Investigacidn Revista Mezicana de Fisica 36 No. 3(1990) {24430

Entropy production by neutrinos
in the early universe

M.A. Herrera and S. Hacyan

Instituto de Astronomia,
Universidad Nacional Auténoma de Mézico
Apdo. postal 70-364. Mézico, D.F. Mézico
(Recibido el 9 de enero de 1990; aceptado el 4 de abril de 1990)

Abstract. In this paper we calculate the bulk viscosity of a mixture
of electrons, positrons, neutrinos and antineutrinos, at temperatures
and densities corresponding to those of the early universe, using a fully
relativistic formalism and the scattering cross sections of the Weinberg-
Salam theory. We also calculate the entropy generated by the expansion
of the Universe in these early stages and show that it is quite negligible
in comparison with the total entropy of the Universe.
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1. Introduction

The standard Big Bang theory has been the canonical description of the early
universe for many years. One of the main assumptions of this model is that the
entropy per baryon was approximately conserved throughout the evolution [1,2]
(at least after a possible period of inflation). However, this assumption is only an
approximation, since processes out of equilibrium did necessarily occur during the
expansion. In particular, it is a well known fact that a mixture of several components
can be driven out of thermodynamic equilibrium by an adiabatic expansion if the
adiabatic exponents of the components are different, since then each component
follows a different cooling law. This was certainly the case in the early universe,
because the adiabatic exponents of hadrons, leptons, neutrinos and photons were
different at temperatures of the order of or below the corresponding rest mass energy
of the particles. It can be shown, however, that thermal equilibrium was restored
with a timescale of a few orders of magnitude shorter than the expansion time of the
universe, and that, therefore, it is an excellent approximation to assume that the
early universe evolved along equilibrium stages [3]. However, a return to thermal
-equilibrium necessarily generates a certain amount of entropy; therefore it must be
shown that this amount is negligible when compared to the entropy of the universe,
since otherwise the assumption of constant entropy would not be valid. This problem
was studied for the particular case of a mixture of electrons, positrons and radiation,
and it was shown that the generated entropy is indeed negligible for a universe with
such a composition [3] (hereafter, paper II).
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At temperatures around 10'! K, however, neutrinos and antineutrinos were as
abundant as electrons and positrons, and their contribution to the generation of
entropy should also be considered. However, the bulk viscosity and, therefore, the
rate of entropy generation, depend on the departure of the actual equation of state of
the system from the simple ultrarelativistic equation pressure = % (energy density)
(see Eq. 5 of paper II) and, therefore, a simple calculation of this effect is not
possible. In the present paper, we use the wholly relativistic treatment developed in
Ref. [4] (hereafter, paper I) to a calculate the amount of entropy generated during
the expansion of a mixture of electrons, positrons, neutrinos and antineutrinos. In
Sec. 2, we present the relevant aspects and formulae of the theory and in Sec. 3 we
give our results and conclusions.

2. Theory

a) Description of the system

Consider a mixture of electrons, positrons, neutrinos and antineutrinos, and assume
that the time evolution of each type of particle can be described by a Lorentz
invariant thermal distribution function f(z;,p;,T;), where the subscript i (i =
1,...,4) refers to the type of particle, z is the position in Minkowski space, p
is the four-momentum and T} is the (time dependent) temperature of particles .
The thermodynamic state of the system is described by its total energy-momentum
tensor

T = YT, 1)

where the energy momentum tensor of particles i is

v 1€
T = (%5) [arint s 2)

where g; is the occupation number in phase space and dI'; the invariant momentum
space element of particles i. The time evolution of the system is given by Boltz-
mann’s relativistic equation (see Ref. [5])

B fiw=_) G (3)
i

where the comma represents the partial derivative with respect to z and C; are the
collision terms (for more details and explicit expressions of the collision terms, see
paper I).

We now make the following simplifying assumptions (for a physical justification
see Sec. 2 of paper II):
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i) The number densities of electrons and positrons are equal, which implies that
their chemical potentials are both equal to zero.

ii) The number densities of neutrinos and antineutrinos are equal, which also im-
plies that their chemical potentials are both equal to zero.

iti) The electron and positron temperatures are equal.
iv) The neutrino and antineutrino temperatures are also equal.

It is not difficult to see that under these conditions, the net energy gain per unit
time of electrons and positrons must be equal. Indeed, consider first the electron
gas; due to assumption iii), the only interactions that may result in a net energy
transfer to (or from) the gas are: e+e* - v+, e+v v etvandetv — et
Analogously, the energy gains (or losses) of the positron gas will result from the
interactions e + et — v+, et +v — et + v and et + 7 — et + b. It is evident
from assumption i) that the inelastic collisions ee™ will result in equal energy losses
on both gases. In addition, the energy gain of the electrons through ev collisions will
be equal to the energy gain of the positrons by et collisions, since the interactions
are CP invariant, and the same holds for e7 and et*v interactions. It follows that
the total energy gains of the electron gas and of the positron gas will be always
equal. And since the heat capacities of the two gases are equal (by assumption 1)),
the temperature changes induced in both gases by these energy gains will be also
equal, i.e. the electron gas and the positron gas will maintain equal temperatures
throughout the evolution of the system toward thermal equilibrium. It is easy to
see that the same result holds for the neutrinos and the antineutrinos (although
their temperatures are different from that of the electrons and positrons). It thus
follows that the whole system behaves like a binary mixture, one component being
the electron-positron gas and the other the neutrino-antineutrino gas.

b) Entropy generation

The entropy generated during the expansion of a system is usually written in terms
of a “bulk viscosity” ( as

nkgTs = ((n/n)?, (4)

where n is the (constant) baryon density, kp is Boltzmann’s constant, s is the
.entropy density and the dot represents the derivative along the four-velocity U* (the
total time derivative): - = U#8/dz*. In our case, the rate of entropy production $
should be compared with the total entropy of the system which is given by the first
law of thermodynamics (with the chemical potentials equal to zero) as:

nkgTs = P+ E, (5)
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where P and E are the total pressure and energy density of the system. Therefore

. % 2
4 ey __4 (6)
s \n/) (P+E)
Now, as we have shown, the system under consideration behaves like an expanding
binary mixture, and the bulk viscosity of such a system was calculated in paper I:

-t (82) (22

where cp~! = ¢;7! + ¢! is the “reduced” heat capacity per unit volume and at
constant volume of the system, 7 = (AT/AT) is the relaxation time toward thermal
equilibrium of the mixture, and P; and E; (i = 1,2) are the partial pressures and
the energy densities respectively of particles i (in this formulae the subscripts 1 and
2 refer to the two components of the binary mixture and should not be confused
with the subscripts 1,...,4 that we have been using for the four components of the
system; P, for example, will be in our case the combined pressure of electrons and
positrons, i.e., the partial pressure of “component 17). We will now use Eq. (7) to
calculate the fractional amount of entropy produced by the interactions between
neutrinos, antineutrinos, electrons and positrons during the early expansion of the
universe.

1

¢) Calculations

The relaxation time 7 of a mixture of electrons, positrons, neutrinos and antineu-
trinos has been calculated, as a function of the temperature, for the particular
case of a small temperature difference between the electron-positron gas and the
neutrino-antineutrino gas (paper II). (It should be stressed that the exact cross
sections given by the Weinberg-Salam theory, including both charged and neutral
currents, were used in this calculation). To make use of this result, we adopt in the
following the same assumption, i.e., we take the temperature of the electron-positron
gas to be T' and the temperature of the neutrino-antineutrino gas to be T + AT
with AT/T < 1. The “reduced” heat capacity cr may be calculated by noting that
the value of the heat capacity of “component 1” will be twice that of the electron
gas, ¢, and that of “component 2” will be twice the heat capacity ¢, of the neutrino
gas. These, in turn, are given by [Eqgs. (15) and (16) of paper III]:

_ mcy 3 5 i sinh2¢cosh3¢
b= 4 (T) k¢ o cosh(¢cosh ) + 1d¢’ @®
3
ev = 8ar (55) kp((4)$7, (9)

where we have introduced the “temperature parameter” ¢ = mc?/kgT, and where
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m is the mass of the electron, ¢ is the velocity of light, k is Planck’s constant, and
¢(4) = 1.0823 is Riemann’s zeta function of argument 4.

Analogously, the pressures and the energy densities of the “two components”
will be twice the pressure and the energy density of the electron gas and of the
neutrino gas, respectively. We thus have

P=P+P,=2p +2p (10)
and

E = Ey + Ey = 2¢; + 2¢3. (11)
These factors of two, however, are not important for our purposes since we are only
interested in the derivatives (8P;/@E;). The value of this derivative for the electron

gas follows directly from the explicit expressions for its pressure and energy density
(see, for instance, [7]), which may be written, for the case of zero chemical potential,

as
dpe\ A
(Z) -3 (12)
where
2 sinh* ¢
=i —mE R
- fg exp(pcosh ¢) + 1 ¢ fhal
and

2 2
B = / sinh” ¢ cosh” ¢ _sinh” gcosh § (14)

exp(¢cosh @) + 1
As for the neutrinos, we obviously have

apy 1
de, 3 (18)

Our calculation is complete with the above equations.

3. Results and conclusions

Our results for the bulk viscosity ¢ and the fractional entropy generation $/s are
shown in Figs. 1 and 2 for values of the temperature parameter ¢ between .01 and
0.2, which correspond to “cosmic” times between 0.00029 and 0.114 seconds in the
standard Einstein-de Sitter model of the early universe (with 3 families of neutrinos
—note that x and 7 neutrinos do not contribute to the generation of entropy, because
they had already decoupled at the considered epoch). The calculation cannot be
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FIGURE 1. Bulk viscosity ¢ as a function of the temperature parameter ¢ for an expanding mixture
of electrons, positrons, neutrinos and antineutrinos.
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FIGURE 2. Fractional amount of entropy generated per unit time s/s during the expansion of
a mixture of electrons, positrons, neutrinos and antineutrinos, as a function of the
temperature parameter ¢.

extended to lower temperatures (longer times) because the neutrinos decoupled
from matter at ¢ = 0.25 (see paper II).

It is readily seen in Fig. 1 that the bulk viscosity follows the law { = 1.1 x 10%4¢°
poise with an excellent approximation.

Finally, we see in Fig. 2 that the amount of entropy generated by the interactions
between neutrinos, electrons and their antiparticles during the expansion was indeed
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negligible up to the moment of decoupling. Since the amount of entropy generated
by the interactions between electrons, positrons and radiation was also negligible
(see paper I), we conclude that the assumption of constant entropy during the early
expansion phases of the universe is an excellent approximation.
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Resumen. En este articulo calculamos la viscosidad volumétrica de
una mezcla de electrones, positrones, neutrinos y antineutrinos, a tem-
peraturas y densidades correspondientes a las del Universo Temprano,
usando un formalismo relativista y las secciones de dispersion de la
teoria de Weinberg-Salam. También calculamos la entropia generalizada
por la expansién del Universo en las primeras etapas y demostramos que
es despreciable en comparacién con la entropia total del Universo.





