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Abstract. We consider a long range Ising Neural Network, where p
unbiased patterns have been stored according to Hebb’s rule and a a
modified version designed to reflect training. We perform T = 0 Mon-
teCarlo simulations in order to explore and compare the configuration
space in both cases, as a function of the ratio of the number of stored
patterns to the size of the system.
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1. Introduction

In the last few years, there has been a growing interest in studying Neural Networks
(NN) due to their features as associative fault-tolerant memories. These studies have
a double interest: on one side, to understand the mechanisms responsible for the
storage and retrieval of information in biological systems, and on the other, the
design of so called “Neural Computers” with learning and generalizing abilities. An
exposition of the basic ideas from the biological and computational points of view
has been given by Viana (1].

Physicists became interested in this field after the pioneering work of Hop-
field [2], who made a mathematical analogy between an asembly of neurons and
certain disordered magnetic materials called Spin Glasses (SG) [3]. This connection
allowed the use of the methods developed in Statistical Mechanics to study some
general properties of NN in the thermodynamic limit.

Spin Glass-like models for NN conceive neurons as two-state elements which
interact with other neurons via their synapsis {Ji;}, and whose dynamics, in the
absence of noise, is governed by an energy function given by

H= —%ZJ;‘;'S-'SJ', (1)

where S; denotes the state of the i-th neuron with S; = +1 (—1) for a firing
(quiescent) neuron; J;; = J;; represents the “synaptic strength” and takes account
of the interaction between neurons ¢ and j, by taking a positive (negative) value
for an excitatory (inhibitory) interaction. Due to the mixture of excitatory and
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inhibitory interactions, the global energy function possesses a high number of local
minima.

The retrieval capabilities of these NN are a natural consequence of their dynam-
ics, as they evolve spontaneously towards a minimum of the free energy which has a
large ‘overlap’ [4] with the initial state. Therefore the final (or equilibrium) state of
the network will depend on both the initial state and the specific set {J;;}. In this
way, learning is related to a suitable modification of the connection coefficients {.J;;}
which favours particular configurations by making them minima of the hamiltonian.
In biological systems it has been found that learning indeed changes the values of
the synaptic strengths [5].

One of the central problems in this field is to find a good prescription to de-
termine the value for the set {J;;}, such that the network presents the desired
behaviour. It is not easy (if at all possible) to find an analytic “recipe” to con-
struct an energy function whose only minima are those related to the states we
intend to store (“pure memories”); for it has been found that in this process other
minima appear, which have a negative influence on the capabilities of the system
to retrieve stored information. These “spurious” minima are related to mixtures of
“pure” memories and their number grows very rapidly with p, the number of stored
patterns. However, more relevant than the number of spurious minima is the total
percentage of configuration space occupied by their domains of attraction, as this
parameter will affect the retrieval capabilities of the network.

Many different “learning rules” have been proposed, among them, the simplest
and best studied is the Hebb rule. This learning prescription assumes that synaptic
strengths change in response to experience in a way proportional to the correlation
between the firing of the pre and post synaptic neurons. That is, J;; is given by the
sum of p random patterns {¢{#}, according to

Jij = %fo‘ff (2)
U

for i # j and J;; = 0; where £ with y = 1,...,p are “quenched” variables which
correspond to p stored patterns and can take the values 1, with equal probability.
This case has been studied analytically in the thermodynamic limit N — oo, for
both p finite and infinite [6,7], where N is the number of elements in the system.
This was done as a function of a load parameter defined as « = p/N, by taking
into account the cases @ = 0 and a # 0, respectively. The results obtained are
summarized below:

For e = 0, it was found [6] that , for 0 < T < 1, the energy ground states
are all related to pure memories; where T' = 1 is the critical level of noise below
which the ordered states appear (T is equivalent to temperature in the case of SG).
For 0.46 ST < 1 these “pure” or “Mattis states” are the only minima; however,
as the noise level decreases, spurious stable states show up. These spurious minima
correspond to a mixture of 2s + 1 pure memories [s = 1,2,...,(p — 1)/2], and
can be classified as symmetric and asymmetric states. The symmetric (asymmetric)



Spin glass model for a neural network: configuration space studies 417

spurious states are minima equidistant (non equidistant), according to the Hamming
distance (8], to the pure patterns they are related with. As T is lowered, the number
of such states increases until, for T — 0, it grows exponentially with p, and f; <
fa < ... < fast1, where fa,41 accounts for the free energy of any state composed
by the symmetric mixture of 2s + | pure memories. We intuitively expect that
states higher in free energy have smaller basins of attraction than those of lower
energy. However, to the authors’ knowledge, the percentage of the configuration
space occupied by their basins of attraction has not been evaluated.

For a finite ratio a, the situation is as follows [7]: As a grows, the sum of
the random overlaps among patterns becomes an important contribution to the
energy function, until it eventually unstabilizes the stored patterns and there is
a catastrophic and discontinuous breakdown for @ > 0.138. Beyond this point,
retrieval of stored patterns is no longer possible.

A modified Hebb rule in which it is possible to reflect some degree of training
has also been studied analytically [9]. According to these prescription the synaptic
strengths are given by

By == Y dutte 3)
I

where strictly different weights J,, were assigned to each of a finite number of stored
patterns (1 = J; > J2 > ... > J, > 0). Due to the lack of symmetry between
the stored patterns, this model presents the following properties: For T — 0 the
energy of the pure state related to J, is given by fr, = —.5J,. Therefore it is no
longer true that all the minima related to “pure memories” are global minima of
the energy. Moreover, some spurious states can have energies higher than those of
pure states. Another consequence is that symmetric spurious states do not exist.
Instead, all solutions involve an unequal overlap of an odd number of memories,
whose relative value depends on the noise level T'.

Although these analytical studies give us important information about the exis-
tence of spurious minima, they fail to provide any information about the relative size
of the different basins of attraction; this is due to the nonergodicity of NN. Therefore,
if we are interested in obtaining a more complete picture of the configuration space,
it is necessary to use other complementary techniques such as computer simulations.

In this paper we carry out T' = 0 Monte Carlo calculations for a long range Ising
Neural Network, composed by N neuron-like elements, whose dynamics is exactly
obeyed by Eq. (1). That is, we consider a network with no noise, and synaptic
interactions given in turn by Hebb’s rule [Eq. (2)] and the modified version [Eq. (3)].
We compare their configuration spaces in order to understand the role played by
spurious memories in both cases.

2. Procedure

We analyze numerically the relative importance of pure and spurious memories for
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both learning prescriptions, through the relative size of their domains of attraction.
This is given simply by the relative number of times the system retrieves such
states starting from configurations generated at random. We perform this analysis
as a function of a = p/N. In the thermodynamic limit, the case for finite p would
correspond to the limit o — 0.

We are interested in obtaining results valid for an ensemble of systems, each
consisting of N neuron-like components, where a finite number p of random unbiased
patterns have been learnt. Therefore, strictly speaking it would be necessary to
take ensemble averages over such systems. However, since this would entail the
use of huge amounts of computer time, we chose to perform the simulations in a
“representative” set with p embedded random patterns with zero overlap, that is
subjected to a global restriction given by:

1
ur =N Z ¢he] =8y forall pr (4)

This choice eliminates some of the effects produced by the finite size of the sam-
ple [10], i.e., it approximates a feature present in an infinite NN with a = 0, where
the overlaps among the stored patterns are of order zero.

In order to test how good this approximation is, we stored information according
to the Hebb rule [Eq. (2)], in 10 different samples (with no restrictions), for the values
p=3and N = 192. We performed T' = 0 Monte Carlo simulations and obtained an
average of the relative size of their basins of attraction (Table 1). Subsequently, we
made the same simulations on a sample constructed by following the same learning
prescription, with the same size and load information, but with stored patterns
which comply with the restriction given by Eq. (4) (Table 2). Comparison of results
shown in Tables 1 and 2, indicate that the use of this “representative” set gives
us results which approximate those obtained by taking averages over samples with
random overlaps, thus confirming this approximation as a suitable one.

Once we accepted the use of this “representative” set, the procedure was as
follows: We chose N, the total number of spins in the system and generated p
configurations in such a way that there were no correlations among them. Next,
we stored those patterns by fixing the set of values {J;} according to either the
original or modified versions of the Hebb prescription [Eqs. (2) and (3), respec-
tively]. Afterwards, we proceeded to explore the configuration space: We generated
a configuration at random updating the spins one at a time, by aligning them along
their internal fields. We did so, in random order, until the network settled into a
stable configuration for which Si(t + 1) = S;(t) for all :. We repeated this process
3000 times and calculated the percentage of times each of the stored patterns was
retrieved. At the same time, the percentage of times a spurious memory was obtained
was evaluated. The same procedure was followed for values of N ranging from 32
to 512 and p from 3 to 7.



Spin glass model for a neural network: configuration space studies 419

Basins of attraction size (% in configuration space)
Pattern Number 1 2 3 4 5 6 7 8 9 10 ()

1 26.50 25.90 25.36 26.76 26.46 27.36 25.60 27.03 2526 25.30 26.15
2 26.93 27.33 26.13 26.66 25.73 26.23 26.86 2560 26.23 24.83 26.25
3 26.23 25.16 26.30 27.36 28.36 25.83 27.30 24.23 26.86 27.73 26.54

(%) pure = 26.31% o = .7565

TaBLE 1. Results obtained in 10 different samples with embedded patterns with random overlaps
(N =192,p = 3). For a description see text.

Pattern Number Basins of attraction size
(% in configuration space)

. 26.43
2 26.77
3 25.70

(%) pure = 26.30% o = .445%

TABLE II. Results obtained in one sample with three stored patterns without overlaps (N = 192).
For a description see text.

3. Results

When interpreting our results it is important to keep in mind the following con-
siderations: we studied the behaviour of this network as a function of «, and these
results could, in principle, be extrapolated to the thermodynamic limit in both
cases & = 0 (p finite), and @ # 0 (p — oo). However, we expect our results to
be better suited to the first case since we considered nonoverlapping patterns in
our problem. For finite a, the sum of the random overlaps among patterns, which
we are neglecting, becomes an important contribution to the energy function. This
contribution is reflected in the discontinuous brakedown in the storage capabilities
for a > 0.138, as opposed to the gradual reduction on retrieval capabilities of a NN
with orthogonal stored patterns, which is given through the continuous decrease in
the size of the basins of attraction as o increases.

Figure 1 shows a typical run consisting of 3000 trials on a sample with N = 320
elements and p = 5 stored patterns, for Hebb (1.a), and modified Hebb (1.b) with
(Ju) = 0.7. The abscissas show, with open symbols, the relative number of times
each “pure memory” was retrieved, and full circles correspond to the percentage of
times any of the “spurious memories” was recalled. We can see from figure (1.b)
that, as expected, the higher the value of J, the better the retrievability of the
corresponding memory. It can also be appreciated that the relative importance of
spurious memories decreases in case (b) with respect to case (a). In other words,
if one introduces “training” into the model via the modified Hebb rule, one can
expect overall improvement in the retrieval capabilities of the network, since the
importance of some pure memories over others can be stressed and the percentage
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FiGURE 1. Typical run corresponding to 3000 trials (random initial configurations) with N = 320
and p = 5, showing the relative number of times each pure memory was retrieved (open
symbols). Full circles correspond to spurious memories. (a) Equal weights (J, = 1);
(b) different weights J,, such that (J,) = 0.7. In both cases, the symbols used are A
for Jy, [ for Ja, x for Js, an hexagon for J4 and o for Js.
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FIGURE 2. Percentage of times each memory was retrieved as a function of & = p/N for p =5
and values of N ranging from 32 to 512. Full circles correspond to spurious states. (a)
Equal weights (J, = 1); (b) different weights J,,, such that (J,} = 0.7

of configuration space occupied by spurious memories is significantly diminished.
Similar graphs for other values of N and p can be found elsewhere [11].

Figure 2 is also related to the case p = 5 but involves values of N ranging from
32 to 512. This figure shows, as a function of @ = p/N, the percentage of times
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FIGURE 3. Percentage retrieval of spurious memories as a function of a for p from 3 to 7, for both
equal and different weights. These two groups of cases are indicated as (pA) and (pB)
respectively.

each memory was retrieved, after 3000 runs; full circles corresponding to spurious
states. The cases with equal weights (J, = 1), and different weights Jy such that
(Ju) = 0.7, are shown in parts (a) and (b), respectively. Again we observe, for the
range of values of a considered, that the percentage of configuration space occupied
by spurious memories decreases in case (b) with respect to (a). In fact, we may
extrapolate from the figure to the @ = 0 limit to obtain approximate values of 32%
and 16% for cases (a) and (b), respectively, for this value of p.

This remark is more clearly seen in Fig. 3, where the percentage retrieval of
spurious memories is shown as a function of a, for both equal and different weights.
These two groups of cases are indicated as (pA) and (pB) respectively, for p = 3,
4, 5, 6 and 7. Here, it can be seen that the total “area” of the configuration space
occupied by the domains of attraction of spurious memories, is considerably higher
if all memories are stored with equal weight. Also, notice that as p increases, the
percentage of configuration space occupied by spurious memories tends to a limit
already for p = 7, for both Hebb and modified Hebb rules. By extrapolating to the
a = 0 limit, we obtain results similar to the values mentioned in the last paragraph.

From figures 1b and 2b, it can be observed that, for the modified Hebb’s rule,
memories with larger weights have a higher percentage of retrieval. This means
that by varying the specific values of J, it is possible to modulate the percentage
of times each memory is retrieved, i.e., it is possible to simulate training. This is
shown explicitly in figure 4, for the case p =7, N = 192 and (Js) =107,
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FIGURE 4. Typical graph showing the percentage retrieval of each memory as a function of its
weight J, for the case: p=7, N = 192 and (J,) = 0.7

4. Conclusions

We have carried out a comparative numerical study of the retrieval capabilities of a
NN using Hebb’s learning rule and a modified Hebb’s rule where different weights are
assigned to the stored patterns. Using a “representative” set with non-overlapping
stored patterns to reduce size effects, we performed T' = 0 Monte Carlo simulations
to evaluate the ‘area’ of configuration space occupied by the basins of attraction
of spurious memories, as a function of the loading parameter a. We find from our
results that by varying the specific values of the weights J, in the modified Hebb’s
rule it is indeed possible to simulate training. In addition, we consistently find
that using the modified Hebb’s prescription reduces significantly the percentage
of configuration space occupied by spurious memories, which translates into an
improvement in the retrieval capabilities of the network. Further studies, concerned
mainly with the evaluation of more realistic learning rules (from the biological point
of view) including the consideration of asymmetry in the synaptic strenghts and
dilution are currently underway.
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Resumen. Consideramos una red neuronal de Ising de largo alcance
en la cual han sido almacenados p patrones de acuerdo con la regla
de aprendizaje de Hebb y con una modificaciéon de ésta diseniada para
reflejar entrenamiento. Llevamos a cabo simulaciones de Monte Carlo a
T = 0, con objeto de explorar y comparar el espacio de configuraciones
de ambos modelos, como funcién de la relacién entre el nimero de
patrones almacenados y el tamafio del sistema.





