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Abstract. By using the method of adjoint operators, the complete
solution to the Einstein vacuum field equations linearized about the
Minkowski metric is expressed in terms of scalar potentials that satisfy
the wave equation. The multipole fields are then obtained from the
separable solutions of the wave equation in spherical coordinates and
the amplitude of each multipole is related to the energy-momentum
tensor of the sources. The gauge-invariant components of the multipole
fields are written in terms of the spin-weighted spherical harmonics
and the power radiated per unit solid angle by each multipole is also
obtained.

PACS: 04.30.4x

1. Introduction

The Einstein vacuum field equations linearized about the Minkowski metric possess
wavelike solutions, interpretable as gravitational radiation, analogous to the elec-
tromagnetic waves. The linearized Einstein equations are obtained from Einstein’s
equations by writing the metric of the space-time g,4 as the Minkowski metric Naf
plus a small perturbation hag, keeping only the first-order terms in the perturbation
hap. In the standard approach [1,2], by imposing suitable gauge conditions, the
linearized vacuum field equations are reduced to wave equations for each cartesian
component of the perturbation h,g; however, the solutions to these wave equations
are not independent since they have to satisfy the imposed gauge conditions. Never-
theless, the main difficulty usually encountered in obtaining a multipole expansion
for the gravitational radiation comes from the use of tensor spherical harmonics, for
which there exists a variety of rather cumbersome definitions and notations [3].
The aim of this paper is to give a very simple derivation of the multipole
expansion of the gravitational field, restricted to the linearized Einstein theory,
in which no gauge conditions are imposed and where all the expressions for the
metric perturbations arise in a natural way, without having to propose expansions
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in tensor spherical harmonics for the fields. In fact, most of this paper requires
only the elementary tensor notation using cartesian coordinates. The derivation
presented here is based on the method of adjoint operators introduced by Wald [4]
(see also [5]) which is applicable to systems of homogeneous linear equations. A
similar derivation for the case of the electromagnetic field has been given in Ref. [6].

In Sec. 2 the method of adjoint operators is briefly summarized and some iden-
tities are obtained from the linearized Einstein theory which are used to find the
solutions to the linearized vacuum field equations. Two types of multipole fields are
then constructed which are analogous to the electric and magnetic multipoles found
in electromagnetism. In Sec. 3 the amplitudes of the multipoles generated from
localized sources are given by means of integrals of the energy-momentum tensor of
the sources; the resulting expressions are equivalent to those found in Ref. [7] (see
also Ref. [3]). In Sec. 4 the components of the curvature perturbation are written
in terms of the spin-weighted spherical harmonics and the power radiated per unit
solid angle by the gravitational waves is expressed in terms of the amplitudes of the
multipoles. Throughout this article Greek indices run from 0 to 3 and Latin indices
from 1 to 3 and on each repeated index the summation convention applies. Indices
are raised and lowered by means of the Minkowski metric.

2. Solution of the linearized vacuum field equations
Following Ref. [4] the Einstein equations linearized about the Minkowski metric will
be written in the form

8xG
[E(has)lag = ——5Taps (1)

with the linear partial differential operator £ given in cartesian coordinates by
[£(hy6)] 5 = 3 {970rhap = 0287 hys — 0p0 hya + 0aDa(n™ hp)
105070 hog — 10300y (1" heo) } @)
where
hap = 9ap — Mg (3)
represents a small deviation of the metric go5 from the Minkowski metric
(Nap) = diag(—1,1,1,1), (4)

By = 8/0z%, 3 = 1°Pd and T,g is the energy-momentum tensor of the sources to
first order in the perturbation hgg.
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In order to solve the linearized vacuum field equations:
[g(h'yb)]nd =0, (5)

by combining linearly the equations in (5) and their partial derivatives, we shall
derive decoupled scalar equations for certain linear combinations v. of fi,z and its
derivatives: x = T (hsg), where T is a linear partial differential opcrator that maps
two-index tensor fields into scalar fields. The equation satisfied by \ will be written
in the form

O(x) =0, (6)

where O is a linear differential operator that maps scalar fields into themselves.
The fact that the decoupled equation (6) is a consequence of the original system (5)
means that there exists a linear operator § such that O(y) = SE(k.s); therefore,
the linear operators £, T, O and § satisfy the operator equation

S&= OT. (7)

By defining the adjoint, A, of a linear operator A in such a way that A' is also «
linear operator and

(AB) = Bt 4! (8)

for any pair of linear operators A and B whose composition is well defined, from
Eq. (7) it follows that

etst = 7ot (9)
Hence, if ¢ satisfies the equation
ot(y) =0, (10)

then Eq. (9) implies that St(y) satisfies £1(S1(1)) = 0: thus, if £ is proportional
to £, then £(ST(y)) =0, i.e., St(y) is a solution of Eq: (5)

If the adjoint of a linear partial differential operator A that maps m-index tensor
fields into n-index tensor fields is defined as that linear partial differential operator,
A, which maps n-index tensor fields into m-index tensor fields such that (4]

g”y“l['A(faﬂ...Huy... - [At(g’“'"')]aﬁ"'fmy__. = 6050~ (“]

where s is some vector field, then one finds that Eq. (8) holds and that the operator
£ defined in (2) is self-adjoint: £ = £. Therefore, by solving the scalar equation
(10) one obtains a complete solution to Eq. (5), given by S*().

The linearized equations (5) are invariant under the gauge transformations in-
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duced by “infinitesimal” coordinate transformations:

hag = hag — 0563 — B3éq, (12)

where {, are the components of an arbitrary vector field, in the sense that if h,4
satisfies Eq. (5), so does hop — da5 — 03€a, which can be seen from the fact that
E(Oabp+5a) is identically zero. A gauge-invariant description of the gravitational
field is given by the tensor field

Kopys = 3 {0a0yhsg — 030yhsa + 0305hya — OaOshys} (13)

which is the Riemann tensor corresponding to the metric 9af = Nap + hap to first
order in hyg. From the definition (13) it follows that Kapys has the symmetries of
the Riemann tensor:

Kgpis = ~Wipaug = — K agsn= K.sap (14a)
Kopgys + Kasgy + Kaysp = 0, (14b)

and it satisfies
O 1\'.‘37& -+ (‘)(]\'1370'5 + s ]"ﬂvm =0, (15)

which are analogous to the Bianchi identities.
In terms of the tensor ficld
K.p=K

0757’ (16)

which is symmetric as a consequence of (14a), the linearized Einstein equations (1)
are

, , 8rG
ha,@ = %T]aﬂl‘—-‘,v =ies ] af
or, equivalently,
. 8rG ~
]\Hﬁz_?ﬁ(Tﬂﬂ_%naﬁTy‘r)' (]l’)

Equations (14-16) imply the identities

0° K gase = -0, Kﬁaas — 05K g, 7 =0 Kpgs — s Kg,, (18)
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and, from Egs. (14), (15) and (18) we obtain

0= 0%0aKgyse + 070 Kgyas + "5 K gyea
= 6“3.,1{,9.,5[ + 6((851\’,,5 — B,]\',gb) + 35((')71\’5( - 81;]\’.,[)
= 3“3“1{5-,.5; + 8,33,1’(.,,5 + 67351(5( - 578(1\”35 - 83651{75, (19)

which shows that outside the sources (i.¢., in a region where T, 3 = () each cartesian
component K,g5.s satisfies the wave equation.

Due to the symmetries (14), only 20 components K,3,s can be independent
and in the case of vacuum (where, according to Eq. (17), K, = 0) this number
is reduced to 10. In this latter case, the independent components of K,4.5 can be
given by Kyjo;, which, by virtue of (14a), is symmetric in the indices ¢ and j and
has vanishing trace: K;;' = K;,0® = Koo = 0, and by 1\'[‘,,,}], where

ES T (20)

and €446 is completely antisymmetric with €p123 = 1. The components ["u':uj are
also symmetric in the indices i and j since its antisymmetric part on these indices
vanishes:

e ‘
*1 1p0 - = = .
€nijk Ky 0‘? = —€oisk€j Ky o == K5%0= K= U,
2 P

and from Eq. (14b) it follows that the trace K},' is equal to zero: Kgio'
1 _spo

= 560 Kojpg = 0
We shall now obtain identities of the form (7) starting from the decoupled

equations satisfied by certain gauge-invariant quantities made out of the metric
perturbation. Making use of Eqs. (14b), (15), (18) and (20) we find that

8°0a(Kpip;x's") = 12'0 €0 jkm0° 80 Ko *™ — 22" €itm @ K™,
hence, from Egs. (19) and (17),
8% 0a(Koinjz's’) = 22 e0;km B8 K™ — & eqjpm('0; + 2)8 K™

= -—§ﬂ.—0{ 'stojkmaoakT‘-m

C‘!
— 2 eo;hm (20 +2)6"T0’"}. (21)

Thus, if the linearized vacuum field equations are satisfied then the scalar field
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I(&ioj:cixj satisfies the wave equation, which has the form (6) with

186°

_ na S R M
0 =90, =V - 5>

(22)

and x = KE:’OJ rigl = %x‘xjeojkm(agakhm, — 3iOkhmo); this means that, in this case,

T (hop) = %zéxjfojkm(aoakhmi — 3iOkhmo).
By using Eq. (1) the right-hand side of Eq. (21) can be written as

{2’ L0085 nP™ = i(229; + DLmt§7P™ } [E(has)] o5

where
Ly = —iegmin’ F, (23)

which are the components of the orbital angular momentum operator divided by #.
Therefore, Eq. (21) takes the form (7) with

S(bag) = {zxiLmaoag“nﬂ)m —i(z18; + 1)Lm5§;’qﬂ)m} bags (24)

where the parenthesis denote symmetrization on the indices enclosed. The adjoint
operators can be easily obtained using Eq. (8) and the relations (A+ B)t = At + Bt

8l = —8, and ft = f, for an arbitrary function f, which follow from (11); hence,
LY, = =L, Ot = 8%0, and [St(v)]*? = ié}“qﬂ)maomew — i8I L (8529 —
Ny = iaﬁ“nﬂimﬂLma@w - iESaqﬁ)mLm(:r-fBj + 2)3p. Thus, if 3 is a solution of the

wave equation

62
ot(y) = (v2 - SEW) % =0, (25)

then the tensor field ko = [ST(1)]ap satisfies the linearized Einstein vacuum field
equations. The nonvanishing components of h,g are given by

d
5 Y

hjm = 12 (; L) 00, (26)

: 1
hom = §Lm(20; +2) = § L~

where r is the usual radial spherical coordinate.
From the definition (13) and the expressions (26) one gets:

Koio; = 4 {2L;)0000 — OLL;)(s* 0k +2) } 0¥, 27)
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and from Eq. (20), using the fact that Kg,,, must be symmetric in the indices ¢
and j,

Kgio; = %{[fum(.makﬂm — il L;]0000%
— bt Oy B L (B 2)¢}. (28)
According to (27), the “electric” components Ky;o; corresponding to (26) satisly
Kojpyz's? =0 (29)

As it is well known, in spherical coordinates the scalar wave equation (25) is
separable with solutions of the form

= e fy(kr)Yeu(0, ), (30)
where Yy, is a (scalar) spherical harmonic and fy(kr) obeys the differential equation

d* 2d 2 UE+])
7 dr * r#

fe(kr) =0, (31)

with k = w/e; hence, f; can be written as a linear combination of the spherical

Bessel functions j; and ng or of the spherical Hankel functions hgl) and h?). By
analogy with the electromagnetic case, in view of (29), the field generated by the
potential (30) by means of Eqs. (26) can be called magnetic or transverse electric
multipole of order (£, m). From Eq. (28) one finds that

; L o2 5 2 92
£ | 2 s ¢ " P
Kiigz'e! = § (1 57 T 2r . 2— ;E-T> Lin L3 (32)
therefore, in the case of a magnetic multipole of order (¢,m) with ¥ given by (30),
using Eq. (31) one obtains

Khor'a? = 10— 1)e(e 4+ 1)(e+2)p (33)

which vanishes when £ = 0 or { = 1. In fact, one can see from the explicit expressions
given in Sec. 4 [Eqgs. (60) and (61)] that the curvature perturbations corresponding
to (magnetic or electric) multipoles with ¢ = 0 or £ = 1 are equal to zero; this
means that these metric perturbations can be reduced to zero by using the gauge
transformations (12).

Not every solution of thé linearized Einstein vacuum field equations is of the
form (26) or can be brought to this form by means of the gauge transformations (12).
In order to obtain the general solution to Eqs. (5) it is necessary to introduce a
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second (real) scalar potential. (It may be pointed out that the metric perturba-
tions (26) are real if ¢ is a real function; it is understood that one takes the real
part of expressions like (30) and (33).) From Eqs. (16-19) we get

aaaa(ﬁ’g,'ojxixj) = (.I“.‘rja.'aj + 4.7:‘6,‘ + 2) Ko
— (ZI‘lljajan + 4:::’50)1\’0,- + x‘xja()a()[{jj
87G [, ; ; -
= ﬁ%{(x'.ﬂ 8,-@,— +42'0; + 2) (T[)[) + %TT 7)
_— (21‘39133-30 + 4Iiau)T0,'

+ a2/ 0oy (Tiy — $6T,7) ) (34)

which gives another identity of the form (7), with @ = §78,, T (hap) = Koiojz'z’
and

S(bag) = {('2 00, + 420, + 2)(656F + 1n°7)
— (Qxia:jajao + 4:5‘80)6[(,&6;5)

+z'2? Bpdo (6767 — %5ij7’laﬁ)}bﬂﬂ'
Therefore

hap = [8'(¥)]ag = {(TJ‘Oa??og + 3105)(8,0,2 2" — 40" + 2)
— No(a"8)i(2000;2 2" — 46yz")

+ (Mianjs — %5i;naﬂ)3oanxirj}¢ (35)

is a solution of the linearized Einstein vacuum field equations, provided that
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satisfies Eq. (25). The solution (35) can be written more explicitly as
1 q g ; ; : 62 4 1"2 82
hoo = 3(278;2'0; + 320, + 2 + T'2ibh o )Y = 3 (WT 3 EW) o

_ g 10 210%
. ml?" BT‘T c 8t (36)

hij = 'lz‘ét'j('rkakzmam ¥ 31":3]: +.2— zkxkaﬂal))d’ 4 -’lijl'jaoaglf)

d? r2 2 1
ol (wrz 2 c—z*aﬁ) bt g

hoi = (:c:,-xjaj + 2z;)0%)

The components of K,g,6, obtained from the definitions (13) and (20), corre-
sponding to (36) are determined by

Koio; = i{[ﬁokm(iﬂfj)akllm —1L(;L;)]0080%
— €okm(i0;)0" L™ (2" 00 + 2)¢} (37)
and
Kioj = —4{ (L) 000 — 9:L;) (s 0k +2) } oy (38)

[cf. Egs. (27) and (28)] where we have assumed that ¢ obeys Eq. (25). These com-
ponents satisfy

Kpijz'z? =0 (39)

and are analogous to those of a transverse magnetic electromagnetic field. Hence,
the metric perturbation (36) generated by a potential of the form (30) will be called
electric or transverse magnetic multipole of order (£,m). In the case of an electric
multipole of order (£, m), one has

Koijz's’ = {(£ = 1)0( + 1)(€ + 2)u. (4)
Again, the curvature perturbations corresponding to multipoles with £ = 0 or £ = 1

turn out to be equal to zero.

By combining the two types of fields given by Eqs. (26) and (36) we obtain a
solution to Egs. (5) of the form

1 62 2 7'2 62
o =75 (a— + ;f?) ve
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190 ,10yg i 10 ,
ror ¢ ot +§ Jra'rrd}M

hoj = z;

1 821,[)5 ’ 10Ypm
b = g8 (Gt = ) b+ oy T + iy SO ()

with

oo ¢
= 4 a m)e "t r
W= Y 3 eI b Venl00) (2)

o0 £
= . a m e—iwt ¥
e _gm;e -+ 1)(€+2) M(Em)e™ gr(kr)Yem(0,8)  (43)

where the coefficients ap(¢, m) and ap(¢,m) determine the amplitude of the electric
and magnetic multipoles of order (¢,m), respectively, and f; and g, are solutions to
Eq. (31). The factors 4/+/(£ — 1)€(€ + 1)(€ + 2) are introduced for later convenience.

It must be pointed out that one can also consider singular solutions to the wave
equation (25) that generate well-behaved perturbations (Sec. 5).

3. Sources of multipole radiation

We shall now derive the relation between the multipole coefficients ap(€,m) and
ap(€,m), introduced in Eqs. (42) and (43), and the sources of the gravitational
field in the linearized theory. We shall assume that the components of the tensor
Tap appearing in Eq. (1) and the metric perturbations have a time dependence of
the form e~**. Then the solutions of the inhomogeneous wave equations (21) and
(34), with the boundary condition of outgoing waves at infinity, are expressed in
terms of the corresponding Green function for the Helmholtz equation [8)

. 2 3 2G [ giflx=x'| ) 0
(Kio=')00 = 57 | G {Be/EnT, " = iorbn o™ o) 2! (a)
and
o 2G [ x| (] /g2 L mld
(Kﬂl'()jx 31)()() = 6_4 f T;T'I {-é (6—1‘2—7'2 = sz‘z) T[)o + 21kIm;B—rT2T0m
1 1) 32 2 2.2 AR ] o33 0
+ 55’ Foad Foetn” ) —detwta? | T 5 () d 2 (45)

Since we are considering outgoing waves at infinity, the radial functions appear-
ing in Eqgs. (42) and (43) must be the spherical Hankel functions hgl); then, taking
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into account that Eqs. (29), (33), (39) and (40) hold for each multipole, using the
orthonormality of the spherical harmonics we have

k)= : fl" )V d) (46
M(fam)h( (kf‘) \/(!—l)f(f+l){f+2) { Y0i0;T T )}fm (46)
a m (1 n)i= 1 / % 'Y, 7
Blm k) = s [ (aaye'2) Wi (47

where the bar denotes complex conjugation. Making use of the spherical wave ex-
!
pansion for the Green function e'**=Xl/|x — x'| it follows that (8]

etklx—x 1

Yo (0, 6) d = 4xikh (kr)je k') Yom(6', &)

x = x'|

Therefore, by combining Eqs. (44-47) we find that the multipole coefficients are
given by

8mikG
&,m) = (kr)Vem{ k2! LT,
au(t;m) V(-1 f+1(3+9}—/1f ' ({$
P s
— iz=rLaTy }d:z: (48)

8mikG ) L{a 2 2\ s
opltim) = [ seter mm{z(dr = ) Ta
2
+2ikz"}“%r2Tﬂ" - [ &M (d@ 2 r? 4 k*r ) -k 1:-’] T,J} d3z. (49)

Integrating by parts, these expressions can be rewritten as

8rikG o
£ = WY )4 (ke k2! T
Hacgalt] a¢(3—1)3(e+1)(e+2)/(L Vo lhr) e,
0,
+%B—;(r21¢(kr))T0“} d*x (50)
Sﬂ'sz 82 2 - g
os(tim) = s [ Von {500 (Gt — ) dethn

_21'an,,2 (re"je(kr)) + Tj; [15u ( 4 k2 2) _ kzerJJ j,(kr)} B

(51)
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Assuming now that the source dimensions are very small compared to the wave-
length of the waves, the Bessel functions can be taken approximately as jg(kr) =~
(kr)f/(2¢ + 1)!! and restricting ourselves to slow-motion sources with negligible
internal stresses, keeping only the lowest power in kr, the multipole coefficients are
determined by Top = pc? and Ty = —pevy, where p is the mass density and v; are

the components of its velocity field, according to

gﬁGkH—l £+2 .
R LnYem "d’r (52
CB\/("'1)F(f+1)(€+2){2€+1)!1f( o )ripu" &z (52)

AmiGRH! (e+2)(€+1}] f— i
Yimpd
AJ-Die+ e+ @+nr J T Hmees

ap(l,m)=

ap(l,m) = (53)

[ef. Ref. [7] and Eqs. (5.27) of Ref. [3]]. Thus in the long-wavelength, newtonian limit
the electric multipoles are related to the mass density and the magnetic multipoles
depend on the angular momentum density of the source.

4. Curvature perturbations and energy of multipole radiation

The curvature perturbations given by Egs. (27), (28), (37) and (38) can be rewrit-
ten in a simple and convenient way by calculating the components of Kgp; and
Kg,p, with respect to the orthonormal basis {ég,€4,é,} induced by the spherical
coordinates and constructing combinations of these components with a well defined
spin-weight [9-11]. From the components Ko;; one can form the five combinations

]\'ul = Ii'ggug —_ ]\’mpoeg + ‘2??1\‘0,9(]‘5 = A’OrDr + 2{[\’0303 -+ i[\’090¢)
K1) = —(Koros + 1 Koros)
I\’{U) = [{Drﬂr (54)

ﬁ’(_]) = 11'(],-0,9 == i]\'(lrﬂé

K(_3) = Kosos — Kogos — 2tK090s = Koror + 2(Kogos — 1K0g0g)
which have spin-weight 2. 1, 0, —1 and —2, respectively. Similarly, we will -denote
by I\'(‘ﬂ) (a = 2,1,0,—1,—2) the combinations obtained by substituting K5 In

place of K445 in (54). A straightforward but somewhat lengthy computation, using
Eqs. (27-29) and (32) shows that in the case of a transverse electric field

Ky = — 55— 00y
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> 2 < 2

_EET G T ror r2 2 31!2‘
Ky =0
i3 [8* 20 3 1% 3.
"(-1)-‘MET(W FE'T?‘E?W)‘%
0019 e

where, acting on a function 5 of spin-weight s [9-11],

= s a i 0 —3
dn = —sen’ 0 (% + m%) (sen™* O)n

5n = —sen=0 (2 — —* 0 Y (en®
dn = —sen 9(89—58n98¢>(sen o)n

and,

Hence, in the case of a magnetic multipole of order (¢,m), taking

= - —iwl #
- JE- DI+ ) T2) fe(kr)Yem(0, 6) (58)
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[cf. Egs. (42) and (43)], using Eq. (31) and the relations

( 1/2
(t=s)"* .,

,Hm=<(_nsve+@1uz-

0, Is| > ¢

satisfied by the spin-weighted spherical harmonics [9-11], we get
Kaz) = F2he ™ 012 fy(kr) 12Yim(6, 9
Keary = FVE=DE+ ke fylkr) 11Yom(6,9)
Ky =0
and

* —tw 1 d2
Hiam = t(ﬁ = -kz) fe(kr) £2Yem(6, ¢)

- )
Ky = V(E-1)(¢+2)e Mr—ggrft(k’”):tlytm(e,ﬂb)

Kioy = V= DUE+ DE+ D™ fo(kr)Yem(0,9).

523

(59)

(60)

(61)

In the case of outgoing waves at infinity we can take f, = hgl), which has the
asymptotic form hf,l)(kr) — (—1)"*1e*" [kr, for kr > £. Then, Eqgs. (60) and (61)
show that in the radiation zone (kr >» 1) the curvature components of spin-weight

+2 are greater than those of spin-weight +1 by a factor kr and greater than the
components with spin-weight 0 at least by a factor (kr)%. One finds that, in the

radiation zone,
: -t+1k i(kr—wt)
K(49) — F2i(—1) e +2Yem

" k i(kr—w
K(.:L-Z’) =¥ '2(-1)t+1;5 hv=u) +2Y¢m.

(62)

For an electric multipole of order (¢,m), with ¢ given again by Eq. (58), the
components K, and K(‘a) are exactly of the same form as K('u) and (-K,),
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respectively, for a magnetic multipole of order (¢,m) given in Egs. (61) and (60).
Thus, we see from Egs. (62) that in the radiation zone the eleciric and magnetic
multipoles of order (£,m) have the same dependence but have polarizations that
differ by a rotation through 45° around the radial direction. (A quantity that has
spin-weight s transforms under rotations around é, by a multiplicative factor €*?.)

The power radiated per unit solid angle can be calculated by means of the
expression [1-2]

dE _ ot
dd0 % 167 GR2

2
K |

therefore, using Egs. (62), for a superposition of magnetic and electric multipoles
given by Eqs. (41-43)

dE 5 ‘ 2
Tidh = 4ZG’Z[a5(€,m)+-zaM((7,m)]ngm : (63)
' &m

Hence, in view of the orthonormality of the spin-weighted spherical harmonics for
a fixed spin-weight, the toial power radiated is

dE P

=L Z lag(€,m) + iap (£ m)[*. (64)
£{m

The mass quadrupole part of the power radiated is

dE) i .
= =——> lap(2,m)
( di mass quadrupole ArG g

which, according to Eq. (53), becomes

6
(@) _ SnGek ‘ /rzmp .
dt mass quadrupole 7

GekS ;
=

2

where

D = /p(3$,xj — 5.‘,‘7‘2) d’z.
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5. Concluding remarks

Apart from the metric perturbations ge:erated by the regular solutions (30) of the
wave equation, there exist well-behaved solutions to the linearized vacuum field
equations corresponding to singular potentials [12]. For example, by expanding the
Schwarzschild metric to first order in the mass parameter M, one obtains the static
spherically symmetric metric perturbation

2GM 2GM
hoo = 2 =T hoi = 0,
which, by means of a gauge transformation (12) with & = 0, & = —%"Tf.r,, is
transformed into
2GM _2GM

h.[){] = 5 h'J = (‘27‘ 6,']. h(), =ik

o
This metric perturbation is of the form (36) with ¢ = '—'—%(ln rescl — 1), which is
a solution of Eq. (25) that diverges on the axis § = 0, 7.

The invariance of the linearized vacuum field equations (5) under the gauge
transformations (12) is related with the identity 3-5[5(h75)]03 = 0, that follows
from the definition (2) [13]. If G is defined by G(bag) = (,'{“65)60,5, where (* is
an arbitrary vector field, then GE€ = 0; therefore Eq. (7) remains valid if S is
replaced by § 4+ G. This ambiguity in the choice of § amounts to the replacement
of hap = [S1(¥)]ap bY hag = [ST(W)]ap + 61 (¥)]as = [ST(¥)]ap — 9(aCp)¥, which

is precisely of the form (12) with &, = %w(’ﬂ.
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Resumen. Usando el método de operadores adjuntos, la solucian com-
pleta de las ecuaciones de Einstein para el vacio linealizadas alrededon
de la métrica de Minkowski se expresa en términos de potenciales es-
calares que satisfacen la ecuacion de ondas. Los campos multipolaies so
obtienen entonces de las soluciones separables de la ccuacion de ondas
en coordenadas esféricas y la amplitud de cada multipolo es relacionada
con el tensor de energia-impulso de las fuentes. Las componentes invari-
antes de norma de los campos multipolares se escriben en términos de los
armonicos esféricos con peso de espin v se obtiene también la potencia
radiada por unidad de dngulo sélido por cada multipolo.





