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Abstract. Mott and Littleton developed a method to calculate the
formation energy of point defects. This method was succesfully used
from 1938 to 1952, and it is the foundation of most of the subsequently
developed efforts concerning the calculation of defect energies. There-
fore, it is important to show an inconsistency in that fundamental work.
In order to solve the problem which arises due to the inconsistency, we
suppose that the ions (and the vacancies they leave), which surround
the point defect have a certain volume instead of considering them as
points (as Mott and Littleton did). In this way, and following the rest of
the Mott and Littleton formalism, we conclude that the displacements
of the nearest neighbors to the point defects are very small, and some-
times even zero. When the displacements are considered to be zero, the
theoretical value of the formation energy of Schottky pairs gets closer
to the experimental values reported by other authors.

PACS: 61.70.—r; 71.55.—i

1. Introduction

The Mott and Littleton [1] method was developed to calculate the formation energy
of point defects in ionic crystals. Later on, this method was extended by Reitz
and Gammel [2], Bassani and Fummi (3] and Ruiz-Mejia et al. [4], in order to
calculate the formation energy of M**-cation complexes in different alkali halides.
This method was also used by Tosy and Fumi [5], Tharmalingam and Lidiard [6],
and Dienes [7], to calculate the formation energy of vacancies. An excellent review
of the lattice defect studies carried prior to 1957 has been given by Lidiard (8].
The calculations of defect formation energies have been subsequently repeated
by a number of authors, and nearly all of them have used the Mott and Little-
ton [1] description of the displacement field or some simple modification of it; for
example: relaxation mechanisms such as the elastic relaxation first introduced by
Brauer [9], and the deformation dipole relaxation considered by Kurosawa [10].
Tosi and Doyama [11] have made a consistent treatement of point defects in ionic
crystals, using the Mott and Littleton [1] description and using the improved short-
range potential constants of Fumi and Tosi [12,13]. Hardy [14,15] introduced a new
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approach to the problem of neutral point defects in ionic erystals by making use of
a technique due to Kanzaki [16] which has come to be called the method of “lattice
statics”.

Boswarva and Lidiard [17] and Boswarva [18] have performed several calcula-
tions within the Mott and Littleton [1] formalism. They determine the dependence
of the Schottky formation energies on the electrostatic, elastic, and deformation
dipole effects. They also study the dependence of the Schottky energies on the
constants used in the Born-Mayer [19] short-range potential, and the aplicability of
the Born-Mayer-Verwey [20] potential.

The first attempt to replace the region, which Mott and Littleton [1] consid-
ered as a continuum, by a lattice model appeared in the work of Hatcher and
Dienes [21,22]. In these papers, the aim of the extension of the Mott and Little-
ton [1] method was primarily the determination of the activation energies for the
formation of neutral defects in jonic crystals. Quigley and Das [23,24] performed
calculations in KCI, KBr and CsCl with Li* impurities. They allowed the defect
to move along the (111), (100} and {100} directions in the lattice and they found
a (111) off center place to have the minimum encrgy. In all of these papers. the
primary technique used was the Mott and Littleton [1] method modified in some
aspects: elastic relaxation [9], deformation dipoles [10], lattice statics [14,15], and
rigid-ion model [21,22,23,24].

Scholz [25,26], the only one that does not use the Mott and Littleton [1] ap-
proach, calculated Schottky pair formation using a computer simulation of the
lattice.

A very good review of the lattice defect energy calculations carvied before 1970
was given by Hardy and Flochen [27].

The theory of point defects in ionic crystals is largely concerned with the treate-
ment of lattice relaxation and the evaluation of the interionic potentials. The major-
ity of defect calculations currently made are hased on two-body potentials in which
the non-coulombic forces are represented by Born-Mayer repulsive interactions. In
many more recent papers [28,29.30], electronic polarization is accounted for hy the
use of a shell model suggested by Dick and Overhauser [31]. The contributions in
this field of the theoretical group at Harwell arc given by Catlow and Mackrodt [32].

The interionic potentials in alkali halides derived by Tosi and Fumi [13] have
been used in many calculations of physical properties of liquids and solids [33.34.35].

There have been numerous attempts to present other potentials in ionic crys-
tals [32,36]. These potentials have been critically studied by Eggenholfner
et al. [37,38], who have demostrated that none of them is capable of yielding het-
ter agreement with experimental results than those obtained with the Fumi and
Tosi parameters. Recently, Boswarva [39,40] and Gupta ¢/ al. [41] have reevaluated
the Tosi and Fumi [13] potential parameters and they found good agreement with
experimental results.

In the present paper, we review the Mott and Littleton [1] method and we
claim that there is a missing term in their expresion for the electric foree. As the
introduction of this term leads to an unsoluble system of cquations, we suggest an
alternative procedure to obtain the Schottky energies.
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FIGURE 1. Region I: Vacancy (V) and its first nearest neighbors (I). ry = anion-cation distance.

2. Theory

In the Mott and Littleton [1] method, the crystal is divided into an inner region,
region I, whose equilibrium is explicitly evaluated, and an outer region, region II,
where the dipole moments and the displacements of the ions are obtained from the
macroscopic polarization caused by the effective charge on the point defect.

In the first order approximation, the vacancy and its six nearest neighbors are
chosen as region 1. The outward displacement of the neighbors is called {ro, and
mery is the outward induced dipole moment, where rg is the anion-cation distance, e
is the electrostatic charge, and £ and m are ajustable parameters. The configuration
of region I is shown in Fig. 1.

As a rule [1,2,3,4], the electric force along (100) direction on any of the six
nearest neighbors is presented as:
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where the negative sign corresponds to a positive ion vacancy and the positive sign
to a negative ion vacancy. M), and M__ are related to the dipoles induced at distant
positive and negative lattice sites (region II). Those dipoles are respectively
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FIGURE 2. Vacancy (V), displaced nearest neighbors (I) and oppositely charged points (P) left
by the ions. ry = anion-cation distance. £ry = outward displacement.

at the position r in the lattice.

In order to notice that there is a missing term in equation (1), we will obtain it
in some detail. The non displaced ions, which are the vacancy nearest neighbors, are
in the positions (£1,0,0)ry, (0,£1,0)rp and (0,0, £1)ry. When the displacement
takes place, the new positions of the ions are (£(1 + £),0,0)ro, (0, £(1 + £),0)ro
and (0,0, +(1 + £)), and they leave points oppositely charged at their old positions
(Fig. 2).

The electrical force F'; is calculated on the displaced ion (1 +£,0,0)rp and it
is due to the vacancy, the rest of the displaced ions, the oppositely charged points
and the dipoles formed in the displaced ions and in region I1.

The electrical force in (1 + £,0,0)ry due to the vacancy is
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The electrical force due to the charged point at (—1,0,0)rg is
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We also have

— e? (1+&)i+]
FL((0,1,0)r9) = —%W (5)
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The charged points at (0,—1,0)rp, (0,0,1)r9 and (0,0, —1)rg give equations
analogous to equation (5). There is an equivalent result (equation (6)) for the
displaced ions asociated with those charges points.

The i component of —F—; in equations (2), (4) and 4 times (6) gives the term

e? (1 +0.25 + v2)
7o+ )

Four charged points give the same contribution (component i of equation (5)), so
we obtain the second term of equation (1)

e 414§
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From equation (3), we get the third term of equation (1),
e? 1
e - Tc
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The fourth term in equation (1) comes from the electronic moments on the
first nearest neighbors to the vacancy calculated at the point (1 + £,0,0)rg. The
last term comes from the moments in region II, and the numerical coefficients where
calculated by Mott and Littleton [1]. As the fourth and fifth terms are not important
for our purposes, we will not discuse them.

Aparently, all the contributions to the electrical force have been taken into
account in equation (1). However, and to point out this fact is the main purpose
of this paper, there is one term that has not been considered in equation (1): the
corresponding to the charged point at (1,0,0)rs. The electrical force due to it is

Y
Fo((1,0,0)r0) = {“—E—a (8)
0
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so equation (1) must actually be
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In this way, we do not arbitrarily omit the contribution of the charged point at
(1,0,0)ro.

In order to obtain the displacement ¢ and the moment m through the force
balance method, it is necessary the repulsive force
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withCyo =1,C__ =0.75,C44 = 1.25, p = 0.345x10~% cm, b = 0.299x 10~ % ergs
and e = 4.8025 x 107!° esu.
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The other necessary equations are

€
axl = tmerp (10)
e
Fz+ F7 =0. (11)

Then, ¢ and m are obtained through equations (1), (9), (10) and (11). How-
ever, if we use the correct equation (equation(1')) instead of equation (1), there
is no solution to the system of equations. As a matter of fact, the term given by
equation (8) is numerically much bigger than any of the terms in equation (1), and
cannot be neglected in equation (1').

In order to be able to use (1'), we have considered that the holes left behind by
the ions (vacancy nearest neighbors) when they move to their desplaced positions,
are not merely charged points, but they have spherical volume and a uniformily
distributed charge. We make the same assumption for the ions. Then equation (1')
changes to

pe_i 1+Q(v2+025) 4Q(1 + € + 2)
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r+ is the radius of the negative and positive ions.
According to this model, the overlaping parts of the charge of the spherical ion
and the spherical hole left behind do not contribute to the electrical force.

3. Results and discussion

Table I shows the displacements of the first nearest neighbors of a positive ion and
a negative ion vacancies using equations (9), (10), (11), and (12). For a negative
ion vacancy there is solution for all the alkali halides. In the case of a positive
ion vacancy there is no solution for some of the alkali halides. When there are no
solutions we see that |F%| and |FZ| are closer to each other in value when § tends
to zero.

For the calculations of the displacements we have taken into account the
Brauer [9] term £ (1.965 — 0.388) in the electrical force in order to include the
elastic effect.



562 D. Cdrdenas-Garcia et al.

‘- E & EY
LiCl 0.0166 5.3997 0.0133 5.7856
NaCl 0.0216 4.7677 0.0195 5.1663
KCl 0.0000 0.0155 5.0924
RbCl 0.0000 0.0032 57776
LiBr 0.0118 4.4398 0.0112 4.8122
NaBr 0.0128 4.2406 0.0169 4.5846
KBr 0.0000 0.0122 7.8800
RbBr 0.0000 0.0035 6.9862
Lil 0.0071 5.3322 0.0090 6.1785
Nal 0.0060 5.4033 0.0136 5.7535
KI 0.0000 0.0090 6.5442
RbI 0.0000 0.0029 9.1364
LiF 0.0598 5.8011 0.0255 6.2388
NaF 0.0551 5.6707 0.0355 5.9174
KF 0.0331 5.2366 0.0291 5.6400
RbF 0.0259 4.9644 0.0167 5.6161

TaBLE 1. Displacements (£_,£,) of the vacancy first nearest neighbors, and formation energies
(EY,EY; in eV) of positive and negative ion vacancy.

When the Van der Waals term was included for the cases in which € = 0, we
obtained non-physical solutions (£ a 0.5). Then, in Table I we take into account
the elastic effect only. Table I also shows the formation energy of the vacancies
corresponding to each £ and m.

The formation energy of a Schottky pair [8] is £E* = El + EY — Ep, where
EY and E? are the formation energies of a positive and a negative ion vacancy
respectively, and Ey is the lattice energy per pair of ions. In order to compare our
results with the experimental ones, we have done the calculation of EP and E™
when £ = 0. Also in the cases when £ is different from zero but very small, we have
put £ = 0 and we used the expression for £}> and E™. Table II shows the energies
E_‘,’,O, EY° (order zero) [1] and Ej for all the alkali halides.

Table III shows the theoretical and experimental values of the Schottky energies
and they are compared with the values obtained by Boswarva and Lidiard [17].

4. Conclusions

We have used the balance force method in order to find £ and m. The expression
for F% had to be change from equation (1) to equation (12), But even when a
minimization energy method [17] is used, and expression for FZ is necesary to find
the value of m.

From Table I1I we can see that for the alkali halides with ¢ = 0 (marked with
an asterisk) the value of E? is in good agreement with experimental results [17].
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E? E} Ep
LiCl 5.0513 5.5785 8.6881
NaCl 5.0140 5.4639 8.0000
KCl 4.8054 4.9706 7.2561
RbCl 4.4574 4.5473 6.8160
LiBr 4.7545 5.2729 8.1740
NaBr 4.7556 5.1571 7.5980
KBr 4.5617 4.7962 6.9491
RbBr 4.4033 4.5628 6.6900
Lil 4.4457 4.9293 7.5541
Nal 4.3674 4.7989 7.0662
KI 4.2340 4.5388 6.5251
Rbl 4.1817 4.4277 6.3700
LiF 6.4041 6.7815 10.7930
NaF 6.1024 6.1887 9.5560
KF 5.5412 5.3997 8.4260
RbF 5.3879 5.1852 6.8162
TaBLE I1. Order zero formation energies (E_‘;_", E;in eV), and lattice energy (Fy, in eV) per pair
of ions.

E* (B-L) E* (this work) E* (experimental [17])
LiCl 1.0830 3.7817 2.1200
NaCl 1.7940 3.8236 2.1200
KClI 1.9780 2.5201* 2.2200
RbCl 1.9840 2.1887*
LiBr 0.9170 3.9752 1.8000
NaBr 1.6220 3.7184 1.6800
KBr 1.8690 2.3147* 2.5300
RbBr 1.8720 2.2761*
Lil 0.6400 1.8210* 1.3400
Nal 1.3500 2.1004*
KI 1.7000 2.2478*
RbI 2.2395*
LiF 1.6430 4.9438 2.6800
NaF 2.2900 4.4649
KF 2.0402 4.2127
RbF 1.8490 4.2989

TaBLE 111. Theoretical (B-L = Boswarva and Lidiard; and this work) and experimental val-
ues [17] of formation énergy (E* in eV) of a Schottky pair. Asterisk corresponds to
£=0.
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The main conclusion is that the picture of point charges must be changed if we

one conserve the Mott and Littleton [1] formulation.
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Resumen. Mott y Littleton desarrollaron un método para calcular la
energia de formacién de defectos puntuales. Este método se usé con
éxito de 1938 a 1952 y es la base de la mayoria de los desarrollos
subsecuentes relacionados con el cdlculo de energfas de defectos. Por
lo tanto es importante mostrar una inconsistencia en ese trabajo funda-
mental. Con el fin de resolver el problema que surge de la inconsistencia,
nosotros suponemos que los iones (y las vacancias correspondientes),
los cuales rodean al defecto puntual, tienen un cierto volumen, en vez
de considerarlos como defectos puntuales (tal como lo hicieron Mott y
Littleton). De esta manera y siguiendo, en lo demds, el método de Mott
y Littleton concluimos que los desplazamientos de los iones vecinos al
defecto son pequefios y en algunos casos son iguales a cero. Cuando los
desplazamientos son iguales a cero la energia de formacién de pares de
Shottky calculada resulta muy cercana al valor experimental.





