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Abstract. \Ve consider a. long range Ising Neural Network, wbere p
unbiased patterns have been stored according lo Hebb's rule and a a
modified versioll designed lo reftect training. We perform T = O Man-
teCarlo simulations in arder lo explore and compare the configuration
space in hoth cases, as a function of the ratio of the number of stored
patterns to the size of the system.

PACS: 87.30.G; 64.60.C: 75.10.11

1. Introduction

In the last few yeaes, therc has bccn a growing interest in studying Neural Networks
(NN) due to their features as associative fault-tolerant rnernories. Thcse studies have
a double interest: on one side, to understand the mcchanisms responsible for the
storage and retrieval of information in biological systems, and on the other, the
design of so called "Nemal Computers" with learning and generalizing abilities. An
exposition of the basic ideas from the biological and computational points of view
has been given by Viana [1].

Physicists becarne intereste<1 in this field after the pioneering work of Hop-
field [2], who rnade a mathematical analogy betwccn an asembly of neurons and
certain disordered magnetic materials caBed Spin Glasses (SG) [31. This connection
allowed the use of the methods develope<1in Statistical Mechanics to study sorne
general properties of NN in the thermodynamic limito

Spin Glass-like models for NN conceive neurons as two-state elements which
interact with other neurons via their synapsis {Jij}, and whose dynamics, in the
absence of noise, is governed by an energy function given by

(1 )

where Si denotes the state of the i-th neuron with Si = +1 (-1) for a firing
(quiescent) neuron; J1j = J]i represents the "synaptic strength" and takes account
of the interaction between nemons i and j, by taking a positive (negative) value
for an excitatory (inhibitory) interaction. Duc to the mixture of excitatory and
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inhibitory interactions, the global energy function possesses a high nurnbcr of local
filmma.

Tbe retrieval capabilitics of these NN are a natural consequence of their dynam.
ics, as they evolve spontaneously towards a rninimum of the free energy which has a
large 'overlap' [4]with the initial state. Thercfore the final (or equilibrium) statc of
tbe network will depend on both the initial state and the specific sel {JI}}' In this
way, learning is related to a suitable modification of the COnIH..'Ction coefficients {Ji)}
whicb favours particular configurations by making them minima of the hamiltonian.
In biological systerns it has bccn found that learning indccd changes the values oC
the 'yn'ptic strength, [51.

Qne oC the central problems in this field is lo find a good prescription to de-
termine the value for the sel {J¡j}, such that the network presents the desired
behaviour. It is not casy (if at aH possiblc) to find an analytic "rccipc" to coo-
struct an energy function whose only minima are those related to the states we
intend to store ("pure memories"); for it has been found that in this process other
minima appear, which have a negative influence on the capabilities of the systern
to retrieve stored information. These "spurious" minima are related to mixtures of
"'pure" memories and their number grows very rapidly with p, the number oC stored
patterns. However, more relevant than the number oC spurious minima is the total
pcrcentage of configuration space occupied by their dornains of attraction, as this
parameter will affect the retrieval capabilities oC the network.

Many different "learning rules" have been proposed, arnong thcm, the simplest
and best studied is the lIebb rule. This Icarning prescription assumcs that synaptic
strengths change in response to cxperience in a way proportional to the correlation
between the firing of the pre and post synaptic neurons. That is, Ji) is given by the
sum of p randorn patterns {e'}, according to

1",""Ji; = NL~' ~J

"
(2)

for i ::f j and J¡¡ = o; where ~rwith p = 1, ... , pare "quenched" variables which
correspond to p stored pattcrns and can take the values :i:l, with equal probability.
This case has been studied analytically in the thermodynamic limit N --. 00, for
both p ,finite and infinite [6,7], where N is the nurnber oC elernents in the systern.
This wa.s done as a function oC a load parameter defined as o = pI N, by taking
into aceount the cases o = O and o ::f O, respectively. The results obtained arc
surnmarized below:

For o = O, it was found [6J that , for O < T < 1, the energy ground states
are aH related. to pure memories; where T = 1 is the critical leve! of noise below
which tbe ordered states appear (T is <-'quivalcntto temperature in the case oCse).
For 0.46,$ T < 1 these "pure" or "'Mattis states" are the only minimaj however,
as the noise level decrea.scs, spurious stable statcs show up. These spurious minima
correspond lo • mixture oC 28 + 1 pure memor;e, [8 = 1,2, ... , (p - 1)/2), .nd
can be c1assifiedas syrnrnetric and asyrnrnetric states. The syrnrnetric (asymmetric)
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spurious states are minima equidistant (non equidistant), according to the Hamming
distance [8], to the pure patterns they are related with. As T is lowered, the number
of such states increases until, for T -+ O,it grows exponentially with p, and JI <
fa < ... < 12,+1, where 12'+1 accounts for the free energy of any state composed.
by the symrnetric mixture of 2s + 1 pure memories. We intuitive1y expect tha.t
states higher in free energy have sma.ller basins oí attraction than those oí lower
energy. However, to the authors' knowledge, the percentage of the configuration
space occupied by their basins of attraction has not been evaluated.

For a finite ratio o, the situation is as follows [7]: As o grows, the sum oí
the random overlaps among patterns becomes an important contribution to the
encrgy (unction, until it eventually unstabilizes the stored patterns and there is
a catastrophic and discontinuous breakdown for o 2: 0.138. Beyond this point,
retrieval oC stored patterns is no longer possible.

A rnodified I1ebb rule in whieh it is possible to reflect sorne degree of training
has also been studied analytically [9]. According to these prescription the synaptic
stren~ths are given by

(3)

where strictly different weights JIl were assigned to each oí a finite number oC stored
patteros (1 ; )¡ > 1, > ... > Jp > O). Due to the lack oC symmetry between
the stored patterns, this rnodel presents the following properties: For T -+ O the
energy of the pure state related to JIl is given by ¡JIl ;;;;-.5JIl" Thereíore it is no
longer true that aH the minima rclated to "pure memories" are global minima oí
the energy. Moreover, sorne spurious states can have energics higher than those of
pure states. Another consequence is that symmetric spurious states do not existo
Instead, aH solutions involve an uncqual overlap oí an odd number oí rnemories,
whose relative value depends on the noisc level T.

Although these analytical studies give us important inforrnation about the exis-
tence oí spurious minima, they íail to provide any inforrnation about the relative size
oí the different basins oí attractionj this is due to the nonergodicity oí NN. Therefore,
if we Clreinterested in obtaining a more complete picture oí the configuration space,
it is necessary to use other complementary techniques such as computer simulations.

In this paper we carry out T ;;;;OMonte Carlo calculations íor a long range Ising
Neural Network, composed by N neuron-like elements, whose dynamics is exactly
obeyed by Eq. (1). That is, we consider a network w¡th no noisc, and synaptic
interactions given in turo by lIebb's rule [Eq. (2)1 and the modified version [Eq. (3)].
\Ve compare their configuration spaces in order to understand the role played by
spurious memories in both cases.

2. Procedure

Wc analyze numerically the relativc importance oí pure and spurious memories for
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both learning prescriptions, through the relative size of their dornains of attraction.
This is given simply by the relalive nurnber of times lhe system retrieves such
states starting frorn configurations generated at random. \Ve perform this analysis
as a fundion of 0= plN. In the thermodynarnic limit, the case for finite p would
correspond to the Iimil Q -t O.

We are interested in obtaining rL'Sultsvalid for an ensemble of syslems, each
consisting of N neuron-like components, where a finite number p of random unbiased
patterns have been learnt. Therefore, strictly speaking it would be necessary to
take ensemble averages over such systems. However, since this would entail the
use of huge amounts of computer time, we chose to perforrn the sirnulalions in a
Iolrepresentative" set with p ernbedded random patterns with zero overIap, that is
subjected to a global reslriction given by:

for aH liT (4 )

This choice eliminates sorne of the effects produced by lhe finile size of the sarn.
pIe [10], i.e., il approximates a feature present in an infinile NN with a = O, where
the overlaps arnong the slored patlcrns are of order zero.

In order to test how good this approximation is, we sto red information according
to the Hebb rule (Eq. (2)], in 10 dilferent samples (with no restrictions), for the values
p = 3 and N = 192. We perforrned T = O r-.lonteCarlo simuIations and obtained an
average of the relative sire of their basins of attraction (Table 1). Subsequently, we
ma.de the same simulations on a samplc constructcd by following the sarne learning
prescription, with the same size and load inforrnation, but with stored patterns
which comply with the restriction given by Eq. (4) (Table 2). Comparison of results
shown in Tables 1 and 2, indicate that the use of this "representative" set gives
us results which approxirnate those obtained by taking averages over samples with
random overlaps, thus confirming this approximation as a suitable onc.

Once we accepted the use of this "represenlative" set, the procedure was as
follows: We chose N, the total number of spins in lhe system and generatecl p
configuralions in such a way that there were no correlalions arnong them. Next,
we stored those patterns by fixing the set of valucs {Ji]} according to either the
original or modified versions of the lIebb prescription [Eqs. (2) and (3), respec-
tively]. Afterwards, we procecded to explore the configuralion space: \Ve generated
a configuration at randorn updating the sp,insone at a time, by aligning them along
their internal fields. We did so, in random order, until the network settlecl into a
stable configuration foc which 5¡(t + 1) = 5,(t) for aH i. \Ve repeated this process
3000 times and calculated the percenlage of times each of the stored paltcrns was
retrieved. At the same time, the percenlage of times a spurious rnemory was obtained
was evaluated. The same procedure was followed for values oí N ranging from 32
to 512 and p from 3 to 7.
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Sasins oC a.ttra.ction size (% in configura.tion spa.ce)
Pattern Number 1 2 3 4 5 6 7 8 9 10 ( )

1 26.50 25.90 25.36 26.76 26.46 27.36 25.60 27.03 25.26 25.30 26.15
2 26.93 2733 26.13 26.66 25.73 26.23 26.86 25.60 26.23 24.83 26.25
3 26.23 25.16 26.30 27.36 28.36 25.83 27.30 24.23 26.86 27.73 26.54 J(%) puro = 26.31% q = .7565

TARLE 1. Results obtained in 10 different samples with embedded patterns with random overlaps
(N = 192,p = 3). ror a description see texto

Pattern Number

1
2

3

(%) puro = 26.30% q = .445%

Sasins oC attraction size
(% in configuration spa.ce)

26.43
26.77
25.70

TABLE 11. Results obtained in one sample with three stored patterns without overlaps (N = 192).
ror a description see texto

3. Re,ult,

\Vhen interpreting our results it is important to keep in mind the following con-
siderations: we studied the behaviour oC this network as a function of a, and these
results could, in principie, be extrapolated to the thermodynamic limit in both
cases a = O (p finite), and O' #- O (p -+ 00). 1I0wever, we expect our results to
be better suited to the first case sinee we considered nonoverlapping patterns in
our problem. For finite a, the sum of the random overlaps among patterns, which
we are neglecting, becomes an important eontribution to the energy fundion. This
eontribution is reflected in the discontinuous brakedown in the storage capabilities
for a > 0.138, as opposcd to the gradual reduetion on retrieval capabilities oC a NN
with orthogonal stored patterns, which is given through the continuous dcerease in
the size oC the basins oC attraction as O' inereases.

Figure 1 shows a typieal run consisting oC 3000 trials on a sample with N = 320
e1ement, and p = 5 ,tored pattern" for lIebb (l.a), and modified Hebb (l.b) witb
(J¡J) = 0.7. The abscissas show, with open symbols, the relative number of times
eaeh "pure memory" was retrieved, and full cjreles eorrespond to the pereentage oC
times any oC the "spurious memories" was recalled. We can see from figure (l.b)
that, as expected, the higher the value oC J¡J the better the retrjevability oí the
corresponding memory. It can also be appreciated that the relative importance oí
spurious memories dcereases in case (b) with rcspect to case (a). In other words,
iCone introduces "training" into the rnodel via the rnodified Hebb rule, one can
expect overall improvement in the retrieval capabilities oí the network, since the
importance oC sorne pure memories over others can be stressed and the percentage
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FIGURE 1. Typical run corresponding to 3000 trials (random ¡nitial configurations) with N = 320
&Ildp = S, showing the relative number of times each pure memor)' was retrieved (open
symbols). FUll cirdes correspond lo spurious memories. (a) Equal weights (JI' = 1);
(b) different weights JI" such tha.t (JI') = 0.7. In both cases, the symbols used are II
for JI, O for h, x for h, a.n hexagon for J. and o for J~.
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FlGURE 2. Percentage of times each memory was retrieved as a function of 0= p/N for p = 5
and va.lues of N ranging from 32 to 512. Full circles correspond to spurious 8tates. (a)
Equll1 weigh1.8 (JI' = 1); (b) ditrerent weights JI" 8uch that (JI') = 0.7

oí configura.tion spa.ce occupied by spurious memories is significantly diminished.
Similar graphs for olher value; of N and p can be found elsewhere [11].

Figure 2 is also related to the case p ;;;;5 but involves values of N ranging from
3210 512. This figure shows, as a. function of o = p/N, the percenlage of times
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FIGURE 3. Percentage retrieval oC spurious memories as a Cundion oC Ct Corp from 3 lo 7, Cor both
equal and different weights. These two groups oC cases are indicated as (pA) and (pB)
respectively.

each memory was retrieved, aíter 3000 runs; full cireles corresponding to spurious
states. The cases with equal weights (Jp ::::::;1), and Jifferent weights Jp such that
(Jp) = 0.7, are shown in parts (a) and (b), rcspectivcly. Again we observe, for the
range of values oí a considered, that the perceotage of configuration spacc occupied
by spurious memorics decrcases io case (b) with respect to (a). lo íact, we may
extrapolate from the figure to the a ::::::;O ¡¡mit to obtain approximate values oí 32%
and 16% for cases (a) and (b), respectively, for this value of p.

This remark is more elearly seeo io Fig. 3, where the perceotage retrieval oí
spurious mcmories is shown as a íunction oí a, for both equal and different weights.
These two groups of cases are indicated as (pA) and (pB) respectively, for p = 3,
4,5,6 and 7. Bere, it can be secn that the total "area" oí the configuration space
occupied by the domaios of attraction oí spurious memories, is coosiderably higher
ií aH memories are stored with equal weight. Also, notice that as p increases, the
percentage of configuration space occupied by spurious memories teods to a limit
already for p = 7, for both I1ebb and modified lIebb rules. By extrapolating to the
Q = Olimit, we obtain rcsults similar to the values mentiooeJ in the last paragraph.

Froro figures lb and 2b, it can be obscrved that, for the modified Hebb's rule,
memories with larger weights have a higher pcrcentage of retrieval. This means
that by varying the specific values of Jp it is possible to modulate the percentage
oí times each memory is retrieved, i.c., it is possible to simulate training. This is
shown explicitly in figure 4, for the case p = 7, N = 192 and (J.) = 0.7.
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FIGURE 4. TypicaJgraph showingthe percentage retrieval of each memory as a function oC its
weightJI' for the case:p = 7, N = 192 and (JI') = 0.7

4. Conclusions

Wc have carried out a comparative numcrica.1 sludy oC lhe retrieval capabililies of a
NNusing Hebb's learning rule and a modified Hebb's rule where different weighls are
assi,gned lo the slored patterns. Using a "'representalive" set, with non-overlapping
slored pallerns lo reduce size effects, we performed T = OMonte Carla simulalions
lo evaluate the 'area' of configuration space occupied by lhe basins of allraction
oC spurious memories, as a fundion oC the loading parameter Q. We find from our
results that by varying the specific values of the weights J. in the modified Hebb's
rule il is indeed possible to simulale lraining. In addition, we consistently find
thal using the modified Hebb's prescriplion reduces sigoificantly the percentage
oC configuration space occupied by spurious memories, which translates iota ao
improvement in the retrieval capabilities of the network. Further studies, concerned
ma.ioly with the evaluation oC more realistic Icarning rules (from the biological point
of view) including the consideratioo of asymmctry in the synaptic strenghts and
dilulioo are curreotly underway.
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Resumen. Consideramos una red neuronal de Ising de largo alcance
en la cual han sido almacenados p patrones de acuerdo con la regla
de aprendizaje de Hebb y con una modificación de ésta diseñada para
reflejar entrenamiento. Llevarnos a cabo simulaciones de Monte Carlo a
T = 0, con objeto de explorar y comparar el espacio de configuraciones
de ambos modelos, como función de la relación entre el número de
pa.trones almacenados y el tamaño del sistema.




