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Abstract. The normalization condition of the 3- and 4-particle distri-
bution functions is used to integrate the closure relations that generalize
the well-known Ornstein-Zernike (02) integral for the compressibility
and the two-particle correlation. In a similar way to the two-body 0Z re-
lation, the 3- and 4-particle closure integrals are written in terms of the
compressibility and its derivatives, allowing their immediate evaluation.
These explicil expressions are useful in the perturbation theory of fluids
and in testing approximations for the 3- and 4-particle correlations, such
as Kirkwood's superposition approximation. As an illustration, these
closure integrals are evaluated for the hard-sphere system.

PACS: 05.20.Gg; 05.70.Ce

1. Introduction

The theory of equilibrium classical fluids contains an important theorem relating
the isothermal compressibility X to the two-particle total correlation function A(12),

namely
pX P’ i

where d(12) means integration with respect to the positions of particles 1 and 2,
(N) is the mean number of particles, p = (N)/V the mean density and 8 = 1/kT.
Equation (1) was originally obtained by Ornstein and Zernike [1]. In this paper
we show how the equivalent closure relations for the 3- and 4-body correlation
functions can be written in a form similar to equation (1). Although these relations
follow directly by integrating well-known recursion properties of the distribution
functions [2,3], they are not currently available in their explicit integrated form [4-6].
The closure relations are useful in several cases, e.g., in liquid-state perturbation
theory [7] and in testing Kirkwood's superposition approximation [8].

In order to obtain the closure relations, instead of integrating the recursion rela-
tions of the distribution functions [2,3], it is more direct to obtain them from the nor-
malization property of the m-particle distribution function densities p{™ (1..... m)
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In the Grand Canonical Ensemble, this property reads [9]

il '
[z = () -

where the brackets { ) denote the average with respect to the number of particles in
the system at constant volume V| temperature T" and chemical potential g. When
the fluid is isotropic, the radial distribution functions are defined by [9]

p("')(l s oL

T (3)

gllom)=
The case m = 2, with h(r) = h(12) = g(12)—1, is very well known and equations
(2) and (3) lead directly to

(ANP)

L 1, (4)
(N)

I = p/d;]r' h(r) =

where AN = N — (N) is the number deviation. Since the mean square deviation is
related to the compressibility by

((AN)?) = (N)K, (5)

where K = pX/f, one obtains the 0z theorem (1).

2. Three- and four-body compressibility integrals

For three particles, the total correlation function can be appropriately defined by [10]
Rh(123) = g(123) — [h(12) + h(23) + h(13)] — 1, (6)

which correctly vanishes when any one particle is far away from the other two.

An alternative definition of the total correlation functions, which is equivalent to

equation (6), can be given in terms of the Ursell functions [I1]. In the absence of

long-ranged correlations, this property implies that the integral of h{123) over all

relative configurations must be finite. Substituting equations (3) and (6) in (2) for
m = 3 and using (4) one finds

p“fd{lzzs)h(l-z:;} = ((AN)Y) = 3((AN)?) 4 2(N). (7)

Similarly, the appropriate definition of the total 4-particle correlation is

h(1234) = ¢(1234)
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— [R(12)h(34) + h(13)h(24) + h(14)h(23)]

— [h(123) + h(124) + h(134) + h(234))

— [h(12) + h(13) + h(14) + h(23) + h(24) + h(34)] — 1, (8)

which vanishes in a fluid when one, two or three particles are far away from the
others. Again, the normalization condition (2) gives, using equations (3), (4) (7)
and (8),

,:4/4(12:;4);1(133-1) = ((AN)Y) = 3((AN)*)? — 6((AN)3)
+ L1{(AN)?) — 6(N). (9)

Equations (7) and (9) are the 3- and 4-body analogues of the equation for the
mean square deviation (4). Of course, the averages of powers of the deviations are
related to thermodynamic variables [4]

(any) =200 (10)
and
3
(AN)Y) = 3((AN)? = 33g) (11)

where a = fu. Equations (5), (10) and (11) allow to write the closure relations for
h(123) and h(1234) entirely in terms of thermodynamic properties. Thus, integrating
the position of one particle and using relative coordinates r = 115 and r' = r13, one
finally finds for the triple integral

s jd3r-d3r’lu(]23) = 24 K(K 4 gK, = ), (12)
and the quadruple integral, with »" = 4. is
Iy = / drdr'dr"h(1231) = KUK - 6+ 4pK, + p*K )

+ K(p*K,* —6pK,+11) — 6, (13)

where the subscript p means differentiation with respect to the density.
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FiGure 1. High-order compressibility integrals for the hard-sphere system. The continuous line
is —I2(p"); the dashed line represents the triple integral I4(p") and the dash-dot line

=1a(p*)/3.

3. Discussion and illustration

Since at the critical point h(r) becomes long ranged and the isothermal compress-
ibility diverges, X' — oo, then [rom equations (12) and (13) the triple and quadruple
integrals /3 and [y also diverge. Hence, one notices from these equations that the
3- and 4-body correlations also become long ranged at the critical point. On the
other hand, if the interparticle potential has a hard core, the mean deviations in
the number of particles must vanish when the system is closed packed, which can
happen in the crystalline or the amorphous phase. Therefore, lrom equations (7)
and (9) one finds at any closed-packed state the limiting values [y = 2 and Iy = —G;
of course, the double integral [» = —1 in the same state.

Equations (12) and (13) allow the exact calculation of I3 and 14 from the knowl-
edge of the equation of state of the system of interest. If one uses an approximation
for h(123) or h(1234) —or equivalently for ¢(123) and ¢(1234)— in the LUS of these
equations as, e.g., Kirkwood’s superposition approximation, the deviations of I3 and
I4 from their exact values will give an average measure of the error introduced by
the approximation.

Second-order terms in the perturbation theory of liquids [7] and in electrolyte
theory [10] involve integrals of 3- and 4-body correlations of the type appearing
in equations (12) and (13) for the hard-sphere reference system, and the results
presented here are useful in those cases [7,12].

As an illustration we present in Fig. 1 the values of I3 and 14 as functions of
reduced density p* = po® for a hard-sphere system with diameter . The com-
pressibility integral I; is also shown as reference. K (p*) was obtained from the
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Carnahan-Starling equation of state [13]. In the ns case, I3 and Iy vary monotoni-
cally with p* between their zero value at p* = 0 and their limits at the amorphous
closed-packed state, which is at p* = 6/x with the cs formula. One also notices
from this figure that Iy is always negative and about thrice 1.

Nevertheless, one must keep in mind that these theorems are valid for any

thermodynamically stable system and thus can have wider applications.
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Resumen. La condicion de normalizacion de las funciones de dis
tribucion de 3 y 1 particulas se utiliza para integrar las relaciones
de cerradura que generalizan la bien conocida integral de Ornstein-
Zernike (0z) para la compresibilidad v la funcion de correlacion de
dos particulas. De manera similar que para la correlacion de dos cuer-
pos de 0z, las integrales de cerradura de 3 v 4 particulas se expresan
en términos de la compresibilidad v sus derivadas, permitiendo asi su
cdlculo inmediato. Estas expresiones explicitas son iitiles en la teoria
de perturbaciones de fluidos y pueden servir para probar las aproxima-
ciones de correlaciones de 3 y 4 particulas tales como la aproximacion
de superposicion de Kirkwood. A manera de ilustracion, estas integrales
se evalian para el sistema de esferas duras.





