The n-dimensional classical Kepler's problem "without integration"

J.F. Plebański* and M. Przanowski**
Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto
Politécnico Nacional, Apartado postal 14-740, 07000 México, D.F., México
(Recibido el 9 de octubre de 1989; aceptado el 8 de febrero de 1990)

Abstract

The classical Kepler's problem is generalized to n-dimensional Euclidean or pseudo-Euclidean (real or complex) space and a simple solution of this generalization is given for any $n \geq 2$.

PACS: 03.20.+i

1. Introduction

From the old works of Laplace, Runge and Lenz we know that the classical (i.e., 3-dimensional, Newtonian) Kepler's problem can be solved almost without integration [1,2].

The aim of this note is:
i) to generalize the solution on n-dimensional ($n \geq 2$) Euclidean or pseudoEuclidean space.
ii) to show that the formal complex extension of the problem also holds.

The generalization of the Kepler problem n-dimensional Euclidean space with $n \geq$ 2 is self-evident. The cases of pseudo-Euclidean space or complex space are less obvious but as we show in our note they can be also considered, and the solution of the Kepler's problem in these cases can be found in the analogous way as for an Euclidean space (although some aspects of the complex case require further analysis).

We hope that our paper elucidate the role of constants of motion and especially the role of the Laplace-Runge-Lenz vector in the Kepler's problem [1-4].

2. Solution of the problem

Let x^{a} be coordinates, p_{a}-the canonically conjugated linear momentum; a, b, \ldots run through $1,2, \ldots, n$; the summational convention will apply. Let $g_{a b}$ be a nonsingular, constant metric tensor with the inverse $g^{a b}$. The latin indices will be ma-

[^0]nipulated by this metric in the usual manner. We intend to study the motion of a mechanical system of the Hamiltonian
\[

$$
\begin{equation*}
H:=\frac{1}{2 \mu} p_{a} p^{a}-\lambda \cdot\left(x_{a} x^{a}\right)^{-\frac{1}{2}}, \tag{1}
\end{equation*}
$$

\]

where μ and λ are some fixed constants. In other words, we would like to find the solutions of the following differential equations

$$
\begin{equation*}
\frac{d}{d t} x^{a}=\frac{\partial H}{\partial p_{a}}=\frac{1}{\mu} p^{a} ; \quad \frac{d}{d t} p_{a}=-\frac{\partial H}{\partial q^{a}}=-\lambda \cdot\left(x_{b} x^{b}\right)^{-\frac{3}{2}} x_{a} . \tag{2}
\end{equation*}
$$

(Remark: In the real case we assume $x_{a} x^{a}>0$).
We will now review the basic first integrals of Eqs. (2). First of all we have the energy integral

$$
\begin{equation*}
\frac{\partial H}{\partial t}=0 \Rightarrow \frac{d}{d t} H=0 \Rightarrow H=\text { const. } \tag{3}
\end{equation*}
$$

Then defining the angular momentum tensor

$$
\begin{equation*}
J_{a b}:=p_{a} x_{b}-p_{b} x_{a}, \tag{4}
\end{equation*}
$$

one has

$$
\begin{equation*}
\frac{d}{d t} J_{a b}=0 \Rightarrow J_{a b}=\text { const. } \tag{5}
\end{equation*}
$$

The next basic integral is the Laplace-Runge-Lenz vector [1-4]

$$
\begin{equation*}
L_{a}:=J_{a b} p^{b}+\lambda \mu \cdot\left(x_{b} x^{b}\right)^{-\frac{1}{2}} x_{a} . \tag{6}
\end{equation*}
$$

One easily shows that with (2) assumed

$$
\begin{equation*}
\frac{d}{d t} L_{a}=0 \Rightarrow L_{a}=\text { const. } \tag{7}
\end{equation*}
$$

Finally it is convenient to introduce the vector

$$
\begin{equation*}
K_{a}:=J_{a b} L^{b}, \quad K_{a}=\text { const. } \tag{8}
\end{equation*}
$$

We can find some important relations between the integrals discussed above,

$$
\begin{align*}
L_{a} L^{a} & =(\lambda \mu)^{2}+2 \mu H J^{2}, \tag{9a}\\
K_{a} K^{a} & =J^{2} L_{a} L^{a}, \tag{9b}
\end{align*}
$$

$$
\begin{align*}
L_{a} K^{a} & =0, \tag{9c}\\
K_{a} L_{b}-L_{a} K_{b} & =L_{c} L^{c} J_{a b}, \tag{9d}
\end{align*}
$$

where $J^{2}:=\frac{1}{2} J_{a b} J^{a b}$.
Now the following relations

$$
\begin{equation*}
\frac{1}{2 \mu} p^{2}-\lambda r^{-1}=H=\text { const.; } \quad p^{2} r^{2}-s^{2}=J^{2}=\text { const. } \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
p^{2}:=p_{a} p^{a}, \quad r^{2}:=x_{a} x^{a}, \quad s:=p_{a} x^{a}, \tag{11}
\end{equation*}
$$

imply that the scalars (11) can be always parameterized (along the trajectory) by a single parameter.

Using the explicit form of $J_{a b}$ in the definitions of L_{a}, K_{a} (see (6), (8)) we rewrite these integrals in the form

$$
\begin{align*}
L_{a} & =\left(-p^{2}+\lambda \mu r^{-1}\right) x_{a}+s p_{a} \tag{12a}\\
K_{a} & =\left(-\lambda \mu r^{-1} s\right) x_{a}+\left(\lambda \mu r-J^{2}\right) p_{a} \tag{12b}
\end{align*}
$$

Treating $(12 a, b)$ as a pair of linear algebraic equations on x_{a}, p_{a} we find their determinant to be

$$
\begin{equation*}
\left(-p^{2}+\lambda \mu r^{-1}\right) \cdot\left(\lambda \mu r-J^{2}\right)-s \cdot\left(-\lambda \mu r^{-1} s\right)=(\lambda \mu)^{2}+2 \mu H J^{2}=L_{a} L^{a} \tag{13}
\end{equation*}
$$

[The first equality follows from Eq. (10) and the second from Eq. (9a)].
Thus a special situation arises when $L_{a} L^{a} \neq 0$. In this case $(12 a, b)$ lead to the formulae

$$
\begin{align*}
& x_{a}=\frac{1}{L_{b} L^{b}} \cdot\left[\left(\lambda \mu r-J^{2}\right) L_{a}-s K_{a}\right] \tag{14a}\\
& p_{a}=\frac{1}{L_{b} L^{b}} \cdot\left[\left(\lambda \mu r^{-1} s\right) L_{a}+\left(-p^{2}+\lambda \mu r^{-1}\right) K_{a}\right] \tag{14b}
\end{align*}
$$

Due to the relations (10), the formulae ($14 a, b$) represent already a trajectory in the phase space: L_{a}, K_{a} are constant vectors and the coefficients in $(14 a, b)$ depend on one variable parameter.

We explore our solution in the case where the initial conditions are such that not only $L_{a} L^{a} \neq 0$ but also $J^{2} \neq 0$. (This case can be achieved if and only if $n \geq 2$). Then we define the constant vectors

$$
\begin{equation*}
e_{a}^{1}:=-\left(L_{b} L^{b}\right)^{-\frac{1}{2}} L_{a}, \quad \stackrel{e}{e}_{a}:=-J^{-1}\left(L_{b} L^{b}\right)^{-\frac{1}{2}} K_{a} \tag{15}
\end{equation*}
$$

From $(9 a, b, c)$ it follows that these dimensionless vectors satisfy the conditions

$$
\begin{equation*}
{ }_{e}^{1} e_{a} e^{1_{a}}=1=e_{a} e^{2 a} ; \quad{ }_{e}^{1}{ }_{a} e^{2_{a}}=0 . \tag{16}
\end{equation*}
$$

In terms of $e_{a}^{1}, e_{a}^{2}(14 a, b)$ read

$$
\begin{align*}
& x_{a}=X_{1} e_{a}^{1}+X_{2} e_{a}^{2}, \tag{17a}\\
& p_{a}=P_{1} e_{a}^{1}+P_{2} e_{a}^{2}, \tag{17b}
\end{align*}
$$

where

$$
\begin{align*}
X_{1}:=\left(L_{a} L^{a}\right)^{-\frac{1}{2}} \cdot\left(J^{2}-\lambda \mu r\right), & X_{2}:=\left(L_{a} L^{a}\right)^{-\frac{1}{2}} J s, \tag{18a}\\
P_{1}:=-\left(L_{a} L^{a}\right)^{-\frac{1}{2}} \lambda \mu r^{-1} s, & P_{2}:=\left(L_{a} L^{a}\right)^{-\frac{1}{2}} J \cdot\left(p^{2}-\lambda \mu r^{-1}\right) . \tag{18b}
\end{align*}
$$

Now applying (9a) and (10) one finds that the pairs X_{1}, X_{2} and P_{1}, P_{2} fulfil the following quadratic relations

$$
\begin{gather*}
\left(-\frac{2 H}{\lambda}\right)^{2} \cdot\left[X_{1}-\frac{1}{2 \mu H} \cdot\left(L_{a} L^{a}\right)^{\frac{1}{2}}\right]^{2}-\frac{2 \mu H}{J^{2}} X_{2}^{2}=1, \tag{19a}\\
P_{1}^{2}+\left[P_{2}-\frac{1}{J} \cdot\left(L_{a} L^{a}\right)^{\frac{1}{2}}\right]^{2}=\left(\frac{\lambda \mu}{J}\right)^{2} . \tag{196}
\end{gather*}
$$

Discussing these relations it is convenient to work with the familiar parameters [1,3]

$$
\begin{align*}
a & :=\frac{\lambda}{-2 H}, \quad \epsilon:=\left[1+2 \mu H \frac{J^{2}}{(\lambda \mu)^{2}}\right]^{\frac{1}{2}}=\frac{1}{\lambda \mu} \cdot\left(L_{a} L^{a}\right)^{\frac{1}{2}}, \\
p^{\prime} & :=a\left(1-\epsilon^{2}\right) \frac{J^{2}}{\lambda \mu} . \tag{20}
\end{align*}
$$

In terms of these parameters $(19 a, b)$ reduce to

$$
\begin{align*}
\frac{\left(X_{1}+\epsilon a\right)^{2}}{a^{2}}+\frac{X_{2}^{2}}{a^{2}\left(1-\epsilon^{2}\right)} & =1 \tag{21a}\\
P_{1}^{2}+\left(P_{2}-\frac{\lambda \mu \epsilon}{J}\right)^{2} & =\left(\frac{\lambda \mu}{J}\right)^{2} \tag{21b}
\end{align*}
$$

The formulae $(21 a, b)$ suggest a specific parametrization

$$
\begin{align*}
X_{1}+\epsilon a & =a \cos u, & X_{2} & =a \cdot\left(1-\epsilon^{2}\right)^{\frac{1}{2}} \sin u \\
P_{1} & =-\frac{\lambda \mu}{J} \sin \phi, & P_{2}-\frac{\lambda \mu \epsilon}{J} & =\frac{\lambda \mu}{J} \cos \phi \tag{22a}
\end{align*}
$$

with u (the "eccentric anomaly") and ϕ (the "true anomaly") being new parameters. Then from $(17 a, b),(18 a, b),(20)$ and $(22 a)$ one finds

$$
\begin{equation*}
r=a \cdot(1-\epsilon \cos u), \quad s=\epsilon \cdot(\lambda \mu a)^{\frac{1}{2}} \sin u \tag{23}
\end{equation*}
$$

and

$$
\begin{align*}
& x_{a}=a \cdot\left[(\cos u-\epsilon) e_{a}^{1}+\left(1-\epsilon^{2}\right)^{\frac{1}{2}} \sin u e_{a}^{2}\right], \tag{24a}\\
& p_{a}=\left(\frac{\lambda \mu}{a}\right)^{\frac{1}{2}} \cdot\left[-\frac{\sin u}{1-\epsilon \cos u} e_{a}^{1}+\frac{\left(1-\epsilon^{2}\right)^{\frac{1}{2}} \cos u}{1-\epsilon \cos u} e_{a}^{2}\right] . \tag{24b}
\end{align*}
$$

Similarly, using $(17 a, b),(18 a, b),(20)$ and $(22 b)$ we have

$$
\begin{equation*}
r=\frac{p^{\prime}}{1+\epsilon \cos \phi}, \quad s=\epsilon \cdot\left(\lambda \mu p^{\prime}\right)^{\frac{1}{2}} \frac{\sin \phi}{1+\epsilon \cos \phi} \tag{25}
\end{equation*}
$$

and

$$
\begin{align*}
& x_{a}=p^{\prime} \cdot\left[\frac{\cos \phi}{1+\epsilon \cos \phi} e_{a}^{1}+\frac{\sin \phi}{1+\epsilon \cos \phi} e_{a}^{2}\right] \tag{26a}\\
& p_{a}=\left(\frac{\lambda \mu}{p^{\prime}}\right)^{\frac{1}{2}} \cdot\left[-\sin \phi e_{a}^{1}+(\cos \phi+\epsilon) e_{a}^{2}\right] . \tag{26b}
\end{align*}
$$

Of course the coefficients at e_{a}^{1}, e_{a}^{2} in $(24 a, b)$ and (26a,b) must agree what leads to four relations between u and ϕ. All these relations are equivalent to the one which follows by comparing expressions for r through u or ϕ (see (23) and (25))

$$
\begin{equation*}
1-\epsilon \cos u=\frac{1-\epsilon^{2}}{1+\epsilon \cos \phi} \tag{27}
\end{equation*}
$$

This on its turn can be written more symmetrically in the form

$$
\begin{equation*}
(1+\epsilon)^{\frac{1}{2} \cdot \tan } \frac{u}{2}=(1-\epsilon)^{\frac{1}{2}} \tan \frac{\phi}{2} \tag{28}
\end{equation*}
$$

It remains to determine the dependence of u (or ϕ) on t. Substituting ($24 a, b$) into $\frac{d}{d t} x_{a}=\frac{1}{\mu} p_{a}$ and comparing coefficients at e_{a}^{1} one obtains

$$
\begin{equation*}
\frac{d u}{d t}=\left(\frac{\lambda}{\mu a^{3}}\right)^{\frac{1}{2}} \frac{1}{1-\epsilon \cos u} \tag{29}
\end{equation*}
$$

which implies the Kepler's equation

$$
\begin{equation*}
\left(\frac{\lambda}{\mu a^{3}}\right)^{\frac{1}{2}} t=u-\epsilon \sin u \tag{30}
\end{equation*}
$$

(the integration constant is so selected that $u=0 \Rightarrow t=0$).

References

1. H. Goldstein, Classical Mechanics. Addison-Wesley Publishing Company, Inc., Reading, Massachusetts (1980).
2. G.L. Kotkin and V.G. Serbo, Collection of Problems in Classical Mechanics. Pergamon Press, Oxford (1971) (problem 2.16).
3. L.D. Landau and E.M. Lifshitz, Mechanics. Pergamon Press, Oxford (1978).
4. P.J. Olver, Applications of Lie Groups to Differential Equations. Springer-Verlag, New York (1986).

Resumen. El problema clásico de Kepler se generaliza a un espacio euclideano o pseudo-euclideano de n dimensiones (real o complejo) y se aporta una solución simple de esta generalización para cualquier $n \geq 2$.

[^0]: - On leave of absence from the University of Warsaw, Warsaw, Poland.
 *-Work supported in part by the conacyt, by the cinvestav, México, D.F., and by the Technical University of Lódź. Lódź, Poland. Permanent address: Institute of Physics, Technical University of Lódź, Wólczańska 219, 93-005 Lódź, Poland.

