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The n—dimensional classical Kepler's problem
“without integration”
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Abstract. The classical Kepler’s problem is generalized to n—dimen-
sional Euclidean or pseudo-Euclidean (real or complex) space and a
simple solution of this generalization is given for any n > 2.

PACS: 03.20.+i

1. Introduction

From the old works of Laplace, Runge and Lenz we know that the classical (i.e.,
3-dimensional, Newtonian) Kepler’s problem can be solved almost without integra-
tion [1,2].
The aim of this note is:
i) to generalize the solution on n-dimensional (n > 2) Euclidean or pseudo-
Euclidean space.
17) to show that the formal complex extension of the problem also holds.
The generalization of the Kepler problem n—dimensional Euclidean space with n >
2 is self-evident. The cases of pseudo-Euclidean space or complex space are less
obvious but as we show in our note they can be also considered, and the solution
of the Kepler’s problem in these cases can be found in the analogous way as for
an Euclidean space (although some aspects of the complex case require further
analysis).
We hope that our paper elucidate the role of constants of motion and especially
the role of the Laplace-Runge-Lenz vector in the Kepler’s problem [1-4].

2. Solution of the problem

Let z% be coordinates, p,—the canonically conjugated linear momentum; a,b,...
run through 1,2,...,n; the summational convention will apply. Let g,5 be a non-
singular, constant metric tensor with the inverse ¢, The latin indices will be ma-
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nipulated by this metric in the usual manner. We intend to study the motion of a
mechanical system of the Hamiltonian

H i= élzpap“ - A (:ca:r")’%, o1y

where p and A are some fixed constants. In other words, we would like to find the
solutions of the following differential equations

d , 0H 1, d oH

Ez_ap,._,up’ c_i?pa=_3_q“_

(Remark: In the real case we assume z,2% > 0).
We will now review the basic first integrals of Eqs. (2). First of all we have the
energy integral

dOH d
E_(]ﬁEH_O:-H_const. (3)

Then defining the angular momentum tensor
Jab = PaTh — PbZa, (4)

one has

d
EJM = 0= J,;3 = const. (5)

The next basic integral is the Laplace-Runge-Lenz vector [1-4]

1

Ly := Jypp® + At - (zmp2*) 724 (6)
One easily shows that with (2) assumed

d
EL“ =0 =L, =cotist. (7)

Finally it is convenient to introduce the vector
IR aaLb, K, = const. (8)
We can find some important relations between the integrals discussed above,

LoL® = (Ap)* +2uHJ?, (9a)
KsK*=J°L, I*, (9b)
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LK =0, (9¢)
KoLy — LaKy = LcLJgp, (94)

where J? := %Jar,J“b.

Now the following relations
ZLPZ —Mr7! = H = const.; p’r? — s* = J% = const., (10)
W
where

P2 = pap”, i = - 8 1= paz®, (11)

imply that the scalars (11) can be always parameterized (along the trajectory) by
a single parameter.

Using the explicit form of Jgp in the definitions of Le, K, (see (6), (8)) we
rewrite these integrals in the form

La = (=" + Mur™")ze + aps, (e}
Ko = (=Mar~9)z, + (Aur — J)p,. (12b)

Treating (12a,b) as a pair of linear algebraic equations on x4, p, we find their
determinant to be

(=% + Aur™ ) - pr = JB) — s (=dpr7ls) = (Ap)? + 2uHJ? = L,L°.  (13)
[The first equality follows from Eq. (10) and the second from Eq. (9a)].

Thus a special situation arises when L, L® # 0. In this case (12a, b) lead to the
formulae

1 9 .
Tag = LbLb ’ [(A,ur —J7)La - S[\“J 2 (143)
. -1 2 =1\ yr
Pa = m * [(/\[17‘ S)La + (‘P o /\[”" )I‘a] y (14b)

Due to the relations (10), the formulae (14a, b) represent already a trajectory in
the phase space: Ly, K are constant vectors and the coefficients in (14a, b) depend
on one variable parameter.

We explore our solution in the case where the initial conditions are such that
not only L,L* # 0 but also J? # 0. (This case can be achieved if and only if n > 2).
Then we define the constant vectors

1 2

€q .= "(Lb[xb}-%Lﬂ_a €q '= 7']—1(["?[‘}))-%}\,“' (15)
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From (9a, b, ¢) it follows that these dimensionless vectors satisfy the conditions

g8t =1=2,% é,8=0. (16)
In terms of e],, éa (14a,b) read
ZTa = X164 + Xaéa, (17a)
Pn=P1f31u+P262a, (17b)
where
Xyi=(LaL*)7H- (2 = dur),  Xpi=(LoL®)"1Js, (18a)
Py 1= —(LaL®) "t Apr~ls, Py = (LaL®)"1J - (p* — Aur~Y). (18b)

Now applying (9a) and (10) one finds that the pairs X;, X; and Py, P fulfil
the following quadratic relations

2H\? 1 11?2 2uH
I B ayg| 8P sl
( A) [Xl P (L,L)] 7 X?=1, (19a)
2 2
1 1 A
Pry By ——(LaER | = 22 . 19b
1+[2 J( )] (J) (19b)

Discussing these relations it is convenient to work with the familiar parame-

ters [1,3]

A J? ]I 1 1
a:=——, €:= |14+ 2uH——| =— (L,L"%)Z,
20 [ PG| = el
J2
p T
P =a(l —¢ )/\ﬂ' (20)

(21a)

Pf+(Pg-#)2: ()‘—;‘)2 (215)
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The formulae (21a, b) suggest a specific parametrization

X1 + €a = acosu, Xg:a-(l—cz)%sinu (22a)
A A
P = —’\7" sin ¢, Py # - 7‘“cos¢ (22b)

with u (the “eccentric anomaly”) and ¢ (the “true anomaly”) being new parameters.
Then from (17a,b), (18a,b), (20) and (22a) one finds

r=a-(l-ecosu), s-—-—c-(Aua)ésinu, (23)
and
Ty =@ - [(cosu —€)eg 4 (1- 52)11’ sin uezr.] . (24a)
Ap 3 sinu (l—cz)icosuz
Pe= (_a—) . [_1—ecosuen+ 1—e€cosu cu]. (288}

Similarly, using (17a,b), (18a,b), (20) and (22b) we have

!

RN R B
r_-1+ecosq5’ s=c-(wup)) 1+ ecosd (28
and
el cos¢ sing
T =P [1+6cos¢ea 1+ecos¢ea ! )
1
A\ 2
p,.:(p—‘,‘) -[~sin¢é3+(cos¢+c)ga]. (26b)

Of course the coefficients at €4, ¢, in (24a,b) and (26a,b) must agree what leads
to four relations between u and ¢. All these relations are equivalent to the one which
follows by comparing expressions for r through u or ¢ (see (23) and (25))

1l —e€co Lo (27)
—€COSU = —————
1+ e€cosg

This on its turn can be written more symmetrically in the form

(14 c)'lf"ta.n %‘ =(1- e)'i' tan g (28)
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It remains to determine the dependence of u (or ¢) on t. Substituting (24a, b)
into %xa = %pa and comparing coefficients at ¢4 one obtains

1
du AN\? 1
dt (F) 1—¢ecosu’ ()

which implies the Kepler’s equation

A \?
( ) t=u—e¢sinu (30)

pa®
(the integration constant is so selected that u =0 =t = 0).
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Resumen. El problema clisico de Kepler se generaliza a un espacio
euclideano o pseudo-euclideano de n dimensiones (real o complejo) y se
aporta una solucién simple de esta generalizacién para cualquier n > 2.





