In 1959, in their c1assical paper Johnston and Gilman [31 reported direct
measurements of single dislocation ve10cities as a function of applied stress, and
suggested a relationship between v and 0'". In 1969, Li [6]gave a generalization for
such empirical relation taking into account the average internal stress for samples
macroscopical1y deformed. Generalizing thc Li expression, we have that (v) is given
by

( )
.-2

(v) = oB. (",) . (6)

where n is the stress exponent which can takc a value 3 for viscous glide, or a value
5 for Power-Law Creep. Also 83 and 85 are the mobility of dislocations for viscous
glide and Power-Law Creep, respectively.

The previous considerations and the use of Eq. (1) lead to the following result

(l.a)

According to our theoretical. scheme, with the use of Eqs. (2) and (3), the
volumetric force acting 00 the mobile dislocation system, (f), is given by (f) =
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~1t{¿). Thercforc, substituting Eq. (l.a) into this cquation allows us to cxplain
and describe different types of primary transicnt stages (Fig. (1)), depcnding on the
initial value for (f) in a given sample.

In other words, different types of transients arrear dcpending on the sign takcn
by [17 - (n/2)(oJ'bvp,;;)J. In lhe following, a sigmoidal creep lransienl will be ana-
Iyzed in terms of the sign and qualitative changes on thc force acting on lhc syslem
of mobile dislocalions. As il can be seen in Fig. (1), a sigmoidal transienl in a creep
curve is composed of an inverled transient followcd hy a normal transient, with these
two curves linked by the inflection point. In our scheme, lhe sigmoidal starts with the
inverted transicnt characterizcd by a volumctric force grcater than zero ((f) > O). In
this stage (f) is dcereasing its magnitude with time (bccause of the raising of Pm),
and consequently the volumetric linear momcntum of mobile dislocations incrcascs
its magniludc (i.e. (f) increasf...'Sits values) with titIle, but at a decrcasing rateo
EventualIy a zera value for (1) is rcac}¡ed. This is so because with deformation thc
vaIue for Pm grows up and for a givcn time the ter m [O" - (n/2)(aJtb~)] takes
momentarily the value zero, befare the change of sign on lhis ter m takcs place. At
this precise moment we arrive al lhe inflcction point of the curve, characlcrized also
by a maximum value for lhe strain rateo Eleyond this point (¿) necessarily diminishes
its value because now (1) has a negalive sign, and also ils magnitude begins to rise.
In other words the value for p;; mpm(v) diminisht:.,scontinuously with time because
(J) is lower than zero during the normal creep transicllt.

As mentioned before, at the inflection point (J) ;; O, and therefore for this
point (¿) ha.., a maximum valuc. Physically at this point the net force acting on
the mobile dislocation system is zcro, and thcn we can expect that the dynamic
parameters of the system will be dynamical constants, provided that the applied
stress and temperature are constant during a creep test. Therefore ba..,ed on the
aboye considerations it will be vcry interesting to find these dynamical constants.
Following lhis palh, lhe only possibilily lo oblain (d/dt(i))¡.p. = Oal lhe infieclion
point according lo Eqs. (5) and (6) is,

217
((I7,));p =

n
(7 )

where the subindex, i.p., indicates the inflection point. 1\lso using Eqs. (-1) and (7)
it is straigthforward to show that,

(8)

and wilh the aid of Eqs. (3), (6), (7) and (8) an expression for (i) many also be
obtained, namely,

((17,))ip = (1 - ~) CJ'~1/2) 2 8.17'. (9 )
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Germanium Cu-16at%AI (7230 K)

Parameter Exp. Theory Exp. Theory

(( •• )/.), p 2/3 2/3 037 0.40

(Pm),p / (¡;,)' 4 4 0.89 •

TABLE 1. The values for (0";) and pm at the inf1ection point for sigmoidal cr<'Cp curves in Ge and
Cu-16at%AI, a:c'cording to [3] and [18] respectively; anJ the comparison of the values
for (11;) and pm w¡th theoretical calclIlations. Note we take nGE = 1/3 from [7]. *Fitted
value in arder to obtain the value of n for the CII-AI alloy OClI_Al == 0.45.

The value for the total plastic deforrnation of. the sample at the infteclion
(fp)i.p. - fO ;; (~fp)i.p., (with fO the deformation at the starting time) can be
calculated considering that the value for (Pm)¡.p. is cqual to the original dislocation
density Pm(lO) plus thc one resulting from aH thc disloeations crcated betwccn
the s:tarting time and the inflection point, which we denote by ó'Prn, (i.e. ó'Pm =
(P,,¡)i.p. - Pm(lo)). Assuming as before that no annihilation events occur in this stage
of deformation then from 8'1s. (5) and (8): it follows that

and, if Pm(tO) « (2a/nOltb)2 then, (ó'fp)i_p. can he evaluated approximately fram
the following expression

( 10)

Equations (7), (8), (9) and (10) are the main re,ults of this sedion. They will
be contrastcd with experimental data in the next scclion.

3. Comparsion with experimental results

In this seclion we compare the theoretical results with the experimental data for
Germaniuffi given by Rerner and Alexander (7J, and also with the experimental data
for Cu-16at%AI dtie to Ha.<;egawa,Ikeuchi and Karashima [18].

For Gerrnaniurn, which obeys viscous glide creep, one has n = 3. And using this
value in Eqs. (7) and (8), the obtained valucs for Pon and (<7,) at the inflcction point
shown in Table l. The agrecrnent betwccn theory and experimental data is rather
good.

On the other hand, for the Cu-:-16at%Al al1oy, which obeys a Power.Law Creep,
11 = 5. FOI" this case the values for {a¡)/a ealculated at lhe inflection point are showl1
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AlIoy u (MP.) T(K) (Ó,f)¡ p Exp. (Ó,fp),p Theory ~l.n ~l •••••..
Cu-ll.5at%Al 39.2 723 (7.2" 0.7)10-3 .4 X 10-3 +2.8%
Cu-I1.5.t%AI 19.6 823 (3.7" 0.7)10-3 4.1 X 10-3 +10.8%
Cu.II.5at%AI 39.2 823 (8.5" 0.5)10-3 8.6 X 10-3 +1.2%
Cu-16.t%AI 39.2 723 (7.8" 0.5)10-3 •

TABLE 11. The accumulated pla.stic deformation at the infiection point for sigmoidl\l creep curves,
('ó'fp)¡,p" for Cu-Al alloys, as given by Hasegawa ti al. [18]; and its comparison with
theoretical results. The shear modulus for Cu-l1.5at%Al, JlU.5AI = 5.25x 104 MPa, lUId
for Cu.16at%AI, J'¡6AJ = 5,16x 104 MPa were calculated using the Quéréexpression [21]
with JiCu and JiAI as given by [22]. The temperature dependen ce on' JJ w&'!taked into
a.ccount following Staker and Holt [23]. *Fitted value in order to obtain a mean value
for the self.energy of dislocation per unit length, u, for Cu-16at%AI alloy, u = 5.52¡.¡b1.
The sarue value (or u was used in the cakulations of (Ó,fp)¡,p'

in Table I. The agreement between th(.'Oreticaland experimental data for (a¡) is also
satisfactory here. The thcoretical value for Pm at the inflection point was fitted to
tbe experimental data in arder to determine the value taken by O' in lhis aHoyoThe
obtained value O' = 0.45 will be used in further calculations.

Relative to the total plastic deformation of the sample al the inflection point
(..ó.fp)¡.p. in TabIe II we prcsent oue calculations for two alloys and difTerent test
conditions. In order to make the calculations for (2J.f!)¡.p. a value for the mean
total-energy of dislocation per unit IcngtlJ, ti = 5.52pb , was used. This value was
obtained by fitting the theoretical expression for (..ó.(p)i,p. with the experimental
dal\, for Cu-16al%Al at " ~ 39.2 MPa .nd T ~ 723' K. The lheoretical values for
(..ó.fp)i.p, are in good agreement with the experimental data, with a maximum error
of 11%. It is worth pointing out that in the case of Cu16at%AI, using the values of
¡J, and (J from Table II and the o value from Table I and considering values of Pm for
lhe annealed sample before deformal;on laken from Ref. [¡811he validily of Eq. (10)
is confirmed in lhal Pm (lo) ~ 0.03(2,,/ (5Q!,b))2 for lhe smallesl slress, while for lhe
highesl slress lhe faclor 0.03 is replaced by 0.015. On lhe olher hand, lhere are nol
enough data (particularly the values of ti) in the case of Ce to check the condition
leading lo Eq. (10). For lhis reason no .llempl was made lo use Eq. (lO) for Ge.

4. Conclusions

Our model explains in a physica'l way the main featurcs of sigmoidal lransients, not
only for viscous glide but also for Powcr4Law Creep. Specifically thc model allowed
us to arrive at the following conclusions:

i) For the firsl lime, a physical explan al ion aboul lhe maximum value for lhe
strain rate at the inflection point in sigmoidal creep curves was given.

ii) The experimenlal dala for ("i) and Pm in Germaninm and Cu-16al%Al allhe
inflection point of a sigmoidal creer transient were fully explained.
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iii) The total plastic deformation of the samples at the inflection point for Cu-
16at%AI, was also explained.

iv) Also our analysis allowed us to make a determination of the Taylor factor and
the mean self.energy per unit length of dislocation for Cu-16at%AI.

v) Finally our results indicate that the rigth determination oí the experimental
data ror the plastic deformation at the inflection point, gives an aditiona.l sup-
port to both the Fuchs and Ilschner equation, and aIso to the equation which de--
scribes the creation rate of mobile dislocation as given by Montemayor-Aldrete
el al.

At this stage, it is neccssary to emphasize that the application of the equation of
Fuchs and lIschner here developed is not the only one possible. Qne can, for instanre,
make a dynarruc determination of the drag coefficient for mobile dislocations, from
sigmoidal creep curves in Cu-16at%AI. Work along this line is in progress.
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Resumen. Las características principales de los transitorios sigmoida-
les son explicadas de una manera Física, no solo para termofluencia por
deslizamiento viscoso, sino también para la termofluencia que obedece
ley de potencias. También se describen de manera completa los datos
experimentales correspondientes al promedio del esfuerzo interno, (a¡).
y. a la densidad de dislocaciones móviles, Pm, para el punto de inflexión
de curvas sigmoidales en Germanio y Cu-16%atAI. Finalmente también
se describe correctamente la dependencia que con la temperatura y el
esfuerzo aplicado presenta la deformación plástica total al punto de
inflexión en curvas sigmoidales exhibidas por Cu-l1.5%at.AI.




