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Abstract. Lithium undergoes martensitic transformations under dif-
ferent conditions of temperature and pressure passing, partially, from a
BCC structure to a faulted close packed structure (probably a faulted 9R,
HCP or FCC structure or, perhaps, a mixture of some of these phases). In
this work, the lattice specific heat and elastic constants are calculated
from a first principles pseudopotential for Bcc, rcc and nce lithium.

PACS: 63.20.—e; 65.20.+w

|. Introduction

The normal pressure and room temperature phase for lithium is BCC and the normal
pressure and low temperature phase (below 72 K) was first described by Barret [1]
as a faulted HCP structure, from X ray studies. This same author, showed that
lithium cold-worked at low temperatures became FCC.

However, subsequent studies do not exclude the possibility of a more compli-
cated packing of hexagonal layers at normal pressure and low temperatures [2,3].
Experiments with neutron diffraction performed on lithium at normal pressure and
temperature of 60 K have revealed the existence of clear reflections which could be
attributed to an HCP structure [4]. Simultaneously, a number of weaker reflections
were observed, not all of which could be related to the HCP structure. More detailed
analysis of the neutron diffraction patterns show that the 9R structure seems the
most probable. However this structure does not display complete coincidence in
the position and number of observed reflections either [4]. It seems that numerous
stacking faults as well as admixture of the 9R phase with the 6H structure (which
is a triple HCP), might be possible reasons for the discrepancies observed [4].

On the other hand, it seems that the sample does not go completely to the new
phase. Only a fraction of it does [1]. Applying pressure on the sample may produce
a transition from the probable 9R to FcC [5].

It is our aim in this work to calculate the contribution to the lattice specific
heat of some of the different phases which could be present in a lithium sample
for different conditions of temperature and pressure. We have calculated the lattice
specific heat of Bcc, Foc, and HCP lithium. It is our hope that this information could
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be useful to experimentalists in the study of the lattice specific heat of lithium for
different conditions of temperature and pressure.

Il. Elastic constants and specific heat

We made our calculation using a local, first principles pseudopotential which has
been useful in the prediction of properties of lithium, aluminum, sodium and potas-
sium [6 to 13 and 23 to 25].

In previous work we employed this kind of pseudopotential with success in
the calculation of the lattice specific heat of lithium [7], sodium [23,24] and alu-
minum (8], and of the pressure dependence of the lattice specific heat of lithium [9],
and aluminum [8], and also in the calculation of the pressure dependence of the
elastic constants of aluminum and lithium [10], and of the pressure dependence of
the superconducting transition temperature of aluminum [11] and in the calculation
of the volume dependence of the resistivity of aluminum [25]. More recently we also
explored, with good results, its application in the calculation of the phonon limited
resistivity of aluminum [12] and of sodium and potassium [13].

We constructed this local, first principles pseudopotential following a method
proposed by Manninen et al. [6] who had followed some ideas of the work of Ra-
solt [14].

We started by calculating the displaced electron densities around a nucleus in an
electron gas for lithium. This was done using the density functional formalism [15,16]
and the model of the nucleus embedded into a jellium vacancy [6]. Taking into
account that in the pseudopotential formulation the pseudodensity must not contain
wiggles near the ion, these wiggles in the calculated density had to be removed, as
we explain below.

We have used atomic units (i.e., magnitude of the electron charge = electron
mass = h = 1). The energy is given in double Rydbergs.

From pseudopotential theory and linear response theory [17], the interionic po-
tential is given by

o) = 2 (1 2 [%dg sin(qr)E(q)[5ﬂ(Q)]2) ' 1)

U TrzE ), q[1 — €(q)]

where r is the separation between the two ions, Z is the charge of the metal ion,
€(g), is the dielectric response function of the electron gas and én(q) is the Fourier
transform of the induced charge pseudodensity.

We calculated én(q), the Fourier transform of the displaced electron pseudoden-
sity, taking the Fourier transform of the induced density [6], after smoothing. In this
smoothing, the conditions that the electronic charge is conserved and that én(r) and
(8/0r)[én(r)] are continuous, are imposed [6]. It is convenient to mention that in
the pseudopotential formulation, the pseudodensity must not contain wiggles near
the ion, and the induced density calculated frem density functional theory contains
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those wiggles in that region due to the orthogonalization of conduction states to
core orbitals.
The unscreened pseudopotential form factor, v(q), is related to én(q) by

st = Axén(q)elq)
¢*[1 — e(q)]

Eq. (2) is used to obtain an effective local pseudopotential, which in linear
response will give the exact induced displaced electronic density outside the region
of smoothing. In this way some of the nonlinear screening effects are included into
the pair potential calculated from this psendopotential.

The dielectric function we used satisfies by construction the compressibility
theorem, which is important in connection with the interionic potential [6,14,18].

With the induced charge pseudodensity and the dielectric function already
given, we used I5q. (1) to calculate the interionic potential.

From the interionic potential we calculated the phonons and associated force
constants, using the harmonic approximation.

From the tensor force model and using notation of reference [19], the force
matrix, ®y;, is defined as the force on the origin atom in the ¢ direction when atom
S moves one unit distance in the j direction. This force matrix is symmetric and it
is denoted by

u‘f ﬁf ;:'3.‘”?
o) = | 4 of 8 (3)
a2 3.“’ af

The point S is one of a set of points according to the symmetry of the lattice.
This set of points is denoted by S, where § = 1,2,3, etc., corresponding to every
shell of neighbors. The force matrices of the other members of the set consist of

rearrangements of the same set of force constants.
For cubic symmetry the elastic constants, Cyy, Cas, C12 are given by [19]
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(l(_.-]l = STZ ﬁ Z(h]s) af
S ?
. n® s \? s Y| s
aCyy =47 Z 18 Z (hj+l) + (hﬁz) a;
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S
n > - o
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where a is the lattice constant, n® is the number of lattice points for neighbor shell
S5 hf corresponds to three non-negative integers such that hy = hy > hz and the
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coordinates of a point in shell S are hya/2, haa/2, hya/2. For Fcc 7 = 1 and for
BCCr= 1/2.

For cubic symmetry the relations between the force constants of the tensor force
model and the axially symmetric model are [19]

h? 3 hah
o = Cp(8) + (}';l) k(S) 8= ( 223) k1(8)

- h? ah _
of =)+ () bis) 4 = (B meo (5

h3 i hiho >
of = cas)+ () sy 47 = (M) i)

where h? = h'f ES hg + h%, and k1(S5) and Cp(S) are the two force constants of the
axially symmetric model for the S-th shell of neighbors [19].

We could relate easily the force constants k;(.S) and Cg(S) to the derivatives
of the interionic potential and we obtained

oy [€V(r)  1dV(r)
Rk = L & r dr }(5) (6}
and
_ [1av(r) "
Cy(8) = ) (7)

In this way, from the interionic potential V(r), we could find k(S) and Cg(S)
and using equations (4) and (5) we could calculate the elastic constants for Bcc
and FCC structures. We had a good convergence using 12 neighbor shells.

For the HCP structure we had a good convergence with four neighbor shells. For
this case the elastic constants are [20]

s iy~ B
O itk (8)
2¢
[ — (2824 Gy +3G\)(3B) + By +8G3) +2G3(3B1 + By) ©
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C
Cos = e [_3(33 + By) + 45] (10)
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a4 \/3-:[ 2+ B3 3] (11)
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Ciy [ =By =By = By = 196y =404 Pl 40w (12)
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P= (13)
By + By + G+ Gy
2
s = 5(204 - 54) e (14)
In the case of an ideal HCP structure, ¢/a = 1/8/3.
Finally
a=—[ki(1)+Cp(1)]; A=Az =Cp(1); Az =0
B, = Cp(2); B3 = 1[k1(2) + 3CB(2)]; Bs=2B;— By;
By = V2(B; — By); G = Cp(3); Gz = 1[2ky(3) + 3Cp(3)];
Gas—G
Gy = %(Gl + (a); Gy = g 6= —[k1(4) + Cp(4)].

\/i 3

Again, from the interionic potential we could find k;(S) and Cp(S) and, from
these, the corresponding elastic constants for HCP.

To calculate the phonon frequency distribution, F(r), from the force constants
obtained in the phonon dispersion curve, we followed the method of Gilat and
Raubenheimer [21].

From F(v), the specific heat is calculated numerically by the integral

_AB) [y, (B _FW)
Co=%1 ‘k"‘[u ! ( 2 ) sinh(18hv)’ ()

where (E) is the average of the internal energy, T is the temperature and vy, is the
maximum phonon frequency.

In Fig. 1 the resulting phonon spectra for Bcc, Fcc and HCP are shown. The
phonon spectra were obtained using first the harmonic approximation to get the
force constants and the using the method of Gilat and Raubenheimer [21].

Our calculated phonon spectra for low temperature are similar to those obtained
by Punz and Hafner [22]; however, these authors did not report any calculation of
the lattice specific heat. These authors used an optimized Harrison pseudopotential
and the dielectric function of Vashista and Singwi. This dielectric function does
not satisfy the compressibility theorem which is important in connection with the
interionic potential, as we have already mentioned.

1 ne results for tie lattice specific heats for Bcc, Fcc and HCP lithium are shown
in Fig. (2). We can see that the results for BCC and FCC are, practically, identical.
This could be expected because of the similarity of the phonon spectra for these
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FIGURE 1. Calculated Phonon spectrum for lithium with different structures. For Bcc: —; for
FCC: - - -; for HCP: - . The calculations were made at a temperature of 78 K.
&F
2
€ af /
X -
> £
5] &
<
>
S f
.'.. 1 ‘_ ] L L
0.25 05 0.75 1.0
T/6;
FIGURE 2. Constant volume lattice specific heat of lithium as function of the temperature for
different structures. Result of this calculation for BCC: —; result for Fcc; - - -; and for
HCP: - -
Cyq Cn Cha Ca Cia
BCC 0.069 0137 0.115
FCC 0.078 0.172 0.138
HCP 0.059 0.429 0.188 0.359 0.083

TaBLE 1. Elastic constants of Bcc, Foc and Hep lithium. The units are 1012 dynes/cm?. The

calculation is for 78 K. Lithium undergoes a martensitic transformation below 80 K to
a probable Fcc or to an HCP structure.
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structures (Fig. 1). We could not find experimental results for the specific heat for
one phase alone of lithium below 80 K.

Our calculated elastic constants, for Bcc, FCC and HCP lithium for temperatures

helow 80 K are shown in Table 1.
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Resumen. El litio pasa por una transformacion martensitica bajo
diferentes condiciones de temperatura y presion cambiando parcial-
mente de una estructura BCC a una estructura de empaquetamiento
compacto imperfecta (probablemente a una estructura 9R imperfecta,
HCP 0 FCC o quiza, a una mezcla de alguna de estas fases). En este tra-
bajo, se calculan el calor especifico de la red y las constantes elasticas
a partir de un pseudopotential de primeros principios, para litio con
estructuras BCC, FCC y HCP.





