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The role of the slip coefficient on the flow
past the sphere

R. Peralta-Fabi, R. Chicharro-Serra and T. Vazquez

Laboratorio de Fluidos, Departamento de Fisica
Facultad de Ciencias, UNAM, 04510 Mézico, D.F.

(Recibido el 21 de noviembre de 1989; aceptado el 20 de julio de 1990)

Abstract. !nder certain circumstances, some fluids flow in such a way
that the usual sticking boundary condition, commonly explained invok-
ing surface rougliness, must be relaxed to allow for some amount of
slip. This paper argues that the surface tension at a fluid-solid interface
should play a role in defining the appropriate hydrodynamic bound-
ary condition; the effect is incorporated through the slip coefficient.
Furthermore, an experiment is proposed, based on a careful study of
the motion of settling spheres, to demonstrate the previous contention.
The required theoretical results, needed to interpret the outcome of the
experiment, are provided.

PACS: 47.10.4g; 03.40.Kf

1. The background

When Navier [1] formulated the dynamical equations for a non-ideal fluid in 1823,
he faced the analytical problem of determining the appropriate boundary condi-
tions. For impervious solid boundaries he assumed [2], following the Bernoullis and
Euler [3], that the norwal component of the relative velocity is equal to zero. The
new equations, of a higher order, required an extra assumption on the velocity or its
derivatives at the boundaries. Consistent with his “statistical mechanical” proce-
dure to derive the equations, he deduced that there is slipping at a solid boundarv.
Finding that slipping is opposed by a force proportional to the relative velocity,
he then introduced a slip coefficient to equate the viscous tangential stresses to the
tangential component of the relative velocity. Different values of this coefficient were
used to reproduce previcusly proposed hypotheses [2] on the relative motion of fluids
and solid boundaries: zero tangential stress corresponding to the slipping boundary
condition and absence of relative motion between fluid and solid corresponding to
the sticking boundary condition. Confusion on the issue was thus born.

Two decades later, Stokes [4] derived independently the same equations from
a phenomenological point of view. By avoiding altogether molecular assumptions
he explored some of the consequences of the sticking boundary condition. After
five years, he established that they agreed better with the experimental results of
Coulomb, Hagen and Poiseuille, among others [2]. A long time elapsed before some
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general agreement was reached on this point. This was accomplished primarily for
practical reasons since inquiries into its origin remained unanswered [3].

A quantitative analysis of a plausible explanation of the sticking boundary con-
dition was given somewhat recently by Richardson [5]. Arguing that all surfaces
are, in practice, rough on a mesoscopic scale he proposed a very specialized model
for the wall. He then cleverly showed that, as the fluid passes over and around
the irregularities, the energy lost due to viscous dissipation is enough to bring the
fluid to rest on a macroscopic scale, regardless of whether slip or stick is assumed
on the mesoscopic scale of the surface. Deviations from the macroscopic sticking
boundary condition being of the order of the asperities of the wall. A few years
latter, Zwanzig [6] extended the analysis to a finite body and carefully discussed
the relevant length scales.

From the microscopic point of view, Maxwell [7] was probably the first to con-
sider the problem using the kinetic theory of gases. When there is no temperature
difference between the fluid and the solid, he showed that Navier’s slip coefficient
is proportional to the inverse of the mean free path. Thus, under normal condi-
tions, the effect of slipping would be negligible. After a century the issue was again
reconsidered, among others, by Cercignani [8], van Beijeren and Dorfman (9] and
by Oppenheim and van Kampen [10]. Yet, better understood, the basic problem
remains open.

On a different line of reasoning, the pioneering numerical studies of Alder and
Wainwright [11] suggested the existence of hydrodynamic behavior on a molecu-
lar level. The work of Zwanzig and Bixon [12] provided some of the early clues
on such surprising results. The use of hydrodynamical models for molecular mo-
tions in liquids became successful when stick was replaced by slip in the boundary
conditions [13]. Again, Zwanzig [14] contributed to clarify some points on purely
hydrodynamic grounds, giving some insights for the stick to slip transition. Using
rough sphere kinetic theory, Hynes, Kapral and Weinberg [15] and Montgomery and
Berne [16] gave a microscopic counterpart.

2. Surface tension and the slip coefficient

There is an overwhelming amount of experimental evidence that supports the stick-
ing boundary condition, suggesting a common universal behavior. However, there
are some cases where zero shear stress must be necessarily assumed or where partial
slip is observed. For example, rarefied gases can, under certain circumstances, be
treated as Newtonian continua with a perfect slip condition at solid boundaries [17];
slip velocities have been observed in structured fluids under some flow conditions,
such as polymer melts during an extrusion process [18]. Although the rough surface
argument is convincing and provides a sound basis in most cases, there are the
exceptions to consider and some unanswered questions that seem worth dwelling
on: Which boundary condition applies on the scale where the surface looks flat, if it
is not so everywhere? How universal is the stick hypothesis? Or, are the exceptions
predictable? Furthermore, are there any other macroscopic properties that evolve



534 R. Peralta-Fabi et al.

from microscopic aspects of the interface, such as the fluid-fluid and fuid-solid
molecular interaction ratio, that could have some bearing on whether stick or some
amount of slip is the appropriate boundary condition?

A case in point might be surface tension. The purpose of this paper is to argue
in support of this contention.

It is very common to invoke the various intermolecular forces in action at an
interface to justify the sticking boundary condition. Adsorption of fluid molecules on
a solid surface or the occurrence of different types of chemical bonds between {luid
and solid particles most certainly take place continuously. It would be as hard to
argue that they are the dominant processes at the interface as it would be difficult to
ignore their presence. The wetting properties of different liquids on a given surface
are a clear example. Non-wetting fluids (angle of contact close to 180°) represent
situations where the forces between liquid molecules may be orders of magnitude
greater than those across the interface. One would expect under these circumstance,
and a flat surface, that the appropriate condition would be that of zero shear stress.
For perfect-wetting liquids the reverse situation is to be expected. Intermolecular
forces can therefore be called upon to support a boundary condition between the
extremes of slip and stick, depending on their relative magnitudes. Surlace tension
follows the same trends; for non-wetting liquids 1t is known to be much greater than
for those in which there is perfect wetting. Hence, a dependence hetween slip and
surface tension, through suitably defined coeflicients, seems worth looking for. ITn
what follows we assume that surface tension is apparent through the slip coelficient.,
as defined in section 1V.

Provided a relation between the coefficients of slip and surface tension can he
established, on both theoretical and, above all, experimental grounds, the previously
raised questions would appear to have a common, simple and straight answer (the
theory and the experiments might be everything but simple!): The precise honndary
condition or the amount of slip on a (locally flat) surface would depend on the
local surface tension. In view of the accumulated evidence supporting the sticking
boundary condition, the assumed dependence of slip on surface tension should he
rather weak in most cases, while explaining those in which slipping occurs and
“universality” breaks down. As for the last question, an answer is implicit in the
foregoing argument; the direct dependence between the surface tension coefficient
and the intermolecular forces is well known for the equilibrium liquid-gas inter-
face [19]. Something analogous is to be expected from a convincing non-equilibrinm
fluid-solid interface theory.

To convincingly establish the point one should either produce a mathematical
proof, based on physical ideas, and then perform an experiment to corroborate
the prediction or carry out an experiment with an unambiguous interpretation.
Seldom are these procedures simple. Assuming that the latter is easier in the present
case, a feasible experiment is sketched and its main features discussed in the next
sections [20].
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3. Sketch of an experiment

A standard method for measuring the surface tension coeflicient, for a given fluid-
solid system, consists in determining the contact angle that forms when a drop of
the fluid sits on the (flat) surface of the solid; it is assumed that surface roughness is
irrelevant. Suppose that in a particular case the measured contact angle is close to
zero; the liquid wets the solid. Next, assume that the solid’s surface can be treated
in such a way that the contact angle is now close to 180°, drastically changing
the wetting properties, while leaving the geometrical characteristics of the surface
(its roughness) unchanged; like a layer of snow on a landscape. For example, a fine
coating of silicone on glass would produce such an effect when the fluid is water,
say. With this preliminary experiment in mind, the possible dynamic consequences
can be explored.

From a hydrodynamical point of view, few problems have received more atten-
tion, both theoretically and experimentally, than that of a solid sphere moving in a
viscous fluid; the motivation heing its relative mathematical simplicity, such as the
.nown solution of the linear case, and its enormous practical relevance. Though the
general problem has yet to be solved, many of its features are well understood and
appear in most textbooks [21]. It is then only natural to put to work hydrodynamics’
show horse. Furthermore, 1t is used as a representative case (workhorse) of a system
with linear friction in classical mechanics.

The basic idea for the experiment is the following: register the fall of a solid
sphere in a liquid and repeat the process keeping everything fixed except for the
wetting properties at the interface; the surface tension, as understood in the pre-
liminary experiment discussed above. All things kept constant, differences can only
be attributed to changes in the shear stresses on the sphere’s surface.

Can the obvious complications that arise after a moment’s thought be sur-
mounted? Perhaps.

First, the falling object must be as spherical as possible and the fluid’s properties
must remain constant (density p and shear viscosity coefficient 5); a controlled heat
bath would keep p and 7 fixed. Second, the spheres must be released systematically
avoiding rotation and ensuring a reproducible path. To register the motion, a video
film can be made with a high speed shutter camera and suitably chosen images
digitalized to be further analyzed.

The crucial point is clearly the sphere’s surface “transmutation”™ The sphere’s
mass, radius and surface quality must remain fixed, while its wetting response to
the fluid is to change as much as possible. This can be accomplished following the
schematic procedure outlined in the preliminary experiment. Assume, for the sake
of argument, that the working {luid is water and that the spheres are 2 mm diameter
glass balls (silicates). With a clean surface the angle of contact is practically zero. A
thin (few monolayers thick). stable (covalent bonded) and spherical coating of water
repellent material, such as a silicone fluid, can be manufactured so as to produce
the desired effect. The resulting contact angle is very close to 180° and the changes
in mass and radius negligible.

Leaving aside some other points that should be taken care of, like careful han-
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dling of the spheres to avoid contaminants that could mask the effect completely [22],
one last critical issue deserves attention: The uncertainties must be small enough to
allow the effect to be measurable. In order to be able to carry a thorough treatment
of error propagation and accumulation, from which the required accuracy on each
of the measured quantities can be estimated a priori, the theory underlying the
experiment should be developed. An outline of the former is given in the next
section.

4. Some theory

Consider a solid sphere of radius @ and mass m, released from rest in a quiescent
infinite viscous fluid with density p and shear viscosity coeflicient 5, under the action
of a uniform gravitational field characterized by g.

The equation of motion for the center of mass of the sphere, assuming it is
one-dimensional (along the z axis), is given by

mi=mg—m'g— Fp, ' (1)

where each dot represents a time derivative and m' is the fluid’s mass displaced by
the sphere. The forces on the right hand side are the weight, the buoyancy and the
hydrodynamic friction. In order to solve this equation, which is formally exact, an
explicit expression for Fy in terms of z, 2, 7 and 1 is required.

The derivation begins with the solution of the Navier-Stokes equations for an
incompressible fluid [21]

V=1 (2)

pdu + p(u - Viu = —Vp + yV3u, (3)

where u and p are the velocity and pressure fields, both depending on position
and time; incompressibility applies equally well to liquids and gases provided all
velocities are small compared with that of sound. Next, some initial and boundary
conditions must be given. The sphere moves with velocity U(t), released from rest.
Hence, initially, fluid and sphere are at rest. One boundary condition is that the fluid
remains at rest at infinity. The other boundary condition concerns the behavior of
the fluid at the surface of the sphere and requires separate treatment of the normal
and tangential components of the.velocity field. First, the normal component of the
relative velocity of fluid and sphere vanishes on the surface,

o= 1] o, sl (4)
where &, is a unit vector normal to the surface of the sphere. This kinematic condi-

tion ensures that the fluid does not penetrate the sphere. Second, the amount of slip
is established. Following Navier, the assumption is that the tangential component of
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the relative velocity of fluid and sphere is proportional to the tangential component
of the force acting on the sphere. That is

(60 -11) x é, = B(u — U) x &, (5)

where 3 is a coefficient giving the degree of slip. When 3 = 0 there are no tangential
stresses, corresponding to perfect slip, and when = oo the fluid adheres to the
sphere. The stress tensor II is given by

II=—pl+7(Vu+uV). (6)

Here, [ is the unit second rank tensor. The force on the sphere is
ngf(ﬂ-é,)dﬂ. (7)

As posed, the problem remains unsolved.

Several approximations can be made in order to find the velocity of the sphere as -
a function of time, z(t). This is done in two stages. First, assumptions are introduced
to find an expression for Fy, which are basically of two kinds: linearization of the
Navier-Stokes equations or nonlinear steady state calculations. Second, given the
hydrodynamic force, Eq. (1) is integrated and the expressions for z(t), resulting
from the different approximations used, are compared.

The basic result is that the dominating feature in the sphere’s motion is the
boundary condition used; whichever of the hydrodynamic approximations here
taken, the terminal velocity of the sphere cannot exceed a certain value unless
there is some amount of slip at its surface.

Hydrodynamic force

We begin with the linear approximation [21]. Writing Eq. (3) in terms of dimension-
less variables, using a characteristic length a and a typical velocity vg, the nonlinear
term comes out multiplied by the Reynolds number (R = apvg/n). Provided R is
small the nonlinear term can then be omitted (see below). With this approximation,
an exact expression for Fj can be found. Extending well known results due to Stokes,
Basset and Boussinesq, Zwanzig and Bixon [12] obtained the drag force on a sphere,
including compressibility and viscoelastic effects (through Maxwell's approach of
frequency-dependent viscosity coefficients). Their result, extended for arbitrary slip
and specialized for an incompressible and constant viscosity fluid, is

Fo(w) = =((w)U(w), (8)
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where the friction coefficient (, as a function of frecuency (w), is given by

e é e B an 2#&2(2+§)";(éw7,1p)]/3
((w) = 47qa (1 + 2) 27a” piw /3 3 — (1 = E)ialiop/m)VE"

The slip coefficient £ is defined by

3y = e
£ = 1+% (10}

Stick corresponds to £ = 1 and perfect slip to £ = 0. The first term is Stokes’s well
known zero- frequency result. The second term is related to the effective or virtnal
mass. The last term, giving rise to a memory type time dependence, originates from
the viscous unsteady flow around the sphere; § = (25/pw)'/?, the viscous penetra-
tion depth, being its signature. In the two extreme cases of slip and stick, Eq. (7)
reproduces the Zwanzig- Bixon results (except for the sign in the denominator when
£ = 0). The corresponding expression for the time-dependent force Fy(t) is discusscd
below.

An altogether different starting point is the assumption of steady motion. In this
case, the time dependence of the hydrodynamic force comes in solely through its
dependence on the instantancous velocity of the sphere. Dropping the time deriva-
tive in Eq. (3) still leaves an insoluble problem. The usual approach is to look for a
solution in powers of the Reynolds number. The zeroth order approximation leads
directly to Stokes’s law, as extended by Basset; omitting the known details, the
result is

i"u(:'):'lmm(IJrg) 2 (1)

As expected, it is the zero-frequency limit of equations (3) and (9) combined. The
velocity of the sphere U has been written as 2. That the higher order approximations
fail to exist is known as Whitchead’s paradox. Oseen [23] was the first one to point
out that at a great distance from the sphere the neglected nonlinear terms bhecome
more important than the retained viscous terms, and suggested a new approxima-
tion. Later, Goldstein [24] solved the resulting equations in powers of the Reynolds
number. However, his result was shown to be valid only up to linear terms in [7;
using the sticking boundary condition, Eq. (5) with 3 = o, the resulting expression
for the drag force is

SR
f’]](é):ﬁm/rt(l—f-_\—) =4 (12)

St

Within Oseen’s theory, Shanks [25] approximated the drag lorce using the Gold-
stein series up to and including terms of order f£2 by a rational [raction (2 2 Padé
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approximant ). He obtained

Avj + BRuoi + CR*:* | (13)
;—h"l': + DRvg? + ER2327

Iy = 67na

where A, B.C, D and E are real numbers (73920, 66600, 10880, 38880, 689). This
result works well for values of R as high as 10, whereas Eq. (12) is useless above
o=

The next improvement, due to Kaplun and Lagerstrom [26] and Proudman and
Pearson [27]. required a specially suited development of the method of matched
asymptotic expansions [28]. Their analysis provides a systematic procedure to cal-
culate higher order approximations for the drag force obtaining a series in powers
and logarithms of the Reynolds number. Although well founded, the results are of
limited use due to the fact that the applicability is restricted to values of K smaller
than 0.1 and the computations are of enormous complexity. For the present purpose
Eq. (13) will suffice.

Settling velocily

Given the hydrodynamic friction acting on the sphere the solution of its equation
of motion can be pursued. Beginning with some preliminary remarks, two separate
calculations are performed: With fixed (sticking) boundary conditions, the motion
of the sphere is analyzed when different hydrodynamic approximations for f are
introduced. Then, within the hydrodynamic approximation that led to Eq. (9), the
effect of changing the boundary conditions is considered.

To begin, the previous results for Fy are specialized for sticking boundary con-
ditions (€ = 1). Equation (9). in this case [29]. can be Fourier inverted to obtain
Fy(t) and the result is

o oom'z o9 g V2ol g2 dr
I’[)Z[)KI](I;“{"T-}"—_Z?(JT—{)) j(; E‘E-(t_—r)l/g (14)

As mentioned above, the first term is Stokes’s law, the second term is related to
the virtual mass and the last term is connected to the viscous penetration depth
and gives rise to a memory effect on the motion; when Eq. (14) is substituted
into Eq. (1) and the second term is taken to the left hand side of the equation,
the acceleration is multiplied by a renormalized mass mg = m + m'/2. This is an
inherently time-dependent effect. Sinee the approximations leading to Eqs. (11),
(12) and (13) ignore this point, they can all be marginally improved by simply
putting in myg into Eq. (1). Next, dimensionless variables are introduced using the
following definitions:

Pr=i and u= i. (15)
g
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where
. OO ol (16)
mo 6rna
The equation of motion now reads
u=1-uf(u,T), (17)

where u' = du/dT and f(u,T) is the dimensionless friction coefficient. The initial
condition is, in all cases, that the sphere is released from rest at the origin. Pro-
ceeding in order of complexity, Eq. (17) is solved using Egs. (11), (12), (13) and
(14).

For Stokes’s law one has f(u,T) = 1. The solution is

u=1-—exp(-T), (18)

where, obviously, (u');=¢ = 1 and the terminal velocity is 1.

Next, Oseen’s extension of Stokes’s law, Eq. (12), corresponds to f(u,T) =1+
%Ru. The resulting nonlinear (quadratic) equation can easily be integrated. The
solution is

u = 2(1 + x coth xT/2)71, (19)

where y? =1+ %R; (u')r=0 = | and the terminal velocity is 2(1 + y)~' < 1. When
R — 0 Eq.(18) is, of course, recovered.

The solution of the quadrature obtained when the Padé approximation, Eq. (13),
is introduced into Eq. (17) is

T—Xln(1-fi)+V1n(1+fi)+wm(1+1), (20)
uj U2 u3

where the u;’s (1 = 1,2,3) and X,V and W depend on the constants A, B,C, D, I
and R, given after Eq. (13). The u;’s are positive real numbers; uj, —uz and —uy
are the roots of

3 (B=ERW? (A-DR)u A

Yt —7er TR oz =

Also, one can show that (u');—p = | and that the terminal velocity is u; < 1,
depending on the value of R which must be smaller than 10. For small R, uv; =1 -
(B—D)R/A+---.In Iig. 1 the behavior of the terminal velocity (u,) as a function
of R is shown.
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FIGURE 1. The terminal velocity of the sphere (u;), in reduced units, as a function of the Reynolds
number () for the Padé approximation, Eq. (20).

The expressions for the remaining quantities in Eq. (20) are

A+ DRuy + ERu}
CRY>(uy + ug) (1) + us)

_ A—DRuy + l','h’:uf_f _
T CRYuz — ua)(ug + us)’

X = and V

For W one interchanges the subindices 2 and 3 in the expression for V. These results
are discussed and displayed below.

In the time-dependent case, substituting q. (14) into Eq. (17) with the appro-
priate variables, the equation of motion is

' SN [Tdu  dS
7 ey e [ i PO 21
u l —u (4I) , ISUT—% (21)

where 1 = 9m?/2myg. This integro-differential equation can be transformed into a
Volterra equation of the second kind and, being linear, solved by standard methods.
The final result is

u=1-Rew(q) - 1 s Imw(q), (22)
i — ’l

where Rew and Imuw denote the real and imaginary parts of the Error Function
with complex argument [30]

T = c“zﬂerfc{—i::).
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FIGURE 2. Sphere’s velocity as a function of time, in reduced units (broken line Eq. (22), contin-
uous line Eq. (18)).

3\ . 3(4-—
92=T(A+i\/—8’f) and )\-=(—48i).

Also, (#')r=0 = 1 and the terminal velocity is 1.

Here

In Fig. 2, the velocity of the sphere is shown as a function of time as described by
the linear approximations (R — 0), Egs. (18) and (22). The difference is noticeable
at intermediate times and eventually the velocities reach their common asymptotic
value. The assumed mass ratio (m'/m) was 0.128, corresponding to iron spheres
in water, say; for glass spheres in water (m'/m = 0.667) the differences are even
smaller.

When the inertial effects are taken into account, at least in an approximate way,
the limiting value of the velocity becomes lower. This is illustrated in Fig. 3, using
Eq. (20) that incorporates such an effect; Eq. (19) would give the same result in the
range where applicable, R < 1.

In Fig. 2 the improved approximation, given by Eq. (22), shows a slower ap-
proach to the terminal velocity, the difference never being greater than 20%. In
Fig. 3, the asymptotic values for u (1.00, 0.80 and 0.45) depend on the Reynolds
number R (0,1 and 10, respectively); the approach to the terminal velocities is faster
as R increases.

To conclude this section, Eq. (17) is solved assuming arbitrary slip on the
sphere’s surface. The simplest approximation is, of course, given by Eq. (11). The
result, shown in Fig. 4 for the two extreme cases £ = 0 and £ = 1, is a trivial
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FIGURE 3. Sphere’s velocity as a function of time, in reduced units, for different values of R. From

Eq. (20).
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FIGURE 4. The time dependence of the sphere’s velocity for stick (broken line) and slip (contin-
uous line) boundary conditions, as given by Eq. (23).

extension of Eq. (18)
3 -(246T/3
u= m l—e i (23)

A generalization of equation (23) is easier to obtain working in frequency space
from the beginning. Hence, one takes the Fourier Transform of Eq. (17); the second
term on the right-hand-side corresponds to Egs. (8) and (9), written in dimensionless
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variables, while the first term (corresponding to the 1) introduces a singular behavior
(a delta function) that must be handled carefully. We label the later by é. and
formally carry out the calculations. Solving for us, the Fourier Transform of u, gives

, 3—(1—§&)V-1s ;
w(2+ €)1 — V=is) —is(3 = (1 — E)V/~is)

(24)

Usg =

where s is a dimensionless frequency (s = wa®p/n) and p was defined after Eq. (21)
(u = va®p/n = 9m'[2my). It is easy to see that for low and high frequencies the
behaviors are

3 .
Uy~ = §'+_£6,_,, Lore AN Hipwes = '7(”1‘-‘-’)_16‘.: it ¥

Consequently, the long and short-time asymptotic behaviors are

=3(2+£)—1+...(T—+OO) and u=T+--- (T = 0); (-

to
(85, ]

where the initial conditions are such that the Fourier inversion for these asymptotic
behaviors are guaranteed. The terminal velocity and the initial acceleration are the
same as in the previous case (Eq. (23)). To Fourier invert Eq. (24), in order to find
u(T), the denominator can be factorized as (—(1 — £)\/q + k1)(1/ + k2)(\/q + k3)
where ¢ = —is, and ky,k; and k3 are complicated expressions involving u and ‘
Next, the numerator is divided out and the result is expanded in partial factions
each denominator being a binomial times ¢; the Fourier Transforms are, in each case,
of the form 1 — exp{sz)erfc(b\/_- times some constant depending on k., &k, and
ks: the delta multiplying each term takes care of itself when using the convolution
theorem and the appropriate initial conditions. The b’s, being complex, lead to an
expression for u(T) similar to Eq. (22). We have not cared to write down the explicit
results since the behavior must be very close to that shown in Fig. 4; this is because
the initial and final values of the velocity as well as the corresponding values for the
slopes are identical (see Eq. (25)).

The main conclusion of the foregoing calculations is that the motion of a settling
sphere is controlled by the shear stresses on its surface. That is, the boundary condi-
tion used, regardless of the hydrodynamic approximation, can change the terminal
velocity by more than 30%, between the extreme cases of perfect slip and no-slip.

5. Discussion

Arguing that slipping at a fluid-solid interface should depend on the surface (or
interfacial) tension, an experiment to prove the point was proposed and briefly
sketched: To perform a careful determination of the settling velocity of two me-
chanically identical spheres with different wetting characteristics, for a given vis-
cous fluid. The argument stems from the possibility of relating the slip and surface
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tension coeflicients through the procedure outlined in Sec. 3. Wall effects on the
drag experienced by the spheres [31] have been overlooked. The experimental setup
must be such that these can be neglected; this is not a crucial point because the
issue is to keep all things the same and to compare the motion of the spheres when
only the wetting characteristics are changed.

A theoretical basis was then given (schematically) in Sec. 4 to interpret the
outcome of the experiment and to establish the amount of slip present: Several
calculations were carried through to determine the time-dependence of the velocity
of a descending sphere. Using sticking boundary conditions, it was shown that linear
approximations lead to a common terminal velocity and that allowing for slip at
the sphere’s surface could increase this value by as much as 30%, when the fluid’s
shear stresses vanish at the surface. These included time-dependent effects in the
hydrodynamic calculations. Nonlinear corrections giving a lower asymptotic value.
A full and correct theoretical treatment should include the coupled time dependent
and nonlinear effects; even if feasible, for the present purpose this seems unnecessary.

The lack of a comprehensive microscopic theory to connect the coefficients of
slip and surface tension, as understood in this paper, suggests a simple dimensional
argument to derive, at least, a formal functional relation. From the whole set of
physical parameters that play a role in this problem, it can be shown that there are
four independent dimensionless quantities: M = m/pa® (a mass ratio), I* = o /pga
(a squared length ratio of the capillary length to the sphere’s radius), r = ga®p?/5*
and ¢ (the slip coefficient ). In the present case the parameters m and r remain fixed,
hence the only possible functional relation is ¢ = G(l). Where, for large values of
the argument GG — 0 and for small values G — 1. The explicit form can only be
provided by the experiment and understood from a Statistical Mechanical based
theory.

Aside from the main idea put forward in this paper, most of the analysis deals
with the study of a descending sphere in a viscous fluid. Other experiments might
be simpler to conceive and perform in order to prove the working hypothesis; the
underlying theory to determine the amount of slip would probably be harder to
develop. This is the main reason justifying the present analysis.
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Resumen. Bajo ciertas circunstancias, algunos fluidos fluyen de tal
manera que la condicién de frontera usual de adherencia, explicada por
lo general en términos de la rugosidad de la superficie, debe ser relajada
para permitir deslizamiento parcial. En este trabajo se argumenta
que la tension superficial, asociada a la regién de contacto entre un
fluido y un sdlido, debe jugar un papel en la forma que debe tomar
la condicién de frontera hidrodindmica correspondiente; el efecto es
incorporado a través del coeficiente de deslizamiento. Con base en el
analisis detallado del movimiento de esferas en un fluido viscoso, se
propone un experimento que demostraria la tesis del trabajo. Con objeto
de poder interpretar el resultado del experimento propuesto, se dan los
resultados tedricos necesarios.





