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Abstract. The main features of sigmoidal transients, not only for vis-
cous glide but also for Power-Law Creep are explained in a physical way.
Also the experimental data for the average internal stress, (a;), and the
mobile dislocation density, p,, at the inflection point of sigmoidal creep
curves for Germanium and Cu-16at%Al are fully described. Finally, the
stress and temperature dependence of the total plastic deformation at
the inflection point for sigmoidal creep curves in Cu-11.5at%Al are also
catered for.

PACS: 81.40.Lm

1. Introduction

Usually, for the theoretical analysis of plastic deformation during transient creep
stages, the acceleration of dislocations is taken into account. In fact, there are many
microscopic and phenomenological models which consider such acceleration in order
to explain some aspects of the plastic deformation process [1-16]. One of these
models as discused in Ref. [16], leads to the Fuchs and Ilschner equation [9], namely

d(é) dpm d(v)
Ew=01b((v)% +pm7), (1)

where (¢) is the strain rate, a is the average geometrical factor relating the tensile
deformation to the shear deformation for polycrystalline samples, b is the magnitude
of the Burgers’ vector, pm is the mobile dislocation density and, (v) is the average
glide velocity of mobile dislocations. This equation was obtained by developing some
elements of the Statistical Mechanics of Mobile Dislocations. The physical meaning
of Eq. (1) in this framework is related to the volumetric net force which describes
the dynamical behavior of the center of mass of the mobile dislocation system, (f).
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FIGURE 1. Types of curves in a tension creep test. The curve “N” is named a normal creep curve,
the second curve “§”, named a sigmoidal creep curve, and finally the curve “I”, named
inverted creep transient. The normal creep curve have three stages: I, primary transient
stage; I, the steady state stage where the strain rate, (€) is constant, and, the tertiary
creep stage, III, a situation where creation and evolution of cavities controll the sample
deformation giving place eventually to rupture.

Further, (f) is given by,
{f) = 5 (mpm(v)). (2)

A key element for this interpretation is that the volumetric linear momentum,
p, which appears in the Second Law of Newton, is related to the strain rate as given
by the Orowan equation [17]. That is

(€) = abpm(v). (3)

From our point of view, this statistical mechanical approach provides a more
intuitive insight to the physical content of the Orowan and the Fuchs and Ilschner
equations than the one previously considered.

Our main purpose in this paper is to apply the theoretical framework just refered
to in order to analyze some transient situations in dislocation creep. We will restrict
oruselves to the study of the inflection point in sigmoidal creep curves not only for
viscous glide but also for Power-Law Creep. The theoretical results will be used to
analyze some creep data in Ge [7] Cu-16at%Al [18].
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2. Theory

In this section, we develop a model to study the dynamical behavior of the mobile
dislocation system at the inflection point of sigmoidal creep curves [Fig. (1)]. Our
model considers that in the early primary transient stage of deformation the only
difference between viscous glide and Power-Law Creep is due to the dependence of
the glide velocity on the average effective stress, (a.). Here (a¢) is given by o — (o3)
with o the applied stress and (o;) the average of the internal stress, taken as usual

to be [19],

(0i) = apby/pm, (4)

where p is the shear modulus of the material.

Usually creep tests are carried out on annealed samples; then we can assume
that during the first minutes of the test, the annihilation events are negligible as
compared to the creation of dislocations. Therefore, considering that all the dislo-
cations are mobile, the change in p,, is due to the creation of new dislocations. And
according to Montemayor-Aldrete et al. [20] the creation rate of dislocations, ot is
given as,

4 ao(é)
Pm = g ! (5)
where i@ is the mean value for the self-energy of dislocation per unit length.

On the other hand, the mobile dislocations glide with an average glide veloc-
ity (v). In 1959, in their classical paper Johnston and Gilman (3] reported direct
measurements of single dislocation velocities as a function of applied stress, and
suggested a relationship between v and ¢™. In 1969, Li [6] gave a generalization for
such empirical relation taking into account the average internal stress for samples
macroscopically deformed. Generalizing the Li expression, we have that (v) is given
by

() = aBa((o0)) " ©)

where n is the stress exponent which can take a value 3 for viscous glide, or a value
5 for Power-Law Creep. Also B; and Bs are the mobility of dislocations for viscous
glide and Power-Law Creep, respectively.

The previous considerations and the use of Eq. (1) lead to the following result

X = amBa (o [ - 2on] . (1.a)

According to our theoretical scheme, with the use of Eqgs. (2) and (3), the
volumetric force acting on the mobile dislocation system, {f), is given by (f) =
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f‘;a‘%(é). Therefore, substituting Eq. (1.a) into this equation allows us to explain
and describe different types of primary transient stages (Fig. (1)), depending on the
initial value for (f) in a given sample.

In other words, different types of transients appear depending on the sign taken
by [o — (n/2)(auby/pm)]- In the following, a sigmoidal creep transient will be ana-
lyzed in terms of the sign and qualitative changes on the force acting on the system
of mobile dislocations. As it can be seen in Fig. (1), a sigmoidal transient in a creep
curve is composed of an inverted transient followed by a normal transient, with these
two curves linked by the inflection point. In our scheme, the sigmoidal starts with the
inverted transient characterized by a volumetric force greater than zero ((f) > 0). In
this stage (f) is decreasing its magnitude with time (because of the raising of py,),
and consequently the volumetric linear momentum of mobile dislocations increases
its magnitude (i.e. (€) increases its values) with time, but at a decreasing rate.
Eventually a zero value for (f) is reached. This is so because with deformation the
value for p;, grows up and for a given time the term [0 — (n/2)(apub\/pm)] takes
momentarily the value zero, before the change of sign on this term takes place. At
this precise moment we arrive at the inflection point of the curve, characterized also
by a maximum value for the strain rate. Beyond this point (€) necessarily diminishes
its value because now (f) has a negative sign, and also its magnitude begins to rise.
In other words the value for p = mp,, (v) diminishes continuously with time because
(f) is lower than zero during the normal creep transient.

As mentioned before, at the inflection point (f) = 0, and therefore for this
point (¢) has a maximum value. Physically at this point the net force acting on
the: mobile dislocation system is zero, and then we can expect that the dynamic
parameters of the system will be dynamical constants, provided that the applied
stress and temperature are constant during a creep test. Therefore based on the
above considerations it will be very interesting to find these dynamical constants.
Following this path, the only possibility to obtain (d/dt(¢));p. = 0 at the inflection
point according to Egs. (5) and (6) is,

e = (7)

n

where the subindex, i.p., indicates the inflection point. Also using Eqs. (4) and (7)
it is straigthforward to show that,

. 20 \*
(pm)ip. = (n;b) (8)

and with the aid of Eqgs. (3), (6), (7) and (8) an expression for (é) many also be

obtained, namely,
2 2 \* .
((U:‘))i.p. = (I - ;) (m) Bya". 9)
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Germanium Cu-16at%Al (723° K)
Parameter Exp. Theory Exp. Theory
({ei)/o)ip 2/3 2/3 0.37 0.40
Gt (%) 4 4 0.89 .

TaBLE I. The values for (o;) and pp, at the inflection point for sigmoidal creep curves in Ge and
Cu-16at%Al, according to [3] and [18] respectively; and the comparison of the values
for {(o;) and p,, with theoretical calculations. Note we take agg = 1/3 from [7]. *Fitted
value in order to obtain the value of o for the Cu-Al alloy ac,—a) = 0.45.

The value for the total plastic deformation of the sample at the inflection
(ep)ip. — €0 = (Aep)ip., (with ¢ the deformation at the starting time) can be
calculated considering that the value for (p,,)ip. is equal to the original dislocation
density pm(to) plus the one resulting from all the dislocations created between
the starting time and the inflection point, which we denote by Apy,, (i.e. Apy =
(Pm)ip.—pm(to)). Assuming as before that no annihilation events occur in this stage
of deformation then from Eqgs. (5) and (8): it follows that

(nic;b)z & Pm(io)]

and, if p(to) < (20/naub)® then, (A¢p)ip. can be evaluated approximately from
the following expression

oA @@ e

Equations (7), (8), (9) and (10) are the main results of this section. They will
be contrasted with experimental data in the next section.

u

(Aepip. =

ao

3. Comparsion with experimental results

In this section we compare the theoretical results with the experimental data for
Germanium given by Berner and Alexander [7], and also with the experimental data
for Cu-16at%Al due to Hasegawa, lkeuchi and Karashima [18].

For Germanium, which obeys viscous glide creep, one has n = 3. And using this
value in Eqs. (7) and (8), the obtained values for py, and (ay) at the inflection point
shown in Table I. The agreement between theory and experimental data is rather
good.

On the other hand, for the Cu-16at%Al alloy, which obeys a Power-Law Creep,
n = 3. For this case the values for {o,) /o calculated at the inflection point are shown
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Alloy o (MPa) | T(K) | (A¢)ip Exp. | (Aep)ip Theory | Sfespmsus
Cu-11.5at%Al 39.2 723 | (7.240.7)10~3 4x10°3 +2.8%
Cu-11.5at%Al 19.6 823 | (3.7+0.7)10~2 4.1 %1072 +10.8%
Cu-11.5at%Al 39.2 823 | (8.5+0.5)10"3 8.6 x 10~3 +1.2%
Cu-16at%Al 39.2 723 | (7.8+0.5)10-3 *

TaBLE II. The accumulated plastic deformation at the inflection point for sigmoidal creep curves,
(Aep)ip., for Cu-Al alloys, as given by Hasegawa et al. [18]; and its comparison with
theoretical results. The shear modulus for Cu-11.5at%Al, p11.541 = 5.25x 10* MPa, and
for Cu-16at%Al, piear = 5.16x 10 MPa were calculated using the Quéré expression [21]
with pcy and pa) as given by [22]. The temperature dependence on u was taked into
account following Staker and Holt [23]. *Fitted value in order to obtain a mean value
for the self-energy of dislocation per unit length, @, for Cu-16at%Al alloy, & = 5.52 ub?.
The same value for i was used in the calculations of (Aep)ip..

in Table I. The agreement between theoretical and experimental data for {o;) is also
satisfactory here. The theoretical value for p,, at the inflection point was fitted to
the experimental data in order to determine the value taken by « in this alloy. The
obtained value o = 0.45 will be used in further calculations.

Relative to the total plastic deformation of the sample at the inflection point
(A€p)ip. in Table II we present our calculations for two alloys and different test
conditions. In order to make the calculations for (A?,)i_p_ a value for the mean
total-energy of dislocation per unit length, @ = 5.52ub*, was used. This value was
obtained by fitting the theoretical expression for (Aep);p. with the experimental
data for Cu-16at%Al at o = 39.2 MPa and T = 723° K. The theoretical values for
(A€p)ip. are in good agreement with the experimental data, with a maximum error
of 11%. It is worth pointing out that in the case of Cul6at%Al, using the values of
&, and o from Table IT and the & value from Table I and considering values of p,, for
the annealed sample before deformation taken from Ref. [18] the validity of Eq. (10)
is confirmed in that pm(to) = 0.03(20/(5aub))? for the smallest stress, while for the
highest stress the factor 0.03 is replaced by 0.015. On the other hand, there are not
enough data (particularly the values of @) in the case of Ge to check the condition
leading to Eq. (10). For this reason no attempt was made to use Eq. (10) for Ge.

4. Conclusions

Our model explains in a physical way the main features of sigmoidal transients, not
only for viscous glide but also for Power-Law Creep. Specifically the model allowed
us to arrive at the following conclusions:

i) For the first time, a physical explanation about the maximum value for the
strain rate at the inflection point in sigmoidal creep curves was given.

ii) The experimental data for (#;) and pp, in Germanium and Cu-16at%Al at the
inflection point of a sigmoidal creep transient were fully explained.
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The total plastic deformation of the samples at the inflection point for Cu-
16at%Al, was also explained.

Also our analysis allowed us to make a determination of the Taylor factor and
the mean self-energy per unit length of dislocation for Cu-16at%Al.

Finally our results indicate that the rigth determination of the experimental
data for the plastic deformation at the inflection point, gives an aditional sup-
port to both the Fuchs and Ilschner equation, and also to the equation which de-
scribes the creation rate of mobile dislocation as given by Montemayor-Aldrete
et al.

At this stage, it is necessary to emphasize that the application of the equation of

Fuchs and Ilschner here developed is not the only one possible. One can, for instance,
make a dynamic determination of the drag coefficient for mobile dislocations, from
sigmoidal creep curves in Cu-16at%Al. Work along this line is in progress.

References

1. A. Granato and K. Ltcke, J. Appl. Phys. 27 (1956) 583.

2. A. Granato and. K. Ltcke, J. Appl. Phys. 2T (1956) 789.

3. W.G. Johnston and J.J. Gilman, J. Appl. Phys 30 (1959) 129.

4. F. Garofalo, “Resistance to Creep Deformation and Fracture in Metals and Alloys”,

o o

in: Properties of Crystalline Solids (1960). ASTM.STP No. 283.

J.C.M. Li, Acta Met. 11 (1963) 1269.

J.C.M. Li, Strength and Plasticity, Physics of, Ed. A.S. Argon, Cambridge, Mass.,
U.S.A., M.LLT. (1969) p. 245.

K. Berner and H. Alexander, Acta Met. 15 (1967) 933.

H. Alexander and P. Haasen, Sol. State Phys. 22 (1968) 27.

A. Fuchs and B. llschner, Acta Met. 17 (1969) 663.

. R. Gasca-Neri, C.N.Ahlquist and W.D. Nix, Acta Met. 18 (1970) 655.

. C.N. Ahlquist, R. Gasca-Neri and W.D. Nix, Acta Met. 18 (1970) 663.

. R. Gasca-Neri and W.D. Nix, Acta Met. 22 (1974) 257.

. U.F. Kocks, A.S. Argon and M.F. Ashby, Thermodynamics and Kinetics of Slip.

Pergamon Press. Ltd. (1975).

. R. Gémez-Ramirez, J. A. Montemayor-Aldrete and E. Carrillo, 4th. Int. Conf.

Strength of Metals and Alloys, Nancy France, Aug-Sept. (1976). Prepr. 2, 848.

. B. Derby and M.F. Ashby, Acta. Met. 35 (1987) 1349.

. J.A. Montemayor-Aldrete, G. Cocho and E. Orozco, Rev. Mez. Fis. 36 (1990) 100.
. E. Orowan, Z. Phys. 89 (1934) 634.

. T. Hasegawa, Y. Ikeuchi and S. Karashima, Met. Sci. J. 8 (1972) 78.

. 1.P. Poirier, Creep of Crystals, Cambridge Univ. Press (1985) 20; J.A. Montemayor-

Aldrete, J. Soullard, R. Gémez-Ramirez and A. Calles, Scripta. Met. 20 (1986) 1075.

. Y. Quéré, Défauts ponctuels dans les Métauz, Eds. Masson et Cie, Paris (1967).
. J.P. Hirth and J. Lothe, Theory of Dislocations, McGraw-Hill (1968).
. M.R. Staker and D.L. Holt. Acta Met. 20 (1972) 569.



414 J.A. Montemayor-Aldrete and E. Orozco

Resumen. Las caracteristicas principales de los transitorios sigmoida-
les son explicadas de una manera Fisica, no solo para termofluencia por
deslizamiento viscoso, sino también para la termofluencia que obedece
ley de potencias. También se describen de manera completa los datos
experimentales correspondientes al promedio del esfuerzo interno, {o),
Yy, a la densidad de dislocaciones méviles, p,,, para el punto de inflexién
de curvas sigmoidales en Germanio y Cu-16%atAl. Finalmente también
se describe correctamente la dependencia que con la temperatura y el
esfuerzo aplicado presenta la deformacién plastica total al punto de
inflexién en curvas sigmoidales exhibidas por Cu-11.5%at.Al.





